
The Game of Nim in Z and

STATECRUNCHER

Graham G. Thomason

Appendix to the Thesis “The Design and

Construction of a State Machine System

that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

 © Graham G. Thomason 2003-2004 ii

Summary

In this paper we show how a system taken from the Z literature can be modelled in

STATECRUNCHER. An understanding of STATECRUNCHER is assumed, but for the purposes of

this paper, most of STATECRUNCHER 's functionality will not seem strange to anyone familiar

with UML dynamic modelling [UML], since that is the basis of the language.

We take a fairly easy example that nevertheless illustrates the essence of Z: the Game of Nim

as described by McMorran and Powell [McMorran p.224]. This example covers a relation (a

total function) and ó and ô operations on schemas.

We are not concerned with a strategy for winning, though a simple one exists
1
. We are

concerned with specifying how the game is played and when a player has won.

STATECRUNCHER has been built for the purposes of providing an oracle to state-based tests. It

has sufficient expressive power to capture the game of Nim in its entirety in a fairly intuitive

way.

1
 When there is one pile left, the only winning position (i.e. after the winning player's turn) is when

there is just one stick in the pile. If there are two or three piles left, winning positions are determined as

follows. Express the number of sticks in each pile in binary. Add these binary numbers in column-by-

column modulo-2 arithmetic (so there is no carry from one column to another). If the result is zero, the

position is a winning one. For the starting position (5, 6, and 7 sticks), the modulo-2-sum is

101+110+111 = 100. So by taking 4 sticks from any pile, a winning position is obtained.

© Graham G. Thomason 2003-2004 iii

Table of Contents

1. Nim in Z ... 1

2. Nim in STATECRUNCHER .. 4

3. Source listing of the STATECRUNCHER model .. 11

4. References .. 13

© Graham G. Thomason 2003-2004 1

1. Nim in Z

The description of the exercise given in [McMorran, p.118] is:

The game of Nim is played by two people. The game starts with three piles

containing five, six and seven sticks respectively. Each player plays alternately. On

each turn, the player removes some sticks from one pile. The loser is the player who

removes the last stick (the other player is the winner).

Figure 1. Nim - the starting position

We are asked to write a formal specification of the game state and a Play schema. We must

distinguish between

 Game Ended

 Game Continues

 Illegal Play

A Nim specification in Z along the lines of [McMorran] follows, but we add the notion of

players necessarily taking turns. The players are John and Mary. The player is not supplied as

a parameter, but any move is attributed to the player whose turn it is when making the move.

The additions in the specification below with respect to [McMorran] are in marked by a

double line in the margin. The maker of the Z font used is indicated in reference [Z font].

Reminder of some less common terminology used:

 The range of a relation R is denoted by ran R.

 The range restriction relation RÃS is the subset of R where the range is restricted to S.

We will call the piles A, B and C.

pileid::= A | B | C

Pile A Pile B Pile C

 © Graham G. Thomason 2003-2004 2

We will call the players John and Mary.

player::=John | Mary

The Game state is a mapping from pileid to the number of sticks in that pile,

and a mapping from the player to a truth value of whether it is their turn or not. It is only

one player's turn at any time.

ùýGameýýýýýýýýýýýýýýýýýýýýýýýý

ú pile : pileidª£

ú turn : playerª{true,false}

ûýýýýýýýýýýýýýýýýýýýýýýýýýýýýý

ú #(turnÃ{true}) = 1

üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý

A player may make a valid or invalid move (requesting too many sticks). A valid move will

complete the game or leave sticks still available.

code::=ok | error | fin

The input values for Play are a pile identity, p?, and the number of sticks the player wishes

to take, take?. A return code, rc!, shows the result.

ùýParametersýýýýýýýýýýýýýýýýýýýýý

ú p? : pileid

ú take? : £

ú rc! : code

üýýýýýýýýýýýýýýýýýýýýýýýýýýýýýý

The play is permitted if there are enough sticks.

ùýPlayOKýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýý

ú óGame

ú Parameters

ûýýýýýýýýýýýýýýý

ú pile p? ä take?

ú pile' = pile É {p? § (pile p? - take?)}

ú Õp:player × turn' p = Ø(turn p)

ú rc! = ok

üýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýý

The set of piles is updated by decrementing the count for p? by take?.

The turn mapping is updated by negating the truth value associated with each player. For the

new turn mapping, we could have negated each player's turn explicitly

 turn' = turn É {John § Ø(turn John)} É {Mary § Ø(turn

Mary)}

The play is prohibited if there are too few sticks:

ùýPlayErrýýýýýýýýýýýýýýýýýýýýýýý

© Graham G. Thomason 2003-2004 3

ú ôGame

ú Parameters

ûýýýýýýýýýýýýýýý

ú pile p? < take?

ú rc! = error

üýýýýýýýýýýýýýýýýýýýýýýýýýýýýýý

The game is complete when all piles are empty:

Ended á [Game | ran pile = {0}]

Any intermediate state, (that is, where there are sticks on the table) we will call Open:

Open á [Game | ran pile µ {0}]

A play that leaves the game in an Open state can be described thus:

PlayMore á [PlayOK | Open' Ù rc! =ok]

A play that ends the game can be described thus

PlayLast á [PlayOK | Ended' Ù rc! =fin]

We can now describe a play

Play á PlayMore Ú PlayLast Ú PlayErr

 © Graham G. Thomason 2003-2004 4

2. Nim in STATECRUNCHER

 Figure 2 shows how Nim can be modelled in STATECRUNCHER.

Following the figure, a description of the model is given, then a session running the model is

reproduced.

The following appendix is recommended reading prior to studying the output produced by the

STATECRUNCHER models:

 A Quick Reference of STATECRUNCHER's Output Format [StCrOutput]

The source code of the model given at the end of this paper. It corresponds to the figure in

almost every detail.

© Graham G. Thomason 2003-2004 5

Figure 2. Nim [model t4320]

Play

MaryTake(::p,::take)

[(p==1 && i1>=take)

||(p==2 && i2>=take)

||(p==3 && i3>=take)]/

fire GeneralTake

GeneralTake /

if (p==1) {i1-=take; trace("OK");}

if (p==2) {i2-=take; trace("OK");}

if (p==3) {i3-=take; trace("OK");}

if (i1==0 && i2==0 && i3==0 && in(Play.John)){trace("John Wins");}

if (i1==0 && i2==0 && i3==0 && in(Play.Mary)){trace("Mary Wins");}

JohnTake(::p,::take)

[(p==1 && i1>=take)

||(p==2 && i2>=take)

||(p==3 && i3>=take)]/

fire GeneralTake

Mary

John

JohnTake(::p,::take) [

p<1 || p>3] /

fire PileError

PileError / trace("PileError");

nSticksError / trace("nSticksError");

 (variables)

i1=5 nr of sticks in pile 1

i2=6 nr of sticks in pile 2

i3=7 nr of sticks in pile 3

 (variables)

p=0 pile from which sticks are taken

take=0 number of sticks taken

JohnTake(::p,::take)

[(p==1 && i1<take)

||(p==2 && i2<take)

||(p==3 && i3<take)]/

fire nSticksError;

MaryTake(::p,::take) [

p<1 || p>3] /

fire PileError

MaryTake(::p,::take)

[(p==1 && i1<take)

||(p==2 && i2<take)

||(p==3 && i3<take)]/

fire nSticksError;

statechart sc

 © Graham G. Thomason 2003-2004 6

A description of the STATECRUNCHER model, with the relationship to the Z specification

The piles are held in variables i1, i2, i3 respectively (cf. the Z pileid::= A | B |

C).

The player whose turn it is, is held by a leafstate John or Mary being occupied (with the

other one being vacant). The cluster (OR state) construction ensures that only one state is

occupied. In Z this was #{pl : player | turn player}=1.

The ó operations in PlayOK correspond to transitions between states John and Mary.

These always involve a legal number of sticks being taken. The events triggering the

transitions are JohnTake and MaryTake, with parameters that are stored in p and take,

corresponding to p? and take? in the Z specification.

The ô operations in PlayErr correspond to self transitions on states John and Mary.

These are error moves which result in a STATECRUNCHER trace to this effect, with no

transitions between states. The error code of the Z specification

code::=ok | error | fin

is reflected in the most recent STATECRUNCHER TRACE which can be:

OK, nSticksError, PileError, JohnWins or MaryWins.

The self-transitions on the internal events GeneralTake, PileError and

nSticksError are the equivalent of a subroutine of imperative languages such as C. They

execute the mechanics of a move that could come from two places, with either John or Mary

initiating them.

The game ends when the STATECRUNCHER TRACE indicates this by giving the winner - no

more events should be given - the model is only valid up to this point. (Any more events are

traced as being in error if attempted. We could have disabled such events by introducing a

new state Ended and transitioning to it as an additional action to tracing the winner). If the

trace does not indicate a winner, the game continues. We can also see from the pile values i1,

i2 and i3 whether the game has ended. Comparing with the Z specification, we have

In the Z specification, the game is complete when all piles are empty:

Ended á [Game | ran pile = {0}]

In the STATECRUNCHER model, the game is complete when

i1==0 && i2==0 && i3==0

or when the most recent TRACE is JohnWins or MaryWins.

© Graham G. Thomason 2003-2004 7

In the Z specification, any intermediate state is called Open:

Open á [Game | ran pile µ {0}]

In the STATECRUNCHER model, an Open state is seen by

i1!=0 || i2!=0 || i3!=0

or when the most recent TRACE is not JohnWins and not MaryWins.

In the Z specification, a play that leaves the game in an Open state is:

PlayMore á [PlayOK | Open' Ù rc! =ok]

In the STATECRUNCHER model, this corresponds to, for example

 event MaryTake or JohnTake (according to which is transitionable)

after which

i1!=0 || i2!=0 || i3!=0

 and (last TRACE) = OK (but even disallowed moves leave the game open)

In the Z specification, a play that ends the game can be described thus

PlayLast á [PlayOK | Ended' Ù rc!=fin]

In the STATECRUNCHER model, this corresponds to, for example

 event MaryTake or JohnTake (according to which is transitionable)

after which

i1==0 && i2==0 && i3==0

 and (last TRACE) = MaryWins or JohnWins

In the Z specification, we describe a play as

PlayMore á PlayMore Ú PlayLast Ú PlayErr

In the STATECRUNCHER model, this is just

 event MaryTake or JohnTake (according to which is transitionable)

provided the game has not ended, which is as far as the model is valid.

 © Graham G. Thomason 2003-2004 8

Session with Nim [model t4320]

Only essential explanations of STATECRUNCHER's output are given here. For more detail, refer

to [StCrOutput].

Transitionable events are given by TREV lines. The only events that can be supplied from an

external perspective are those at PCO [external,sc]]. This will give just one event

from the set {JohnTake, MaryTake} at any stage of playing the game. An event is

supplied for processing in this model by a command

pe event p=[param1,param2]

where event is JohnTake or MaryTake and param1 is the pile (the p? of Z) and param2 is

the number of sticks to take (the take? of Z).

The player whose turn it is, is evident from the transitionable event offered, but it can also be

seen from the occupied leafstate, in the leafstate John and leafstate Mary lines

(OCC=occupied, VAC=vacant).

The number of sticks per pile is seen in the VAR INTEGER i1/i2/i3 lines.

The move status is indicated by the TRACE lines. The TRACE is read from right to left.

Further notes on the output, but which are not essential to understanding the game play are:

- terms in many lines such as [sc] and [Play,sc] give the scope (i.e. position in the

statechart hierarchy) of an item. Events can be supplied without scope - in that case

statechart scope is assumed.

- the TREV lines contain event names (with scope), then the number of parameters, then

the ranges of parameters then the PCO of the event.

The session shows moves being made, including disallowed moves involving a disallowed

pile of a disallowed number of sticks. The events supplied, and error codes just produced in

the TRACE, are shown in bold font.

SC:|: run t4320

...

SC:|: gc

2 statechart sc

2 cluster Play [sc] = OCC [] **

2 leafstate John [Play,sc] = OCC [] **

2 leafstate Mary [Play,sc] = VAC []

2 VAR INTEGER i1 [sc] =5

2 VAR INTEGER i2 [sc] =6

2 VAR INTEGER i3 [sc] =7

2 VAR INTEGER p [sc] =0

2 VAR INTEGER take [sc] =0

2 TRACE =[]

2 TREV [[JohnTake,[sc]],2,[[r,0,3],[r,0,7]],[external,[sc]]]

2 TREV [[PileError,[sc]],0,[],[internal,[sc]]]

2 TREV [[nSticksError,[sc]],0,[],[internal,[sc]]]

2 TREV [[GeneralTake,[sc]],0,[],[internal,[sc]]]

outworlds=[2]

number of outworlds=1

© Graham G. Thomason 2003-2004 9

SC:|: pe JohnTake p=[2,4]

SC:|: gc

6 statechart sc

6 cluster Play [sc] = OCC [] **

6 leafstate John [Play,sc] = VAC []

6 leafstate Mary [Play,sc] = OCC [] **

6 VAR INTEGER i1 [sc] =5

6 VAR INTEGER i2 [sc] =2

6 VAR INTEGER i3 [sc] =7

6 VAR INTEGER p [sc] =2

6 VAR INTEGER take [sc] =4

6 TRACE =[OK]

6 TREV [[MaryTake,[sc]],2,[[r,0,3],[r,0,7]],[external,[sc]]]

6 TREV [[PileError,[sc]],0,[],[internal,[sc]]]

6 TREV [[nSticksError,[sc]],0,[],[internal,[sc]]]

6 TREV [[GeneralTake,[sc]],0,[],[internal,[sc]]]

outworlds=[6]

number of outworlds=1

SC:|: pe MaryTake p=[2,3]

SC:|: gc

9 statechart sc

9 cluster Play [sc] = OCC [] **

9 leafstate John [Play,sc] = VAC []

9 leafstate Mary [Play,sc] = OCC [] **

9 VAR INTEGER i1 [sc] =5

9 VAR INTEGER i2 [sc] =2

9 VAR INTEGER i3 [sc] =7

9 VAR INTEGER p [sc] =2

9 VAR INTEGER take [sc] =3

9 TRACE =[nSticksError,OK]

9 TREV [[MaryTake,[sc]],2,[[r,0,3],[r,0,7]],[external,[sc]]]

9 TREV [[PileError,[sc]],0,[],[internal,[sc]]]

9 TREV [[nSticksError,[sc]],0,[],[internal,[sc]]]

9 TREV [[GeneralTake,[sc]],0,[],[internal,[sc]]]

outworlds=[9]

number of outworlds=1

SC:|: pe MaryTake p=[2,2]

SC:|: gc

13 statechart sc

13 cluster Play [sc] = OCC [] **

13 leafstate John [Play,sc] = OCC [] **

13 leafstate Mary [Play,sc] = VAC []

13 VAR INTEGER i1 [sc] =5

13 VAR INTEGER i2 [sc] =0

13 VAR INTEGER i3 [sc] =7

13 VAR INTEGER p [sc] =2

13 VAR INTEGER take [sc] =2

13 TRACE =[OK,nSticksError,OK]

13 TREV [[JohnTake,[sc]],2,[[r,0,3],[r,0,7]],[external,[sc]]]

13 TREV [[PileError,[sc]],0,[],[internal,[sc]]]

13 TREV [[nSticksError,[sc]],0,[],[internal,[sc]]]

13 TREV [[GeneralTake,[sc]],0,[],[internal,[sc]]]

outworlds=[13]

number of outworlds=1

SC:|: pe JohnTake p=[3,7]

SC:|: gc

17 statechart sc

17 cluster Play [sc] = OCC [] **

17 leafstate John [Play,sc] = VAC []

17 leafstate Mary [Play,sc] = OCC [] **

17 VAR INTEGER i1 [sc] =5

17 VAR INTEGER i2 [sc] =0

17 VAR INTEGER i3 [sc] =0

17 VAR INTEGER p [sc] =3

17 VAR INTEGER take [sc] =7

 © Graham G. Thomason 2003-2004 10

17 TRACE =[OK,OK,nSticksError,OK]

17 TREV [[MaryTake,[sc]],2,[[r,0,3],[r,0,7]],[external,[sc]]]

17 TREV [[PileError,[sc]],0,[],[internal,[sc]]]

17 TREV [[nSticksError,[sc]],0,[],[internal,[sc]]]

17 TREV [[GeneralTake,[sc]],0,[],[internal,[sc]]]

outworlds=[17]

number of outworlds=1

SC:|: pe MaryTake p=[4,1]

SC:|: gc

20 statechart sc

20 cluster Play [sc] = OCC [] **

20 leafstate John [Play,sc] = VAC []

20 leafstate Mary [Play,sc] = OCC [] **

20 VAR INTEGER i1 [sc] =5

20 VAR INTEGER i2 [sc] =0

20 VAR INTEGER i3 [sc] =0

20 VAR INTEGER p [sc] =3

20 VAR INTEGER take [sc] =7

20 TRACE =[nSticksError,OK,OK,nSticksError,OK]

20 TREV [[MaryTake,[sc]],2,[[r,0,3],[r,0,7]],[external,[sc]]]

20 TREV [[PileError,[sc]],0,[],[internal,[sc]]]

20 TREV [[nSticksError,[sc]],0,[],[internal,[sc]]]

20 TREV [[GeneralTake,[sc]],0,[],[internal,[sc]]]

outworlds=[20]

number of outworlds=1

SC:|: pe MaryTake p=[1,4]

SC:|: gc

24 statechart sc

24 cluster Play [sc] = OCC [] **

24 leafstate John [Play,sc] = OCC [] **

24 leafstate Mary [Play,sc] = VAC []

24 VAR INTEGER i1 [sc] =1

24 VAR INTEGER i2 [sc] =0

24 VAR INTEGER i3 [sc] =0

24 VAR INTEGER p [sc] =1

24 VAR INTEGER take [sc] =4

24 TRACE =[OK,nSticksError,OK,OK,nSticksError,OK]

24 TREV [[JohnTake,[sc]],2,[[r,0,3],[r,0,7]],[external,[sc]]]

24 TREV [[PileError,[sc]],0,[],[internal,[sc]]]

24 TREV [[nSticksError,[sc]],0,[],[internal,[sc]]]

24 TREV [[GeneralTake,[sc]],0,[],[internal,[sc]]]

outworlds=[24]

number of outworlds=1

SC:|: pe JohnTake p=[1,1]

SC:|: gc

29 statechart sc

29 cluster Play [sc] = OCC [] **

29 leafstate John [Play,sc] = VAC []

29 leafstate Mary [Play,sc] = OCC [] **

29 VAR INTEGER i1 [sc] =0

29 VAR INTEGER i2 [sc] =0

29 VAR INTEGER i3 [sc] =0

29 VAR INTEGER p [sc] =1

29 VAR INTEGER take [sc] =1

29 TRACE =[Mary Wins,OK,OK,nSticksError,OK,OK,nSticksError,OK]

29 TREV [[MaryTake,[sc]],2,[[r,0,3],[r,0,7]],[external,[sc]]]

29 TREV [[PileError,[sc]],0,[],[internal,[sc]]]

29 TREV [[nSticksError,[sc]],0,[],[internal,[sc]]]

29 TREV [[GeneralTake,[sc]],0,[],[internal,[sc]]]

outworlds=[29]

number of outworlds=1

SC:|:

© Graham G. Thomason 2003-2004 11

3. Source listing of the

STATECRUNCHER model

//---

// Module: Nim.scs.txt

// Author: Graham Thomason, Philips Digital Systems Laboratories, Redhill

// Date: 11 July, 2003

// Purpose: StateCruncher model: The Game of Nim (McMorran & Powell "Z.." p118,224)

//

// Copyright (C) 2003 Philips Electronics N.V.

//

// Revision History:

//

//-------1---------2---------3---------4---------5---------6---------7---------8-----

statechart sc(Play)

PCO internal,external;

event JohnTake,MaryTake@external;

event GeneralTake,PileError,nSticksError@internal;

enum int3 {0,..,3};

enum int7 {0,..,7};

int7 i1=5, i2=6, i3=7; // Sticks remaining on each pile

int3 p=0; // Pile from which sticks are taken

int7 take=0; // Number of sticks taken from pile

 cluster Play(John,Mary) { \

 /* If Mary took the last stick, we are now in John, and John wins */ \

 PileError { trace("PileError"); }; \

 nSticksError { trace("nSticksError"); }; \

 GeneralTake \

 { if (p==1) {i1-=take; trace("OK"); } \

 if (p==2) {i2-=take; trace("OK"); } \

 if (p==3) {i3-=take; trace("OK"); } \

 if (i1==0 && i2==0 && i3==0 && in(Play.John)) {trace("John Wins");} \

 if (i1==0 && i2==0 && i3==0 && in(Play.Mary)) {trace("Mary Wins");} \

 };}

 // The occupied cluster state indicates whose turn it is

 state John {JohnTake(::p,::take) \

 [(p==1 && i1>=take)||(p==2 && i2>=take)||(p==3 && i3>=take)] \

 -> Mary \

 {fire GeneralTake; }; \

 \

 JohnTake(::p,::take) /*internal transition */ \

 [p<1 || p>3] {fire PileError;} ; \

 \

 JohnTake(::p,::take) /*internal transition */ \

 [(p==1 && i1<take)||(p==2 && i2<take)||(p==3 && i3<take)] \

 {fire nSticksError;} ; }

 © Graham G. Thomason 2003-2004 12

 state Mary {MaryTake(::p,::take) \

 [(p==1 && i1>=take)||(p==2 && i2>=take)||(p==3 && i3>=take)] \

 -> John \

 {fire GeneralTake; }; \

 \

 MaryTake(::p,::take) /*internal transition */ \

 [p<1 || p>3] {fire PileError;} ; \

 \

 MaryTake(::p,::take) /*internal transition */ \

 [(p==1 && i1<take)||(p==2 && i2<take)||(p==3 && i3<take)] \

 {fire nSticksError;} ; }

//------------------------[end of module]--

© Graham G. Thomason 2003-2004 13

4. References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

 © Graham G. Thomason 2003-2004 14

References

[McMorran] Mike McMorran and Steve Powell

 Z Guide for Beginners

 Blackwell Scientific Publications, 1993. ISBN 0-632-03117-4

[Hayes] Ian Hayes (editor)

 Specification Case Studies

 Prentice Hall 1987, ISBN 0-13-826579-8

[UML] The Object Management Group website is: http://www.omg.org

 UML specifications are available from this website.

[Z font] Shareware by Lubos Mikusiak, lmikusia@ingr.com, available from the

 site http://www.informatikforum.org

