
A Semantic Comparison of

STATECRUNCHER and Process Algebras

Graham G. Thomason

Appendix to the Thesis “The Design and

Construction of a State Machine System

that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

Summary

This paper discusses the essential differences in the STATECRUNCHER approach to

composition and synchronisation of processes, and to nondeterminism, to that of the process

algebras CCS and CSP. It is a pre-requisite to the papers mentioned below, covering ground

common to them.

In separate papers a more detailed discussion of specific case studies, taken from the CCS

and CSP literature, is given. Those papers show working STATECRUNCHER models of the

systems, covering their statechart diagram, source code, and output from sessions running the

models. A comparison of the STATECRUNCHER model with the CCS or CSP specification is

given. An additional study shows how a Z specification relates to STATECRUNCHER concepts.

The case studies in those papers are:

 The Distributed Arbiter System in CCS [StCrDistArb]

 The Dining Philosophers in CSP [StCrMain]

 The Game of Nim, specified in Z [StCrNim]

Reminder of the motivation for STATECRUNCHER

STATECRUNCHER was built for the purposes of providing an oracle to state-based tests. It

forms part of a tool chain for testing an implementation of a system, i.e. for determining

whether the implementation under test behaves according to its specified state behaviour,

even when it is nondeterministic. STATECRUNCHER does not generate tests; it co-operates

with a test generator in a tool chain.

© Graham G. Thomason 2003-2004 iii

Table of Contents

1. Comparison of terminology .. 1

2. Composition of processes ... 4

3. Parallelism other than call/return composition .. 15

4. Nondeterminism ... 18

5. Concluding remarks .. 23

References .. 24

© Graham G. Thomason 2003-2004 1

1. Comparison of terminology

In STATECRUNCHER terminology the main concepts in a statechart are

 states

 events

 transitions

 actions

 traces

 variables

 assignments to variables

In order to concentrate on the essentials, we do not discuss here other refinements such as

multiple target states, orbital transitions, conditional transitions, conditional actions,

references to state occupancies, meta-events, parameterised events, and upon-entry/upon exit

actions. These are described in [StCrMain, StCrParsing]. Mention will be made, however, of

PCOs (points of control and observation), as a fixed attribute to an event.

The STATECRUNCHER terminology is different to that of CCS and CSP. STATECRUNCHER

actions and traces are not the same as those of CCS and CSP. The STATECRUNCHER

terminology corresponds more closely to that of tools used within Philips over the years such

as [CHSM] and [TorX]. For this reason, a comparison is now offered. We start with a review

of STATECRUNCHER terminology.

A very simple STATECRUNCHER model is shown in the figure below:

Figure 1. States, events, transitions and actions

a b

c

α

α /

fire δ;

trace("ab");

v=v+2;

β δ

β γ

t1

t2

t3

t4

2 © Graham G. Thomason 2003-2004

The above diagram models a system as having:

 three states: a, b and c

 four events: α, β, γ, and δ

 four transitions: t1, t2, t3 and t4

 three actions: fire δ and trace("ab")and v=v+2

At any one time, a system modelled by the above state-transition diagram will be in one and

only one state. That state is called the occupied (or active) state. The others are vacant (or

inactive). Since in general, in more complex models, several states can be occupied (due to

parallelism and hierarchy), we speak of an occupancy configuration.

The main relationships between these are expressed as follows:

 an event triggers a transition, for example, α triggers t1.

 a transition occasions any actions on that transition. There are actions on transition t2.

 an action does one of the following:

 fires an event, for example an action on transition t2 fires event δ. In the above

model, nothing responds to δ, but if there were a parallel part of the statechart, or

even another transition from state b triggered by event δ, the response would be

made.

 generates a trace

 makes an assignment to a variable

When a transition occasions an action, we may speak of the transition itself firing the event,

generating the trace, or making the assignment, e.g. “transition t2 fires event δ”.

In STATECRUNCHER, an event may occur at any time, but a transition will only take place if

the source state of the transition is occupied. STATECRUNCHER has commands to tell it to

provide the set of all events and the set of transitionable events.

STATECRUNCHER traces are specific outputs on a transition that the modeller decides to

record, so that the model can output them on request. They typically correspond to observable

outputs of a system under test, and are important in black-box testing, where the states and

internally generated events cannot be observed. On this basis, in the above figure, only

transition t2 produces output; the others are silent, and the only way to try to prove they have

taken place is to drive the machine on through t2 by an event sequence.

© Graham G. Thomason 2003-2004 3

Summary of approximate equivalences

STATECRUNCHER CCS CSP

state (state of an) agent. [Milner, p.19]:

“Rather than distinguishing

between two concepts - agent and

state - we find it convenient to

identify them, so that both agent

and state will always be

understood to mean agent in some

state.”

process

event action,

handshake [Milner, p.17]

event

transition transition, as in A'
geth

 2 A

[Milner, p.38]

transition [Hoare, p.34], as a

pictorial aid.

Note: x 1 P describes an agent that

can engage in event x and become

agent P.

action probably best modelled as an

output action

probably best modelled as an

output action

trace probably best modelled as an

output action with which a user

can engage

probably best modelled as an

output action with which a user

can engage

(sequence of

processed events)

trace trace

Table 1. Approximate equivalences in terminology

This table serves as a rough guide and an alert that the terminology is used differently in the

different systems. The differences in approach will become more apparent as processes, and

their composition, are discussed.

The ways in which nondeterminism is handled by the different systems is considered in

section 3.

4 © Graham G. Thomason 2003-2004

2. Composition of processes

In CSP and CCS, processes are combined by sharing events.

For CSP, Hoare says [Hoare p.65-66]

When two processes are brought together, the usual intention is that they will interact

with each other. These interactions may be regarded as events that require simultaneous

participation of both the processes involved.

The CSP operator for composition is ||. The expression P||Q, is initially introduced for the case

where processes P and Q have the same alphabet [Hoare, p.66 l.8], i.e. the same set of events,

though this is relaxed in a generalisation [Hoare, p.69]. We will adopt the generalised version

of the operator in our discussions that follow as in so many realistic examples interacting

processes only share some of their events, namely the ones where they engage each other.

(Hoare perhaps unwittingly uses the generalised operator before introducing it, in his example

X2 [Hoare, p.66], where the alphabet of FOOLCUST lacks event small, which is in the

alphabet of VMC [Hoare, p.30]). More than two processes can be assembled using this

commutative and associative operator, e.g. P||Q||R.

CSP also has an interleaving operator |||, [Hoare, p.119]. In the expression P|||Q, only one

process will engage in any action. If both processes can engage in an action, a

nondeterministic choice is made between them. There is no notion of processes engaging one

another.

In CCS, the composition symbol is | , as in Jobber | Hammer, [Milner, p.29], where these

particular agents share events for picking a hammer up and putting a hammer down. It is

possible to have several instances of one agent, giving an expression such as Jobber | Jobber |

Hammer. CCS allows two (and only two) processes to synchronise by performing an action

and a complementary action together (e.g. c and c3), regarded as the handshake action τ.

Milner describes the handshake and composition operator "|" along the following lines

[Milner, p.39]:

if A'
c3

 2 A and B
c

2 B'

then

A' | B
τ

2 A | B'

The event τ is internal to the composite agent [Milner, p.39], and it is used to describe the

internal synchronisation action of any pair of complementary actions.

© Graham G. Thomason 2003-2004 5

We note that in CCS, event τ does not necessarily take place when it potentially can. The

composite agent may perform a τ action which results from (c,c3) communication between its

components [Milner, p.40].

Restriction on c, (and so implicitly on c3), which is denoted by \{c} or just \c, excludes

independent execution of c and c3. It is a nondeterministic eventuality as to whether event τ is

actually performed.

STATECRUNCHER will allow parallel parts of a statechart to share events, but this is not the

same as CCS synchronisation, because there is no notion of event complements.

STATECRUNCHER composition can best be achieved with a fired-call-event / fired-return-

event paradigm, as follows. We then consider this composition paradigm in relation to

process algebras.

STATECRUNCHER's composition paradigm

The standard paradigm for composing software components using STATECRUNCHER is to

regard one component as a client (or caller) and one as a server (or callee). An event is fired

by the client to call the server, and a return event is fired by the server to the client.

This has been elaborated on in detail, with some novel ideas, in [StCrFunMod].

The following figure illustrates the principle:

Figure 2. Client-server composition in STATECRUNCHER

STATECRUNCHER's composition paradigm is closely analogous to the function call and return

of imperative languages such as ‘C’. The making of the function call is modeled by a fired

event, the response to this is modeled by a transition on the event that was fired. The return

statement is modeled by fired return event, and the response to this is modeled by a transition

on the return event. If there are many such calling sequences in a model, return names can be

made unique to a server function by affixing the function name to the event (e.g.

return_max) or by putting the return event in a sufficiently local scope (using

C1 C2 C3

return α /fire β

comp

client

S1 S2

β/fire return server

6 © Graham G. Thomason 2003-2004

STATECRUNCHER's scoping capabilities - described in [StCrMain] - but not further discussed

here).

From the initial configuration, when event α occurs, the client transitions to state C2 and fires

event β. This causes the server to make a transition. In this example the server has

immediately completed its work, and it immediately fires event return. This causes the client

to transition to state C3. The whole sequence is regarded as atomic to STATECRUNCHER, in

the sense that no other event can interrupt it.

In STATECRUNCHER, the interaction on event α definitely takes place. There is no

nondeterminism involved as in the case of a τ event in CCS, where the transition only may

take place. This is because we are typically modelling function calls and their return.

However, if in CCS the only event that can take place is τ, then it can be argued that it should

be considered deterministic.

We would not expect event β to be generated except by a client of the particular server. The

name β would typically correspond to a server function name. There might, however, be

several clients. We consider that situation later.

If the composition is a server to some higher level component, then the α/fire β

construction will be repeated at a higher level (e.g. δ/fire α). It need not concern us as it is

a repeat under different names of what we have seen. Alternatively, α is at the top level and is

user supplied.

The transition semantics are important to allow this paradigm to work. A transition is taken to

completion before its actions are executed. This ensures that no participating transition is

blocked by its source state not being ready (i.e. occupied) for execution. So the transition on

event return can take place because its source state C2 will be occupied.

The individual models of the client and server can be experimented with separately under

STATECRUNCHER. But in the absence of, say, the server, an event return for the client will

need to be given at prompt level by the user. Events should be attached to a point of control

and observation (PCO). Event β and return would be put on an inter-component PCO, which

can only be used in module testing. Under integration testing, this PCO and the events on it

become internalized, or restricted or hidden, in CCS/CSP terminology, as the composition

only admits to events such as event α.

© Graham G. Thomason 2003-2004 7

The STATECRUNCHER composition paradigm is analogous to the composition of Process X-

machines, as described in [Stannett]. The paper has:

Figure 3. PXM assignmment to a static class variable by an object

The STATECRUNCHER analogue is:

Figure 4. STATECRUNCHERs composition paradigm making an assignment

Here, we have not made the ack_serv event unique to the specific caller as in the paper

(the this keyword). Since this server does not support recursion, the server can only be

serving one client at a time, so it is sufficient for ack_serv to be unique to the server; it

cannot then be confused with the acknowledgement from any other server serving a different

function. In [StCrFunMod], we propose a composition mechanism for recursive state

machines, where the returned acknowledgement need not have a unique name at all, and

targets its caller by means of scoping operators.

The STATECRUNCHER composition paradigm has been used to compose models of Koala

components [Koala]. Koala is a static component binding tool used by Philips for embedded

software. STATECRUNCHER is being used to test some Koala television components. In Koala

representation, the component binding would be drawn thus:

Figure 5. Koala components

Client

alpha beta

Server

beta

external

PCO
inter-component PCO

C1 C2 C3
ack_serv/... α /fire setvalue(100)

composition

client

S1 S2
setvalue(p)/t=p;fire ack_serv; server

ack_t/ .../setvalue(100,this)

setvalue(x,who)/t=p/ack[who];

object-machine

class-machine

8 © Graham G. Thomason 2003-2004

A more realistic server in practice

 Figure 2 is conceptually the simplest possible example of client server composition. There

could have been additional states and transitions in the server before the return event was

given, in which case the client would be in state C2 for a while until the server was able to

fire return. In such a case, the server might look like this:

Figure 6. Server with intermediate states

It would be normal for a server to end up in its default state when a client has been served and

returned to, as follows:

Figure 7. Server ending up in default state

Referring back to Figure 2: we do not return to the default state (S1); instead we are in a

different state (S2) after the call, as this makes the calling paradigm as such a little clearer.

One could think of the server as requiring some form of reset before it can be used again (not

shown in the model).

Parameters can be passed back and forth by means of STATECRUNCHER's parameterized event

mechanism. The issues of multiple clients, unique naming, and re-entrant or recursive calls is

dealt with in [StCrFunMod].

Under this general system, a model of the server can be combined with any client that calls it

with the agreed event β and which expects a return event return. Similarly the client could be

combined with a different server as long as the interface was defined in the same way.

STATECRUNCHER's composition paradigm and process algebras

Let us examine the properties of Figure 2 and consider how to model it in a process algebra.

It has three STATECRUNCHER events, α β and return. It has two STATECRUNCHER

actions, fire β and fire return. Questions we will be considering are:

 Should the fire actions be considered events in a process algebra?

S1 X1

β server

S2 X2

δ/fire return γ

S1 X1

β server

X2

δ/fire return γ

© Graham G. Thomason 2003-2004 9

 If so, should some of the events be paired off, into (event, complementary-event) pairs?

 Which events should be restricted (recalling that β and return are on an inter-

component PCO)?

We first consider the composition from a CCS perspective.

The composition could be modeled using the CCS (combinator [Milner, p.68], giving

Client(Server. We show this using the CCS port diagrams [Milner, p.17], which are similar to

Koala diagrams.

Figure 8. Client and Server in CCS Port diagrams - before linking

Figure 9. Client and Server in CCS Port diagrams - after linking

This composition can be defined by :

 Client(Server 9 (Client[mid1/return, mid2/β4] | Server[mid1/ r3e4t4u4r4n4, mid2/β)\{mid1,

mid2}

We see that a fired event on a transition becomes an output event in a CCS model. Where

CCS restricts events, STATECRUNCHER allows for them to be labeled as inter-component (i.e.

internal after composition) by means of a PCO. In this way, a test generator (or Primer), when

communicating with STATECRUNCHER, can be instructed whether or not to exercise these

events. Event α would be on a global PCO, or at on a PCO denoting a higher level of

component aggregation.

CCS allows for replacement of simultaneous complementary events by τ, the “perfect action”

[Milner p.39]. In our model, the transitions on β and β4 would be replaced by τ. When α

Client

return

α β4

Server

r4e4t4u4r

4n4

β

Client

α

Server

10 © Graham G. Thomason 2003-2004

takes place, τ must follow; nothing external can intervene (as it would spoil the paradigm).

This is in accordance with CCS semantics, for although τ can lead to nondeterminism in an

expression with a leading τ term such as

A9 α.A + τ.b.A [Milner, p.42]

it is nevertheless permissible to eliminate τ when preceded by another event:

 α.τ.P= α.P [Milner, p.41]

so we can be sure that τ takes place in our composition after event α.

By analogy with CCS, the STATECRUNCHER's fire β and transition in response to β are as

good as simultaneous. This is a fair way to view STATECRUNCHER, since the transition

semantics do not allow an intervening event. So we see a close parallel with CCS's notion of

synchronization.

What if there are several clients?

Other clients of Server can also exist, but not be used simultaneously if there is just one

instantiation of the server. Simultaneous outstanding server calls require the recursive state

machine techniques of [StCrFunMod]. But provided the server is used sequentially, a

STATECRUNCHER construction such as the following is useful:

Figure 10. Several clients

comp

C11 C12 C13

return α1 /fire β client1

S1 S2

β/fire return server

C21 C22 C23

return α2 /fire β client2

© Graham G. Thomason 2003-2004 11

In CCS, this can be modeled as follows:

Figure 11. Multiple Clients in CCS - Port diagram

Figure 12. Multiple Clients composed in CCS - Port diagram

In this case we have the CCS composition

(Client1 | Client2 | Server)\{β,return}

The Server can synchronize with either client, as in the single client case. The clients never

synchronize with each other.

What if there are several servers?

A server typically represents a ‘C’-like function, and functions have unique names, and it is

this name, β say, that will be in the fire β construction in STATECRUNCHER. So it is

unlikely that the composition construction will be used with several servers - the system is

rather nonsensical. Were this to be the case, however, the fire β action would synchronize

with all servers. This cannot be modeled directly in CCS, as only two processes can

synchronize. The fire return construction on return from the servers would be performed

Client1

return

α1 β4

Server

r4e4t4u4r

4n4

β

Client2

α2

return

β4

Client1

α1

Server

Client2

α2

12 © Graham G. Thomason 2003-2004

redundantly from all but the first server. This configuration does not appear to have any

practical application.

CCS state view

The model of Figure 2 can be represented as follows in CCS, but we introduce additional

states between the execution of α and the firing of β.

Client

C1 9 α.C1X

C1X 9 β3.C2

C2 9 return.C3

Server

S1 9 β.S1X

S1X 9 r4e4t4u4r4n4.S2

The composition restricts on β and return: (and so also on their complements)

COMP 9 C1 | S1 \{β,return}

The composition is shown in the figure below.

Figure 13. CCS state transition diagram of client-server model

C1 C2 C3

S1 S1X

return

α
_

β

comp

client

server

C1X

S2

β

return

C1,S1 C3,S2

comp α

on composition, which restricts all events except α

© Graham G. Thomason 2003-2004 13

Internal τ events arising from β/β3 and return/r4e4t4u4r4n4 events cause transitioning

across states C1X, C2 and S1X, making them unobservable externally.

Modeling the interaction in CSP

The processes that engage are similar to those of CCS, but without complementary actions. If

the processes had to share the same alphabet, we would compose with C1X||S1 in the diagram

below. The complete composition would be a process αª(C1X||S1). But with the generalized

composition operation, we can compose with C1||S1. The generalized composition operator

would be essential if the client or server had additional states with their own events as in

 Figure 6 and Figure 7.

Figure 14. CSP state transition diagram of client-server model

The main differences in the approaches to composition are:

In CCS:

 Only 2 processes can participate in an interaction. They do this with complementary

actions, which can be internalized into the internal event τ.

 The internal event τ may or may not take place and so gives rise to nondeterminism.

In CSP:

 There is no distinction between an event and its complement. Using the generalized

composition operator as discussed, any number of processes with at least one some

common event can be composed, but then all must participate in any such common event.

C1 C2 C3

S1 S1X

return

α

β

comp

client

server

C1X

S2

β

return

C1,S1 C3,S2

comp α

on composition, restricting all events except α

14 © Graham G. Thomason 2003-2004

 So if one component of a composition is not at some stage able to respond to an event for

the interaction, it will prevent the interaction.

 There is no τ nondeterminism.

In STATECRUNCHER:

 There is no symmetry between and fire β and β.

 There can be several places where β is generated (including the user).

 There can be several transitions triggered by β.

 Some of these may have nothing to do with the composition. However, the event

name would typically be reserved for the composition. It could be put on an inter-

component PCO as a means of indicating that it is not available for independent

generation.

 When β is generated, all transitions triggered will in principle take place, though they can

be invalidated if at execution time due to preceding actions if their source state has been

vacated or their guard condition has become false.

© Graham G. Thomason 2003-2004 15

3. Parallelism other than call/return

composition

The following examples show some situations that can arise with parallel systems, where the

separate machines may influence the other's behaviour in a way other than an engagement in

the sense considered in the previous section. We discuss them from the STATECRUNCHER

perspective.

Figure 15. Simple parallelism

This machine represents a composition of clusters a and b in parallel. Cluster b is drawn with

its own cluster boundary for clarity as to the tail of the transition on γ. In the initial state, in

states a1 and b1, the machine can respond to event α. The result will be that the clusters are in

states a2 and b2. This model may be appropriate under some circumstances, but there has

been no notion of interaction or synchronisation.

Event α is not always processed in both clusters. If after first processing event α, we proceed

to process event γ, the occupancy configuration is {a2,b1}. Now event α will only cause a

transition in cluster b.

a

s

α

a1 a2

b

b1 b2

α

β

γ

b3

β

16 © Graham G. Thomason 2003-2004

In fact, STATECRUNCHER interprets the above model as a race. Interleavings will be created.

If we add some STATECRUNCHER actions to the transitions, this becomes apparent.

Figure 16. Simple parallelism as a race

In Figure 16, there is a variable v initialised to 0. The transition on α from a1 causes a digit 1

to be appended to the value of v. The transition on α from state b1 causes a digit 2 to be

appended to the value of v. The result is 12 or 21 depending on the interleaving, i.e. who wins

the race. STATECRUNCHER's nondeterminism handling produces a set of results, and so

produces both values. Although we call this race nondeterminism, it is equivalent to fork

nondeterminism in a flattened state space:

Figure 17. Part of flattened state space of the race model

The states are the Cartesian product of state occupancies in members a and b and with the

values of variable v. The nondeterminism on event α from the initial state is seen as a fork.

a

a1,b1,

v0

a2,b2,

v12

a2,b2,

v21

α

α

a1,b3,

v12

a1,b3,

v21

β
a1,b1,

v12

a1,b1,

v21

γ

γ

a2,b1,

v12

a2,b1,

v21

β

γ

γ

a

s

α/v=v*10+1

a1 a2

b

b1 b2

α /v=v*10+2

β

γ

b3

β

v=0

© Graham G. Thomason 2003-2004 17

The decision to evaluate conditions (guards) on transitions prior to executing them can lead to

a blocked start, as in the following model.

Figure 18. Blocked start

Each transition on α has a condition that the other cluster must be in its default state. So it

appears that from the initial state of the composition, both transitions can take place. But since

the transitions are executed sequentially, one will invalidate the other. STATECRUNCHER will

produce two outcomes, one in {a1,b2} and one in {a2,b1}. The reasons for the choice of

semantics are explored in the main thesis, but we give another example here showing why

transitions cannot just be started in parallel:

Figure 19. Parallel start problem

In this model, it appears that the two transitions on α can take place in parallel, but their target

states are in conflict. They are members of the same cluster, and so cannot both become

occupied. STATECRUNCHER's semantics are that after one transition, all conditions on the next

are re-evaluated. The result is that STATECRUNCHER's two interleavings give a world in state

p and a world in state q (set s is exited completely on either transition).

a

s

α

a1

a2

b
b1

b2

α
q

β

p

β

x

a

s

α[in($b.b1)]

a1 a2

b

b1 b2

α[in($a.a1)]

β

γ

b3

β

18 © Graham G. Thomason 2003-2004

4. Nondeterminism

Nondeterminism in STATECRUNCHER

Finite state machines (FSMs) are often described without reference to the hierarchical

structures of a UML or STATECRUNCHER statechart (in UML: concurrent and non-concurrent

composite states; in STATECRUNCHER: sets and clusters). This is because the hierarchical

structure is just a convenient way of expressing a mathematically equivalent flattened state

space. When the hierarchy is introduced, the terminology changes from FSMs to statecharts,

but the two are equivalent. A state in the flattened state space is an element of the Cartesian

product of parallel states in the statechart. Only leafstates need be considered, because the

occupancies of their ancestors is a derivative of that of the leafstates. If the statechart contains

history, variables and traces, then these must also present as terms in the Cartesian product in

defining flattened states.

An example has already been given in Figure 16 and Figure 17 where the effect of event α

from the initial state is seen as race nondeterminism in the statechart and fork nondeterminism

in the flattened state machine. The flattened state names are sequences (sequence brackets

omitted for brevity). In the flattened state space, the only form of nondeterminism is fork

nondeterminism.

From that example, it is seen that just as the hierarchical states of a statechart offer

convenience in representing the state space, so some nondeterministic semantics (in this case,

for the race) offer convenience in representing FSM nondeterminism. STATECRUNCHER

simply structures the nondeterminism into various categories that are easy to visualize in a

statechart.

STATECRUNCHER supports the following forms of structured nondeterminism:

 fork

 race

 set-transit

 set action

 set meta-event

 fired event (or broadcast event) nondeterminism

These are described in detail in [StCrMain]. After processing an event STATECRUNCHER

produces a world per distinct state configuration, which, in flattened state space terms, is

equivalent to a world for every possible resultant flattened state.

© Graham G. Thomason 2003-2004 19

We develop the notion of a world more formally, working from the definition of a NFSM

(Nondeterministic Finite State Machine) given by [Hierons]:

An NFSM M is defined by a tuple (S, s1, h, X, Y) in which

 S is a set of states

 s1 is the initial state

 h is the state transition function

 X is the input alphabet

 Y is the output alphabet

Given an NFSM M, SM shall denote the state set of M. When M receives an input value

x ³ X, while in state s ³ S, a transition is executed producing an output value y ³ Y

and moving M to some state s' ³ S. The function h gives the possible transitions and has

the type S×X→P(S×Y) where P denotes the power set operator. ... An NFSM M is

completely specified if, for each s ³ S and x ³ X, |h(s,x)|ä1. M is deterministic if for each

s ³ S and x ³ X, |h(s,x)| ≤ 1.

What in Hierons' description is the notion of M being in state s, is to STATECRUNCHER having

an occupancy configuration s, and other dynamic properties, where an occupancy

configuration gives the occupancy (occupied or vacant) of every state. Several states can be

occupied, due to parallelism (modelled by a STATECRUNCHER set), and hierarchy (the fact

that a parent of an occupied state is also an occupied state). Remark: the occupancy of non-

leaf states can be derived from that of their child states (by the set and cluster rules), so, given

the hierarchical structure, the occupancy configuration need only explicitly comprise the set

of occupied leaf states.

The ‘other dynamic properties’ which s must comprise are cluster history and variable values.

In our definitions below, we define G(A×B) º P(A×B) to be the set of all functions from A to

B.

A STATECRUNCHER statechart is therefore (C, V, P, s1, v1, p1, X, Y, h) where

 C is a hierarchy of states (sets, clusters and leafstates), from which we can easily

derive

 S, the set of all states

 P, the set of all clusters, P ¹ S

 V is a set of variables

 s1 is the initial state

 v1 is a function giving the initial variable values, V→Z, where Z is the set of integers

 p1 is a function giving the initial history values per cluster, S→S

 X is the input alphabet (a set of events in STATECRUNCHER)

 Y is the output alphabet (a set of trace elements in STATECRUNCHER)

 h is the state transition function

h : [S× G(V×Z) × G(P×S)]×X→P([S× G(V×Z) × G(P×S)]×Y), where

 the G(V×Z) term represents all the variables with their values

 the G(P×S) term represents all the clusters with their histories

20 © Graham G. Thomason 2003-2004

 the [...] bracketing on the LHS and RHS is introduced because of the

commonality of these terms; they are the STATECRUNCHER worlds. There may be

no worlds in existence.

The domain and range of h can be represented as

domain (h) : [S × G(V×Z) × G(P×S)] × Y = W×X

range(h) :P([S × G(V×Z) × G(P×S)] × Y) = P(W×Y)

When an event is processed in many worlds, a new set of worlds is produced.

To represent this, we define a multi-input-world transition function

H: P(W×X) → P(W×Y)

H(A)=¿B³A h(B)

In a practical situation, the elements of the range of H will all contain the same event

in all the Cartesian product terms.

Remark: in the actual STATECRUNCHER implementation, traces also distinguish worlds, so we

should strictly say that dynamic the configuration d of a statechart is of type

S × G(V×Z)× G(P×S)×Y*

where Y* is the set of strings consisting of elements of Y, (including the empty sequence). So

this could be considered to be the actual type of the range of the transition function h.

However, the most efficient mode of operation is to clear traces and merge worlds between

processing events; if this is not done, old and new traces are concatenated. Traces do not

impinge on the transition algorithm. With this understanding, we discount the traces in a

dynamic state, so we can more closely map to the description given by Hierons.

Comparison of nondeterminism

We take an example of fork nondeterminism:

Figure 20. Simple fork nondeterminism

If state a is occupied, STATECRUNCHER offers the user a choice of transitionable events:

 event α

 event β

a

b

c

α

β

t1

d t3

t2
α

© Graham G. Thomason 2003-2004 21

In STATECRUNCHER terminology, we say that event α leads to nondeterminism.

STATECRUNCHER takes care of the nondeterministic outcomes without user interaction, by

returning the set of all possible outcomes. If event α is selected, two worlds are produced, one

in state b and one in state c, as described in [StCrMain]. In general there will be more than

one world beforehand in which to process an event, and the event is processed in all of them.

Nondeterminism in CSP

In CSP, a choice between different events (e.g. α and β) is expressed by the choice operator

(|) . So one process may be defined by

(α →P | β →Q).

This is not nondeterminism, since the environment can control such a process by the event

given.

The choice operator (|) is not an operator on processes [Hoare, p31]. It is syntactically

incorrect in CSP to write

(α →P | α →Q)

A process that behaves like P or Q where the environment has no control over the choice, is

written using the nondeterministic or operator (n,), [Hoare p.102], which Schneider calls the

internal choice operator [Schneider, p.24]. We can write

 (α →P) n (α → Q).

CSP has another potentially nondeterministic operator, the general choice operator (o)

[Hoare, p.106], which Schneider calls the external choice operator [Schneider, p.20]. The

expression

(P o Q)

denotes a process which the environment can control, provided this is done by the first event.

If only P can engage with the event, then P is selected. If only Q can engage with the event,

then Q is selected. If both can engage with the event, then the choice is nondeterministic.

As mentioned previously, CSP has an interleaving operator |||, and in the expression P|||Q, if

both processes can engage in an action, a nondeterministic choice is made between them. But

unlike with (P o Q), no process is discarded, and the interleaving of two processes remains.

Compare again the ordinary CSP composition operator ||, whereby in P||Q, both processes

must participate if the event is in both their alphabets.

We see that (P n Q), is nondeterministic, (P o Q) and (P ||| Q) can be nondeterministic, and

(P || Q) is deterministic (inasmuch as P and Q are themselves deterministic).

22 © Graham G. Thomason 2003-2004

Nondeterminism in CCS

CCS combines two agent expressions with the summation operator (+). This can be

nondeterministic. From [Milner, p.20]:

The agent P+Q behaves either like P or like Q; as soon as one performs its first action,

the other is discarded. Often the environment will only permit one of these alternatives

[...]. But if both alternatives are permitted, then P+Q is non-deterministic; that is, it may

behave like P on one occasion and like Q on another.

CCS [Milner, p85] allows defining equations such as

B 9 a.B1 + a.B1'

where the same action occurs in more than one term on the right hand side.

CCS has additional nondeterminism on agent composition, because the internal transition τ

may or may not occur [Milner p.40]. There can be several event-complement pairs that can

give rise to different internal transitions. This means that several combinations of

nondeterminism are possible:

Figure 21. CCS combinations of nondeterminism

A

α

nondeterminism: on τ on α on τ and α

B α τ

C τ

A

B

C

A

B τ

C
α

© Graham G. Thomason 2003-2004 23

5. Concluding remarks

Concluding remarks on composition of processes

CCS is rather different to CSP and STATECRUNCHER, in that only two processes can

participate in an interaction, but the event - event complement concept does match up with the

STATECRUNCHER fired event mechanism for composition when there is one or more clients

and one server. The CCS τ event may give rise to nondeterminism, where none would be

present in the STATECRUNCHER composition paradigm as presented.

CSP does not have the two-process restriction of CCS, but there is no direct STATECRUNCHER

counterpart to the way in which one participating process can prevent others from engaging

(which happens in CSP when that process cannot respond to a particular event in the shared

alphabet). Such a prevention mechanism is not required for simple client-server composition,

(but constructs can be created as necessary - for a semaphore see the example of the dining

philosophers in [StCrMain]).

Concluding remarks on nondeterminism

As mentioned, the forms of STATECRUNCHER nondeterminism (e.g. race nondeterminism),

are simply convenient constructs for use in a structured way when dealing with a statechart

structure containing hierarchy (clusters and sets) and concurrency (sets). These constructs are

all effectively fork nondeterminism in an equivalent flattened model, and so are nothing new

for the purposes of this comparison.

It is seen that the CCS summation operator (+) and the CSP internal choice operator (n)

express nondeterminism in the STATECRUNCHER sense, but the operands must be processes

not events, so the model of figure Figure 20 has to be expressed as separate processes rather

than one process. This is effectively no more than a syntactic requirement of CCS and CSP.

The semantics of CCS and CSP can lead to further nondeterministic situations, where a

STATECRUNCHER model would typically contain a nondeterministic fork.

24 © Graham G. Thomason 2003-2004

References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

© Graham G. Thomason 2003-2004 25

References

[Bruns] Glenn Bruns

 Distributed Systems Analysis with CCS

 Prentice Hall 1997, ISBN 0-13-398389-7

[CHSM] Paul J. Lucas

 An Object-Oriented System for Implementing Concurrent, Hierarchical,

 Finite State Machines.

 MSc. Thesis, University of Illinois at Urbana-Champaign, 1993

[Harel 87] D. Harel et al.

 On the Formal Semantics of Statecharts

 Logic in Computer Science, 2nd Annual Conference, 1987, pp.54-64

[Hierons] R.M. Hierons

 Adaptive testing of a deterministic implementation against a

 nondeterministic finite state machine.

 1998

[Hoare] C.A.R. Hoare

 Communicating Sequential Processes

 Prentice-Hall, 1985, ISBN 0-13-153271-5, 0-13-153289-8 PBK

[Koala] R. van Ommering, F. van der Linden, J. Kramer, J. Magee

 The Koala Component model for Consumer Electronics Software

 IEEE Computer, March 2000, pp. 78-85.

[Milner] Robin Milner

 Communication and Concurrency

 Prentice Hall 1997, ISBN 0-13-114984-9 and 0-13-115007-3 Pbk

[Schneider] Steve Schneider

 Concurrent and Real-time Systems, The CSP Approach

 John Wiley & Sons Ltd, 2000, ISBN 0-471-62373-3

26 © Graham G. Thomason 2003-2004

[Stannett] Mike Stannett and A.J.H. Simons

Complete Behavioural testing of Object-Oriented Systems using CCS-

Augmented X-Machines

 Test Report CS-02-04, Dept. of Computer Science, United Kingdom

[TorX] The Côte de Résyste Project delivers the TorX tool

 http://fmt.cs.utwente.nl/CdR

[UML] The Object Management Group website is: http://www.omg.org

 UML specifications are available from this website.

