
A Quick Reference of STATECRUNCHER's

Output Format

Graham G. Thomason

Appendix to the Thesis “The Design and

Construction of a State Machine System

that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

Summary

This quick reference was written as a separate appendix to save repeating it in other

appendices where STATECRUNCHER models and their output are presented. An appreciation

of STATECRUNCHER's output format is particularly a pre-requisite for the following reports:

 The Distributed Arbiter System in CCS [StCrDistArb]

 The Dining Philosophers in CSP [StCrMain]

 The Game of Nim, specified in Z [StCrNim]

STATECRUNCHER was built for the purposes of providing an oracle to state-based tests. It

forms part of a tool chain for testing an implementation of a system, i.e. for determining

whether the implementation under test behaves according to its specified state behaviour,

even when it is nondeterministic. STATECRUNCHER does not generate tests; it co-operates

with a test generator in a tool chain.

© Graham G. Thomason 2003-2004 iii

Table of Contents

1. STATECRUNCHER's output ... 1

References .. 6

© Graham G. Thomason 2003-2004 1

1. STATECRUNCHER's output

This paper serves as an explanation of STATECRUNCHER's output for the systems modeled in

various appendices to the main thesis on STATECRUNCHER. We consider a model (Figure 1)

which brings out the chief features of the output. The model also illustrates client-server

interaction on event α, where member a is a client, firing event β to call the server (member

c), which completes the interaction by firing event return..

To also illustrate the STATECRUNCHER language, the model is followed by its source code.

Figure 1. A model to illustrate the chief STATECRUNCHER output [model t5492]

a

s

α/fire β;

v=v*10+1;trace("ab")

a1 a2

b
b1 b2

α/v=v*10+2;trace(str)

ρ1

ρ2/v=0;p=0;q=0;trace_clear();

v=0

a3

p=0,q=0 d

c1 c2

β/fire return

γ(p,q)[p==1&&q!=2]

d1 d2

c

return

this member races

member a

this member acts as a

server to member a

this member shows a

parameterized event

γ pco2

pco1 str="cd"

2 © Graham G. Thomason 2003-2004

Source code of the model t5492

//---

// Module: all_kinds2.scs.txt

// Author: Graham Thomason, Philips Digital Systems Laboratories, Redhill

// Date: 2 Aug, 2003

// Purpose: Statecruncher model: Model to show all kinds of output (2)

//

// Project: Improving Component Integration

//

// Copyright (C) 2003 Philips Electronics N.V.

//

// Revision History:

//

//-------1---------2---------3---------4---------5---------6---------7---------8-----

statechart sc(s)

PCO pco1;

PCO s.d.pco2;

event alpha;

event rho,rho1;

event beta,return@pco1;

event s.d.gamma@s.d.pco2;

enum int1 {0,..,9};

int1 v=0;

string str="cd";

set s(a,b,c,d) {rho->s; rho1->s {v=0; d.p=0; d.q=0; trace_clear();}; }

 cluster a(a1,a2,a3)

 state a1 {alpha->a2 {fire beta; v=v*10+1; trace ("ab");}; }

 state a2 {return->a3;}

 state a3;

 cluster b(b1,b2)

 state b1 {alpha->b2 {v=v*10+2; trace(str);}; }

 state b2;

 cluster c(c1,c2)

 state c1 {beta->c2 {fire return;}; }

 state c2;

 cluster d(d1,d2)

 // PCO and events could be declared here, but are declared above

 enum int2 {red=0,orange,yellow,green=5,blue};

 enum int3 {0,..,3};

 int2 p=0;

 int3 q=0;

 state d1 {gamma($p,$q)[p==1 && q!=2]->d2; }

 state d2;

© Graham G. Thomason 2003-2004 3

Session with model t5492

| ?- cruncher.

SC:|: mm

SC:|: run t5492

...

SC:|: gc

2 statechart sc

2 set s [sc] = OCC [] **

2 cluster a [s,sc] = OCC [] **

2 leafstate a1 [a,s,sc] = OCC [] **

2 leafstate a2 [a,s,sc] = VAC []

2 leafstate a3 [a,s,sc] = VAC []

2 cluster b [s,sc] = OCC [] **

2 leafstate b1 [b,s,sc] = OCC [] **

2 leafstate b2 [b,s,sc] = VAC []

2 cluster c [s,sc] = OCC [] **

2 leafstate c1 [c,s,sc] = OCC [] **

2 leafstate c2 [c,s,sc] = VAC []

2 cluster d [s,sc] = OCC [] **

2 leafstate d1 [d,s,sc] = OCC [] **

2 leafstate d2 [d,s,sc] = VAC []

2 VAR INTEGER p [d,s,sc] =0

2 VAR INTEGER q [d,s,sc] =0

2 VAR STRING str [sc] =[99,100] =cd

2 VAR INTEGER v [sc] =0

2 TRACE =[]

2 TREV [[alpha,[sc]],0,[],[]]

2 TREV [[beta,[sc]],0,[],[pco1,[sc]]]

2 TREV [[gamma,[d,s,sc]],2,[[e,0,1,2,5,6],[r,0,3]],[pco2,[d,s,sc]]]

2 TREV [[rho,[sc]],0,[],[]]

2 TREV [[rho1,[sc]],0,[],[]]

outworlds=[2]

number of outworlds=1

SC:|: pe alpha

SC:|: gc

10 statechart sc

10 set s [sc] = OCC [] **

10 cluster a [s,sc] = OCC [] **

10 leafstate a1 [a,s,sc] = VAC []

10 leafstate a2 [a,s,sc] = VAC []

10 leafstate a3 [a,s,sc] = OCC [] **

10 cluster b [s,sc] = OCC [] **

10 leafstate b1 [b,s,sc] = VAC []

10 leafstate b2 [b,s,sc] = OCC [] **

10 cluster c [s,sc] = OCC [] **

10 leafstate c1 [c,s,sc] = VAC []

10 leafstate c2 [c,s,sc] = OCC [] **

10 cluster d [s,sc] = OCC [] **

10 leafstate d1 [d,s,sc] = OCC [] **

10 leafstate d2 [d,s,sc] = VAC []

10 VAR INTEGER p [d,s,sc] =0

10 VAR INTEGER q [d,s,sc] =0

10 VAR STRING str [sc] =[99,100] =cd

10 VAR INTEGER v [sc] =12

10 TRACE =[cd,ab]

10 TREV [[gamma,[d,s,sc]],2,[[e,0,1,2,5,6],[r,0,3]],[pco2,[d,s,sc]]]

10 TREV [[rho,[sc]],0,[],[]]

10 TREV [[rho1,[sc]],0,[],[]]

18 statechart sc

18 set s [sc] = OCC [] **

4 © Graham G. Thomason 2003-2004

18 cluster a [s,sc] = OCC [] **

18 leafstate a1 [a,s,sc] = VAC []

18 leafstate a2 [a,s,sc] = VAC []

18 leafstate a3 [a,s,sc] = OCC [] **

18 cluster b [s,sc] = OCC [] **

18 leafstate b1 [b,s,sc] = VAC []

18 leafstate b2 [b,s,sc] = OCC [] **

18 cluster c [s,sc] = OCC [] **

18 leafstate c1 [c,s,sc] = VAC []

18 leafstate c2 [c,s,sc] = OCC [] **

18 cluster d [s,sc] = OCC [] **

18 leafstate d1 [d,s,sc] = OCC [] **

18 leafstate d2 [d,s,sc] = VAC []

18 VAR INTEGER p [d,s,sc] =0

18 VAR INTEGER q [d,s,sc] =0

18 VAR STRING str [sc] =[99,100] =cd

18 VAR INTEGER v [sc] =21

18 TRACE =[ab,cd]

18 TREV [[gamma,[d,s,sc]],2,[[e,0,1,2,5,6],[r,0,3]],[pco2,[d,s,sc]]]

18 TREV [[rho,[sc]],0,[],[]]

18 TREV [[rho1,[sc]],0,[],[]]

outworlds=[10,18]

number of outworlds=2

SC:|:

Explanation of the output

The state occupancy configuration is first shown (after command gc, get configuration). The

lines
2 leafstate a1 [a,s,sc] = OCC [] **

2 leafstate a2 [a,s,sc] = VAC []

show that in world 2, (the initial world) leafstate a1 is occupied (emphasized by asterisks) but

a2 is vacant. The item [a,s,sc] is the scope of these states, which is its place in the

statechart hierarchy. Scopes are best read from right to left while descending in the hierarchy.

The [] after the occupancies are placeholders for the historical state of vacant clusters (never

applicable to leafstates, nor to clusters in this model).

Variables are shown in VAR lines, of the form:
WORLD VAR INTEGER|STRING VARIABLE-NAME VARIABLE-SCOPE =VALUE

In world 2 we have
2 VAR INTEGER p [d,s,sc] =0

2 VAR INTEGER q [d,s,sc] =0

2 VAR STRING str [sc] =[99,100] =cd

2 VAR INTEGER v [sc] =0

String values are given in two ways: as a list of ASCII values and as characters for printable

values.

A trace in STATECRUNCHER (unlike CCS/CSP) is a list of output values that have been

specifically generated in the model by calling the trace() function. Trace values can be

integers or strings. In world 2 the trace is empty:
2 TRACE =[]

© Graham G. Thomason 2003-2004 5

Transitionable events are given by TREV lines. Consider the transitionable events from the

initial model configuration:
2 TREV [[alpha,[sc]],0,[],[]]

2 TREV [[beta,[sc]],0,[],[pco1,[sc]]]

2 TREV [[gamma,[d,s,sc]],2,[[e,0,1,2,5,6],[r,0,3]],[pco2,[d,s,sc]]]

2 TREV [[rho,[sc]],0,[],[]]

2 TREV [[rho1,[sc]],0,[],[]]

The lines are of the form
WORLD TREV [[EVENT,EVENTSCOPE],NPARAMS,PARAM-RANGES,[PCO,PCOSCOPE]]

The events also have scope. The events alpha, beta, rho and rho1 are in the default

scope of the statechart: scope [sc]. But event gamma is in scope [d,s,sc], which is

deeper in the hierarchy.

Following the [EVENT,EVENTSCOPE] item is NPARAMS, the number of parameters that

can be supplied with the event. In most cases this is none, but for gamma it is 2. The

information following says that the first parameter can take on enumerated values of 0,1,2,5

or 6. The second parameter can be anything in the range 0 to 3 inclusive. Events taking no

parameters have a [] for this item. The final item in a TREV line is the PCO (point of control

and observation), or [] if none was specified in the model. PCOs too can have a scope.

It is also possible to ask STATECRUNCHER for all events, not just the transitionable ones (not

shown here).

After event alpha has been processed (command pe alpha), there are two worlds, 10 and

18, due to race nondeterminism. Note how the trace values have been set and how the

transitionable events have changed.

6 © Graham G. Thomason 2003-2004

References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

