
Bibliography and References

Graham G. Thomason

Appendix to the Thesis “The Design and

Construction of a State Machine System

that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

Summary

This annotated bibliography accompanies the thesis on The Design and Construction of a

State Machine System that Handles Nondeterminism (called STATECRUNCHER) and is divided

into five parts: (1) internal Philips publications relating to (conformance) testing, setting a

backdrop; (2) systems and formalisms supporting state machines; (3) publications relating to

state machines; (4) supporting projects / products / information of relevance to testing; (5) a

consistent set of STATECRUNCHER references. In addition to state-based techniques, various

other model-based testing techniques are touched upon within the various categories.

© Graham G. Thomason 2003-2004 iii

Table of Contents

1. Introduction .. 1
1.1 Categorisation of references ... 1
1.2 Abbreviations and definitions used in this appendix ... 2

2. Internal Philips publications ... 3
3. Systems and formalisms supporting state machines or related models 8
4. Publications relating to verification, testing and/or state machines 19
5. Supporting projects / products / information... 38
6. STATECRUNCHER references ... 44

© Graham G. Thomason 2003-2004 1

1. Introduction

1.1 Categorisation of references
The references have been arranged in categories, then alphabetically, as follows

 Internal Philips publications relevant to validation and verification (testing)

 Systems and formalisms supporting state machines and other model-based testing

techniques

 Publications relating to state machines and other model-based testing techniques

 Supporting projects/products/information of relevance to testing

 The STATECRUNCHER references.

The Philips reports show some of the history in the company of state-based conformance

testing, as a backdrop to the development of STATECRUNCHER.

Under systems supporting state machines, we include model checking systems, because

whether or not they offer a simulation facility, they internally run some state machine engine.

We will distinguish two kinds of tool in our annotations (rather than introducing separate

categories): model checkers and simulators/test oracles. The corresponding activities may be

called validation and verification/testing respectively, though ‘verification’ is often used of

model checking, and we often meet the phrase ‘verifying properties’. A software system

needs a design and an implementation, and both need a separate kind of tool and activity to

ensure the quality of the final system.

 The design must guarantee certain properties, e.g. safety, liveness, fairness, freedom from

deadlock. Given a formal design, such as a statechart with properties attached to states,

and a formulation of the properties required in a system, a model checker can attempt to

prove them. Two possible limitations are: the expressiveness of the property language

(typically a temporal logic), and the size of the state space (though some techniques allow

for vast numbers of states).

 Given a design, the system must be built. Televisions, mobile phones etc. are a

combination of hardware and software. The concept of being in a state means much more

to a real system than to a simulator: mobile phone transmitters may be switched on,

threads may be waiting for semaphores, buffers should have certain content, such as a

teletext page. Testing involves making sure that these things that should happen really do

happen. The state model tells us what it is that should happen.

A slogan popular in Philips in the 1990s was: Doing the right thing and doing things right.

This is like saying: validating the properties of the design, and verifying (testing) that the

implementation conforms to the design. Both are extremely important, but distinct, though an

occasional tool (e.g. SPIN) is suited to both.

We also note in our annotations whether a state-based testing system is of the Labelled

Transition System (LTS) type or (Mealy) Finite State Machine (FSM) type. The former has

2 © Graham G. Thomason 2003-2004

affinities with CCS and CSP; event sequences are the traces, and events are partitioned into

input events and output events. The FSM approach defines a separate output alphabet. FSMs

produce output on transitions, the trace of such systems. [Tretmans] regards the precise

relation between testing theories based on the two approaches as an aspect of further study.

STATECRUNCHER was designed as a test oracle, and the main thrust of the thesis is that its

design will help in testing. Nevertheless it could be used to validate properties, given the aid

of an additional tool communicating with it, because it offers facilities which can help in

exploring state spaces. STATECRUNCHER is more geared to the FSM approach than the LTS

approach. In [StCrSemComp] we make some comparisons with the process algebras. Some

papers describe work where the implementation language is SDL; this corresponds more to an

LTS approach than an FSM one, because input and output messages are both analogous to

events.

The main scope of the bibliography is state-machine systems (and how they have been used),

whether commercial, proprietary, or academic, principally in a testing context, but also in a

validating context. Test generation algorithms are surveyed, as being STATECRUNCHER's

nearest neighbour in a tool chain. In addition we give some references for UML-based

modelling other than dynamic modelling, and we mention a few other testing techniques:

cause effect graphing, orthogonal array testing.

Under supporting projects/products/information we cover various tools, which, although they

may appear to be a disparate collection, have proved to be of especial value in constructing

testing tools and synthesizing tool chains. PROLOG features prominently in the list, being the

implementation language of STATECRUNCHER.

Finally, the STATECRUNCHER references form a consistent set of documents describing the

system from various angles at its latest release (1.05).

1.2 Abbreviations and definitions used in this appendix

We use abbreviations and technological terms, where not explained, sparingly in the

annotations, but the following are so commonly needed as to be useful:

Black box Used of a state machine, this means that states themselves are not directly

observable, but outputs on transitions are, and it is from these that a state may

be deduced.

FSM Finite State Machine

IUT Implementation Under Test

LTS Labelled Transition System

NFSM Nondeterministic Finite State Machine

OSI Open Systems Interconnection

SUT System Under Test

© Graham G. Thomason 2003-2004 3

2. Internal Philips publications

The Philips laboratories involved are:

 PRL (Philips Research Laboratories, Redhill)

 PDSL-R (Philips Digital Systems Laboratories, Redhill)

 Nat. Lab. (Natuurkundig Laboratorium, Philips Research Laboratories, Eindhoven)

 PRI-B (Philips Research India - Bangalore).

These reports cover state-based testing and related issues in various ways: early studies,

tooling approaches, transition tour approaches, and case studies.

[BakerM] M.L. Baker and D.C. Yule

 Automation of Software Testing:

 A Case Study on a Real-Time Embedded System

 PRL Technical Note 3373, September 1995

This report describes early work within Philips Research to automate testing of two

Interactive TV applications (an interactive quiz show and interactive shopping –both

teletext based). The work featured:

- state-based testing, using the public domain tool [DejaGnu] as a test harness, with

custom code being written in Expect/TCL. The state behaviour was defined using

state-relation tables.

- code coverage, using the [McCabe] toolset.

Out of 1400 tests, 76 failed. Two major errors relate to a requirements omission and

an implementation omission. The combination of the two techniques makes it

possible to see how much code is exercised by a state model. Branch coverage

(stronger than statement coverage) figures in modules varied from 26% to 100%. The

low figures were often where error recovery code had not been exercised; more tests

could be devised to increase the coverage.

[ECHSM] M.J. Hollenberg

 Extended Hierarchical Concurrent State Machines,

 Syntax and Semantics

 Nat. Lab. Report, version 0.4, 25 October, 1999

This is a document describing the syntax for an ECHSM (Extended Concurrent

Hierarchical finite State Machine) language. The syntax is an extension to that of

[CHSM]. The semantics are practically “as in [CHSM]”. The purpose of the language

4 © Graham G. Thomason 2003-2004

is to flatten ECHSM's to FCHSM's (see [FCHSM]) for use with [PHACT]. The

grammar has been largely adopted by STATECRUNCHER, with extensions, and with

the semantics extended for nondeterminism.

[FCHSM] M.J. Hollenberg

 Flattened Concurrent State Machines, Syntax and Semantics

 Nat. Lab. Report, version 0.2, October 25, 1999.

A language for describing flattened concurrent hierarchical state machines, derived

from ECHSM's (see [ECHSM]), for use with [PHACT].

[GFET] G.G. Thomason

 A GUI Front End for Testing

 Program GFET (Multi-threaded version)

 User Manual, Version 2.0/5.0

 PRL Technical Note 3875, July 1999

A tool to give a Windows user interface to embedded software that does not have a

user interface. It allows for control of 10 threads on which portions of software can be

run. It provides easy implementation of stubbed functions as dialogue boxes. This

enables the software to be tested using button-pressing, edit-box-communicating

Windows software testing tools, such as WinRunner [WinRun] to test embedded

software. The test script may make use of a state-relation package [Trew 98].

[Koppalkar 02] Nitin Koppalkar and Animesh Bhowmick

 Integration of Generic Explorer with the TorX Tool Chain

 Nat. Lab. Technical Note 2002/387, October 2002.

This report describes how STATECRUNCHER, being an explorer in [TorX] terms, can

be integrated into the TorX tool chain. The actual integration took place later, when

STATECRUNCHER had a socket interface.

[Koppalkar 03] Nitin Koppalkar

Interfacing STATECRUNCHER with TorX for demonstrating the state-

based testing technique taking MG-R components for a case study

 Nat. Lab. Draft Report, December 2003

This report shows STATECRUNCHER in the [TorX] tool chain in action testing a TV

software component.

© Graham G. Thomason 2003-2004 5

[Koymans] Ron Koymans

 An Overview of Automatic Test Generation Techniques

 for Communication Protocols

 Nat. Lab. Report RWR-508-re-93558, November, 1994

The report describes the relevant state of the art (at the time of writing) in

conformance testing, with explanations of test sequence generation by the T, D, W

and U methods: transition tours, distinguishing sequences, characterisation sets and

unique I/O sequences, and extensions to these. Tooling is SDL, LOTOS and Estelle

based, with TTCN used as a test definition format.

[Lanaspre] B. Lanaspre

 A Statechart Pre-processor for an Automatic Test Case Generator

 PRL Technical Note 3912

This report describes how a state-based model written in [CHSM] can be flattened,

and then have its variables expanded, to give final output in a Flattened State

Machine language to be used as input to [PHACT]. The flattening process takes place

by driving CHSM through its state space. The concepts were used in testing

American digital television (DTV '98).

[PHACT] L. Heerink and M.J. Hollenberg

 Conformance Testing Using PHACT

 Nat. Lab. Technical Note NL-TN 2000/011 (5 Jan 2000)

PHACT (Philips Automated Conformance Tester) is built on a proprietary state-based

testing tool, KPN's Conformance Kit. KPN [http://www.kpn.com] is a large Dutch

telecom company, the main successor to the Dutch PTT. PHACT does not support

hierarchy (so hierarchical state models must be flattened). It has been used to test an

MPEG source decoder (DIVA5) and American digital TV (DTV'98). Some handling

of nondeterministic situations can be managed by defining intermediate states [p.41].

[Raptis 98] D. Raptis

 Generation of Test Sequences from FSM’s

 PRL Technical Note 3683, March 1998

The problem addressed in this report is that of generating transition tours round a

state transition diagram. A tour is then effectively a black-box test sequence, since it

does not rely on being able to set any state directly, (which would be white-box

control). The problem of generating the tour is known as the Chinese Postman

Problem. Part of the solution is to solve an assignment problem. For an optimal

solution, Raptis refers us to the Hungarian solution, Christos H. Papadimitriou and

Kennett Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice

Hall, 1982. This has cubic complexity. Raptis presents a faster algorithm for a non-

optimal, but near-optimal solution, with some experimental results.

6 © Graham G. Thomason 2003-2004

[Raptis 99a] D. Raptis

 A Modelling and Testing Approach for Horizontal Communication

 in the TV Platform

 PRL Technical Note 3893, April, 1999

This report describes how [CWB] (Concurrency Workbench) was used to model the

state-based behaviour of the composition of two formal software components given

their interface specifications. The components handle parts of an end-to-end analogue

signal flow: a tuner and high-end output processor. The interactions of such

components are only with adjacent components (horizontal communication) - so

obviating the need for a manager program that knows the whole configuration. This

scheme facilitates system synthesis from components, but integration testing is

needed to ensure it works.

[Raptis 99b] D. Raptis

 Modelling and Validation of Concurrent Programs using CCS

 PRL Technical Note 3896, August, 1999.

This report shows how CCS agents, with and without value passing, can be designed

to model data types, variables and algorithms. Semaphores and Peterson's algorithm

for mutual exclusion are described as examples. A pre-processor using a Unix sed

script is described for translating from a user-friendly syntax to CCS. An introduction

to verification of model properties as supported by CTL*, rather than the modal mu

calculus of CCS, is given.

[Thomason] G.G. Thomason

 Component Binding in Composite Models for State-based Testing

 PRL Technical Note TN 4102, August, 2001

The aim of this report is to identify how systems built from software components will

need to be tested. A tool chain is required which can automatically generate and

execute tests —in particular integration tests. The generation side must use models of

the behaviour of individual components and of their binding which ‘wires up’ the

complete system, and produces tests and their ‘oracle’ from the model —which may

incorporate several alternative results in the event of nondeterminism. Solutions are

explored involving compositions of STATECRUNCHER models, using a preprocessor to

make model bindings in the same way that system bindings are made.

[Trew 98] T.I.P. Trew

 State-based Testing with WinRunner: the State-Relation Package

 PRL Internal Note SEA/704/98/05, June 1998

This package, allows a WinRunner [WinRun] test script to loop over tests defined by

state relation tables and so execute state-based tests.

© Graham G. Thomason 2003-2004 7

[Trew 01] T.I.P. Trew

 Software Component Composition - Still "Plug and Pray?"

 Proceedings of the 6
th

 Philips Software Conference, February, 2001

This presentation describes the difference between ordinary object-oriented

development and component development and the impact of that on testing. The need

for good, structured integration testing is all the more important. (State based testing

can be expected to be a major part of this).

[Trew 03] T.I.P. Trew

 State-based modelling of software components for integration testing

 A practical guide to the creation of STATECRUNCHER models

 Philips Nat. Lab. Technical Note (under preparation).

This report addresses the practicalities of using STATECRUNCHER to model systems of

software components.

[VnV] Eleen Hollenberg and Erik Mallens

 CvnvTestframe User Manual

 MG-R Software Documentation, v2.0, October 2001.

This is a Philips proprietary test harness for embedded systems with a host side part

and a target side part.

[Yule] D.C. Yule

 Automatic State-Based Testing (of various modules)

 PRL Technical Notes TN 3574 / 3681 / 3582 / 3590, 1997

 or DVD Document V19 C4 S415.

This illustrates the effectiveness of state-based testing. In a DVD player, errors

(sometimes many) were found in every module tested – even though this was after

hand-crafted conventional tests had been run. The modules were: the Loader

Subsystem, the Media Access module, the CD-DA Playback module, and the VCD

Playback module.

8 © Graham G. Thomason 2003-2004

3. Systems and formalisms supporting

state machines or related models

[Agedis] www.agedis.de

A consortium project headed by IBM Research Laboratory, Haifa, with the aim of

“...automating software testing and improving the quality of software while reducing

the expense of the testing phase... by developing a methodology and tools for the

automation of software testing in general, with emphasis on distributed, component-

based software systems”. A publication Model based test generation tools by Alan

Hartman gives a list of the main tools available. Commercial tools: [TVEC],

[Conformiq], [Reactis], Jcontract, [Tau], Testmaster, Unitek. Proprietary tools:

[GOTCHA-TCBeans], Ucbt-Salt, [ASML], [PTK]. Academic tools: Spectest,

Mulsaw, Toster, TGV/CADP, [TorX]/CADP, [Cow_Suite].

[Argos] F. Maraninchi

 The Argos Language: Graphical Representation of Automata

 and Description of Reactive Systems

 IEEE Workshop on Visual Languages, Kobe, Japan, October 1991

Argos supports the graphical development of statecharts. The graphical items

correspond to a syntax, which directs the graphical editor. Nondeterminism is

detected so that the user can remove it. The system supports UML-like models,

including (synchronous) broadcast events. Verification is performed in an

environment called Argonaute, using an automaton comparator called Aldebaran, for

which the following reference is given: J.C. Fernandez, An Implementation of an

Efficient Algorithm for Bisimulation Equivalence, Science of Computer

Programming, vol. 13, 2-3, May, 1990. That article and additional information on

Aldebaran can be found on the internet at the INRIA (Institut National de Recherche

en Informatique et en Automatique) site: http://www.inrialpes.fr

[ARTISAN] http://www.artisansw.com/

 http://www.artisansw.com/products/professional_overview.asp

From the Real Time Studio Professional web page

“Already an acknowledged leader in providing modelling support for system
engineers, ARTiSAN has added a powerful set of new enhancements to its

system validation functionality, so that engineers can:

 Build and simulate advanced state models for system behaviour:

© Graham G. Thomason 2003-2004 9

 Use events straight from the system architecture model

 Add timers and timed events

 Use drag/drop to populate state triggers, actions and guards

 Verify system response to external and internal events before building”

The transition semantics appear to be in agreement with UML.

[ASML] (Abstract State Machine Language)

 http://research.microsoft.com/fse/asml

The above site includes a 76-page tutorial for download. ASML is “an executable

specification language based on the theory of Abstract State Machines....good for

testers...”. The language is very reminiscent of imperative languages, (such as ‘C++’

– ASML has classes), rather than the reactive systems approach of other state

machine systems such as [STATEMATE]. It has processing blocks divided into steps,

allowing parallelism within steps, where updated variable values only take effect after

a step. The notion of state is simply related to variable values at the end of a step, and

transitions are the act of processing a step. The language includes sets and sequences,

and maps (equivalent to associative arrays of Perl, or hash tables in database systems)

Nondeterminism can be specified, but the system then makes one choice. There is

support for predicate logic, e.g. forall...holds and exists...where. Microsoft

state that ASML is being used for conformance checking. For a paper on Sequential

Abstract State Machines, see [Gurevich].

[Caliber] http://www.nohau.se/products/kravhantering.html

A cause-effect graphing tool that has been used at Philips, originally called SoftTest

from Bender and Associates, then apparently under Borland called Caliber-RBT and

now under Nohau called Caliber-RM. Cause-effect graphs are described in [Myers].

[CCS] Calculus of Communicating Systems

A process calculus. See [Milner], [Bruns]

[CHSM] Paul J. Lucas

 An Object-Oriented System for Implementing Concurrent,

 Hierarchical, Finite State Machines

 MSc. Thesis, University of Illinois at Urbana-Champaign, 1993

 http://homepage.mac.com/pauljlucas/software.html

CHSM stands for Concurrent Hierarchical finite State Machines, and (in context)

Lucas's implementation of a language for them. The concurrency and hierarchy are

expressed as ‘sets’ and ‘clusters’. It allows for transition actions, which may be

broadcast (i.e. fired) events. The language is easy to grasp, and although apparently

not designed with testing applications in mind, it is at a suitable level for ordinary

developers and testers to use. The language is implemented by conversion to C++

using the Unix tools YACC and LEX. CHSM supports embedded C++ in a source

10 © Graham G. Thomason 2003-2004

model. CHSM prevents transition ‘cycling’ (potentially possible through broadcast

events) by only allowing any one transition to be taken once during the processing of

a top-level event. A CHSM model may contain nondeterministic transitions, but the

system will take just the first one it finds.

 [Conformiq] http://www.conformiq.com

A commercial tool supporting batch and on-the-fly testing, based on UML dynamic

models.

[Cow Suite] Francesca Basanieri, Antonio Bertolino, Eda Marchetti

 The Cow_Suite Approach to Planning and deriving Test Suites

 in UML Projects

 Instituto di Elaborazione della Informazione, Pisa

Cow_suite tools generate test cases from UML diagrams, based on the analysis of

Use Case diagrams and Sequence Diagrams. No translation into an intermediate

notation is needed. A cost-weighted strategy is used, assigning weights to nodes of

derived trees, to select the most ‘important’ test cases from all possible use cases and

message sequences. The user can choose either a fixed number of tests, or fixed

functional coverage. Managers provide ‘importance’ criteria. Cow_suite does not

execute tests; for this a separate driver is required.

[CSP] Communicating Sequential Processes

A process calculus. See [Hoare], [Schneider].

[CTL] Computation Tree Logic.

This temporal logic is embodied in a language called CTL*. See [Emerson], [Bérard].

[CWB] The Edinburgh Concurrency Workbench

 http://www.dcs.ed.ac.uk/home/cwb/

This tool expresses its designs in the Calculus of Communicating Systems (CCS). It

is a powerful tool, and is popular as a research tool, but it is not aimed at the ordinary

software developer in industry. It supports nondeterminism at a transition level, so

that the user can choose between transitions even where some of them are triggered

off the same event. (Contrast this with STATECRUNCHER, which supports

nondeterminism at the event level, relieving the user of the need to detect and manage

multiple nondeterministic transitions in their own loop).

[Design/CPN] Design/Coloured Petri Nets

Initially developed by Meta Software Corp, Cambridge MA USA, and the CPN

Group at the University of Århus, Denmark. Available from

 http://www.daimi.au.dk/designCPN

© Graham G. Thomason 2003-2004 11

Design/CPN allows one to edit, simulate and verify large hierarchical coloured Petri

nets ([Bérard, Ch14]). Since Petri nets can be used to model state-based systems (see

[Murata]), the tool can be used to verify them.

[ESPRESS] Engineering of safety-critical embedded systems

 http://www.first.gmd.de/~espress

“ESPRESS aims to increase productivity in developing complex, safety-critical,

embedded systems and enhance the reliability of such systems by the development of

a methodological tool-supported software technology for specific application areas

covering the whole life-cycle. The project focuses on the application area of

automobile electronics and traffic light control. ... Essential features are the explicit

separation of specifications into functional and safety relevant parts, the combination

of graphical (statecharts) and formal methods (Z) as well as verification, code-

generation, systematic testing and automatic test evaluation.”

Tool support is based on STATEMATE. See [Büssow] for a description of the

formalism used: SZ. See [Fuhrmann] for another ESPRESS publication, on the

verification of STATEMATE statecharts via the CSP verification tool [FDR].

[Estelle] ISO 9074 (draft)

 http://www.estelle.org

Estelle is an ISO Formal Description Technique, i.e. a specification language, for

concurrent distributed systems. Compare [LOTOS], a companion ISO standard, and

[SDL], an ITU standardized language, with which it has some commonality. Estelle is

based on modules and interaction points, and uses the asynchronous (non-blocking)

send for intermodule interaction, and also shared variables.

Estelle is championed by the LOR, département LOgiciels-Réseaux, (Department of

Network Software)

http://www-lor.int-evry.fr/

LOR has produced EDT = Estelle Development Toolset.

For a tutorial, see [Budkowski].

[FDR] Failures Divergences Refinement checker

A CSP-based model checker from Formal Systems Europe:

 http://www.fsel.com/

A companion tool is [Probe].

[GOTCHA-TCBeans] http://www.haifa.il.ibm.com/projects/verification/gtcb

A proprietary IBM tool “designed to assist testers in developing, executing and

organizing function tests direct against Application Program Interfaces (APIs) and

software protocols written in Java, C or C++”. The tool has been used in the [Agedis]

project. The test process is one of producing a state machine model of system

specifications from which an abstract test suite is generated by GOTCHA. This is

12 © Graham G. Thomason 2003-2004

translated into test scripts by TCBEANS which are run via an executor or on-the-fly.

(Compare [TorX]). From the file system example, it appears that the user must write

switch statements in an imperative language to produce the state machine model, but

a UML modelling language has been defined in the [Agedis] project. Non-

determinism support is claimed (no details given).

[LOTOS] ISO/IEC standard 8807

LOTOS (Language of Temporal Ordering Specification) is an ISO Formal

Description Technique, i.e. a specification language, for concurrent distributed

systems. Compare [Estelle]. It has historical connections with CCS and CSP. It is

algebraic, using processes, events, ordering operators etc. Synchronisation is by

shared events as in CSP. Nondeterminism is implicit in parallelism (various

interleavings), or can be specified by offering the same event name more than once

with the choice operator [] (example from Kenneth Turner, Univ. of Stirling):

(eat_out; CHINESE MEAL)[](eat_out; INDIAN MEAL)

Many implementations of LOTOS exist. LOTOS has been used as the explorer

element of the [TorX] tool chain.

[OBJECT GEODE] http://www.telelogic.com

 http://www.telelogic.com/products/objectgeode/articles.cfm#simulation

The above downloadable paper describes state-base testing from the perspective of

exploring the state space of a model written in SDL (Specification and Description

Language): Automated Test Generation with ObjectGeode Test Composer, Alain

Kerbrat.

Abstract: This paper presents the advanced features provided by ObjectGeode Test

Composer, a Test Suite generator for conformance testing of distributed systems:

- Test purposes generation based on structural coverage,

- Test cases generation based on state space exploration,

- Interactive and batch generation,

- Test suite structuring and production

[Petri Nets] A modelling tool with affinities to state modelling, originally submitted by

C.A. Petri as Kommunikation mit Automaten, Bonn: Institut für Instrumentelle

Mathematik, Schriften des IIM, Nr 3, 1962. See [Murata] for a thorough review of

Petri nets.

[PLTL] Propositional Linear Temporal Logic

A temporal logic originating with A. Pnueli (The temporal semantics of concurrent

programs, Theoretical Computer Science, 13(1):45-60, 1981), described in [Bérard,

p.35].

© Graham G. Thomason 2003-2004 13

[Probe] Process Behaviour Explorer

A tool to interpret and animate CSP specifications from Formal Systems Europe:

http://www.fsel.com/

A companion tool is [FDR].

[PROMELA] (PROcess MEta LAnguage)

 http://cm.bell-labs.com/cm/cs/what/spin/Man.Quick.html

The language allows for the dynamic creation of concurrent processes.

Communication via message channels can be specified to be synchronous or

asynchronous. Support is provided by [SPIN], which can perform random or

interactive simulations of the system's execution or exhaustive verification of the

system's state space (e.g. checking for the absence of deadlocks). PROMELA has

been used as the explorer in the [TorX] tool chain.

[PTK] see [BakerP]

A Motorola in-house tool used to generate conformance tests (SDL or TTCN) from

Message Sequence Charts (MSCs) and Process Data Unit specifications (PDUs).

[RATIONAL] http://www.rational.com/

 http://www.rational.com/products/rose/real_time/rtrose.jsp

From the website on Rational Rose RealTime:

“Developers of embedded, real-time and network systems software applications

develop some of the coolest code for the most technologically challenging
products and systems. Because of this, they face several challenges that other
development environments don't. Many times, this type of software is highly

event-driven, concurrent, and often distributed. Stringent requirements must be
met for latency, throughput, and dependability. Capturing and effectively

communicating designs for such systems can be tough without the right tools.
Rational Rose RealTime for Windows or UNIX is the best solution for
accelerating your devices & embedded systems software development projects

quickly, easily and completely.”

The transition semantics appear to be as described in UML books.

[Reactis] http://reactive-systems.com

A graphical tool that supports “a large subset of the discrete-time subset of Simulink

and Stateflow”. It may also interact with MATLAB for calculations. For Simulink,

Stateflow and MATLAB, see http://www.mathworks.com. Simulink is strong in

numerical algorithms and is aimed at control systems design, signal processing, and

communication systems. Stateflow is the state-transition tool. Apart from many

features apparently equivalent to UML statecharts, it supports temporal logic and

“schedules transitions and events using temporal operators ("before", "after", "at",

"every").” In Reactis, state-transition diagrams are shown graphically, and input

events can be selected from a source, the default being random events, which it is

14 © Graham G. Thomason 2003-2004

admitted (on the Getting Started web pages) may lead to poor coverage. State-

transition coverage is indicated by green and red colouring of the diagram. Features

appear to be geared to interactive simulation: oscilloscope-like windows showing

real-time progress of numerical outputs, variable watching, breakpoints, and stepping

through model execution.

[RHAPSODY] http://www.ilogix.com/

RHAPSODY is a CASE-tool from I-Logix. From the web-page:

Rhapsody is an enterprise-wide visual programming environment that allows

corporations to build and deploy real-time embedded systems and software

applications. Rhapsody is designed and optimized for the special needs of the

embedded market. Real-time behavioral semantics, target real-time operating

system support, model/code associativity, design-level debugging, and

production quality code generation increase developer productivity.

Rhapsody customers regularly report design cycle reduction of more than

30%, even on the first project.

The semantics of RHAPSODY (and STATEMATE) are described in [Harel-96].

[RSML] Requirements State Machine Language

RSML is Mealy-machine based (actions on transitions). See [Heimdahl] for a

description of its semantics, and [Leveson] for its origins. [Von der Beeck] gives the

following earlier reference with the same title as [Leveson]:

N. Leveson, M. Heimdahl, H. Hildreth, J. Reese

Requirements Specification for Process Control Systems

Technical Report 92-106, University of California, USA, 1992.

RSML allows for state arrays. Messages can be sent between separate state machines.

It supports timing functions. The semantics allow for looping round transitions.

Although developed as a specification language, a simulator for RSML has been built

by Heimdahl.

[SDL] Specification and Description Language

This language has been standardized by the ITU (International Telecommunications

Union) as ITU-Z.100 and Z.105. It uses asynchronous message (=signal) passing

between processes. It supports objects and inheritance. The basic graphical symbols

represent the following items: state, message output (send), message input (consume),

message save (if not consumed), task (perform some action). The notation is

convenient for constructing a state transition diagram in small, page-sized portions at

a time. Nondeterminism can arise where different interleavings of message arrival are

possible.

[SMV] Symbolic Model Verifier

A model checking tool developed by K.L. McMillan under the guidance of E.M.

Clarke at Carnegie-Mellon University. It uses CTL* as its temporal logic language

© Graham G. Thomason 2003-2004 15

(see [Emerson], and uses binary decision diagrams in its implementation.

Summarised in [Bérard, Ch.12].

SMV is available from

 http://www.cs.cmu.edu/~modelcheck/smv.html

The following site is a tutorial and gives an example of modelling a semaphore:

 Model checking lecture notes by Marsha Chechik (U. Toronto)

 www.cs.toronto.edu/~chechik

[SPIN] A simulation and verification tool.

SPIN was mainly developed by G.J. Holzmann at Bell Labs. The following site gives

a general description, many theoretical references, workshop information etc.

 http://netlib-bell-labs.com/netlib/spin/whatisspin.html

From [Bérard, p.139]: SPIN was designed for simulation and verification of

distributed algorithms. The systems must first be described in [PROMELA]. Spin has

two modes: (1) simulation (2) property-checking (using PLTL). Key feature: state

space reduction mechanisms, on-the-fly verification and hashing (allowing it to work

with 10
7
+ states). SPIN was used in the [TorX] tool chain for on-the-fly conformance

testing in the Côte de Resyste project (also ref. [Torx]), using a PROMELA

description of the model, supporting nondeterminism.

[Stateflow] see [Reactis]

[STATEMATE] http://www.ilogix.com/

STATEMATE is a statechart system from I-Logix. From the web-page:

I-Logix’ Statemate MAGNUM is the most comprehensive graphical

modeling and simulation tool for the rapid development of complex

embedded systems. Statemate MAGNUM provides a direct and formal link

between user requirements and software implementation by allowing the user

to create a complete, executable specification. Operating on an engineering

workstation or PC, Statemate MAGNUM creates a visual, graphical

specification that clearly and precisely represents the intended functions and

behavior of the system being specified. This specification may be executed,

or graphically simulated, so the system engineer can explore what if scenarios

to determine if the behavior and the interactions between system elements are

correct. These scenarios can be captured and included in Test Plans which are

later run on the embedded system to ensure that what gets built meets what

was specified. This executable specification is also used to communicate with

the customer or end user to confirm that the specification meets their

requirements.

The semantics of STATEMATE are described in [Harel-96].

Harel's statecharts and I-Logix's STATEMATE differ from UML's interpretations. Even

Rhapsody, from I-Logix, conforms to the UML view. The main differences are

16 © Graham G. Thomason 2003-2004

1) The form of parallelism allows for variables to be altered in one place, but retain

their original value when used in another place. UML assumes a specific sequence.

2) Harel (and CHSM) prioritize giving the outermost transitions on the same event

priority; UML takes an object-oriented derived-class-overrides view and gives the

inner transition priority:

[TGV] http://www.irisa.fr/pampa/VALIDATION/TGV/TGV.html

“TGV (Test Generation with Verification technology) is a prototype for the

generation of conformance test suites for protocols. It is based on the model of

input/output (labelled) transition systems (IOLTS) and uses algorithms coming from

verification technology. TGV has been developed in collaboration with Vérimag

Grenoble and uses libraries of the César-Aldébaran Distribution Package (CADP)

developed by Verimag Grenoble and VASY from Inria Rhône Alpes. A first

prototype has been connected to the GEODE tool (Verilog) and allows the production

of test suites in the TTCN format (Tree and Tabular Combined Notation) from SDL

specifications.” [Du Bousquet] describes the use of TGV in conjunction with [TorX],

for random testing.

 [TorX] Côte de Resyste project: http://fmt.cs.utwente.nl/CdR

 TorX tool: http://fmt.cs.utwente.nl/tools/torx/torx-intro.1.html

TorX comes from the Côte de Resyste (COnformance TEsting of REactive

SYSTEms) project, a research and development project (1998-2002) funded by the

Dutch Technology Foundation STW (http://www.stw.nl/). It is a collaboration

between:

 the University of Eindhoven (http://www.tue.nl)

 the University of Twente (http://www.utwente.nl/)

 Philips (http://www.philips.com)

It aims to develop methods and techniques to build a tool for specification-based

testing in an automated way based on formal methods. Based on formal testing theory

and languages (LOTOS, SDL, TTCN, PROMELA...), the approach is the Labelled

Transition System one, with a partition between outputs and (always enabled) inputs.

It defines conformance of an implementation i to a specification s as:

 i ioco s =def σ Straces(s) : out(i after σ)  out(s after σ)

Tretmans explains this as: i ioco-conforms to s iff

 if i produces output x after trace σ , then s can produce x after σ

 if i cannot produce any output after trace σ, then s cannot produce any output

after σ, (quiescence).

A test suite T is sound if i ioco s  i passes T.

A test suite T is exhaustive if i passes T  i ioco s.

TorX is a tool chain, supporting on-the-fly testing, consisting of an Explorer-Primer-

Driver-Adapter-IUT, as follows:

© Graham G. Thomason 2003-2004 17

Figure 1. The TorX tool chain

[TVEC] www.t-vec.com

A commercial set of tools integrating requirements and test, listed by the [Agedis]

consortium. One mode of testing is model-based testing. The web pages do not

elaborate on models supported, (UML dynamic models?). The T-VEC “tabular

modeler” is derived from the US Naval Research Center's SCR (Software Cost

Reduction) model, which is a requirements formalism, amenable to model checking,

e.g. by SPIN.

[UML] http://www.omg.org

 (The Object Management Group Website)

UML specifications (v. 1.5, November, 2003) are available from the website.

Section 2.12 is on State Machines, which are a subpackage of the Behavioral

Elements Package, which also includes Collaborations, Use Cases and Activity

Graphs.

UML is a visual modelling language rather than a visual programming language

[section 1.5.1.1, pp.1-7], so a direct comparison with STATECRUNCHER is not always

possible. STATECRUNCHER is close to UML in semantics, and it is certainly our aim

to align STATECRUNCHER as precisely as possible with UML if we have the

opportunity for future developments. We note the following features of UML:

 Change events (lambda transitions), e.g. transitions triggered by data taking on a

certain value. There are semantic issues as to when data is allowed to trigger such

a transition.

 Deep history and shallow history vertices (i.e. as transition targets, also known as

pseudo-states, so that different transitions can target a composite state

individually invoking deep history, shallow history or no history). These are on

STATECRUNCHER's wish-list.

 Joins, forks, junctions and choices. STATECRUNCHER can accommodate joins

using the in(...) function as a guard. STATECRUNCHER has forks (the split

operator). STATECRUNCHER can implement the functionality of junctions and

choices using multiple transitions.

 Deferrable events. Not supported in STATECRUNCHER.

 Do Activities, describing processing associated with being in a state.

Explorer Primer Driver Adapter IUT

States

Transitions

Transitions Abstract

Actions

Bits & Bytes

From a presentation by Lex Heerink

18 © Graham G. Thomason 2003-2004

 Synch states, used for ordering forks and joins.

 Time Events. Such an event can express expiry of a deadline. STATECRUNCHER

does not have any special constructs for expressing time.

 Firing priorities. Transitions originating from a substate has priority over a

transition originating from any of its containing states. STATECRUNCHER now

(Release 1.03 and higher) conforms to this.

[VVT-RT] Validation, Verification and Test of Real Time Systems

A tool from Verified Systems International GmbH, Bremen, in co-operation with the

Bremen Institute of Safe Systems (BISS) within the Center for Computing

Technology (TZI) at Bremen University. It is based on CSP [Hoare]. For a paper on

an application of it, see [Schlinghoff].

© Graham G. Thomason 2003-2004 19

4. Publications relating to verification,

testing and/or state machines

[Alhir] Sinan Si Alhir

 UML in a Nutshell

 O'Reilly & Associates., 1998. ISBN 1-56592-448-7

This book contains intense, concise detail on UML. Chapter 11 covers statechart

diagrams. It elaborates on compound transitions (decision branching), and

splitting/synchronizing control.

[BakerP] Paul Baker, Paul Bristow, Clive Jervis, David King and Bill Mitchell

Automatic Generation of Conformance Tests from Message Sequence

Charts

 System and Software Engineering Research Lab (UK), Motorola Labs

The paper describes how the PTK tool (Motorola proprietary) is used to generate

conformance tests from Message Sequence Charts (MSCs) and Protocol Data Unit

specifications (PDUs). PTK generates SDL of TTCN scripts. Interleaving semantics

of MSCs are used to generate all traces of events. Nondeterminism is handled by

generating separate scripts for separate outcomes, with one precise outcome giving a

test result of pass, and alternatives giving a test result of inconclusive. This makes it

possible to check that all nondeterministic outcomes have been obtained (but it is not

explained how they might be stimulated).

[BCS-SIGIST] Standard for Software Component Testing

 British Computer Society - Special Interest Group in Software Testing

This document contains a great number of definitions and descriptions of testing terms

and metrics. It defines State Transition Coverage as follows: For single transitions, the

coverage metric is the percentage of all valid transitions exercised during the test. This is

known as 0-switch coverage. For n transitions, the coverage measure is the percentage of

all valid sequences of n transitions exercised during the test. This is known as (n-1)

switch coverage.

20 © Graham G. Thomason 2003-2004

[Beizer] B. Beizer

 Software Testing Techniques, 2
nd

 edition

 International Thomson Computer Press, 1990, ISBN 1850328803

A very good introduction to practical software testing in general, covering various

testing techniques. Chapter 11 is on States, State Graphs, and Transition Testing. The

book introduces a tabular representation of transitions. It contains good advice on

what to model (p.389). All examples are presented as flat deterministic finite state

machines.

[Belinfante] Axel Belinfante

 Formal Test Automation: A Simple Experiment

 (A [TorX] / Côte de Resyste report)

This paper describes TorX in use, with test scenarios specified in LOTOS,

PROMELA and SDL, testing a conference protocol.

[Bérard] B. Bérard

 Systems and Software Verification

 Springer-Verlag, 2001. ISBN 3-540-41523-8

This excellent book describes in turn automata, temporal logic, model checking,

symbolic model checking, and timed automata. It is concerned with model checking,

i.e. proving properties of a model, (so verifying a design), rather than testing a model

against an implementation. The temporal logic languages CTL* and PLTL are used.

Amongst the tools described are: SMV, SPIN and Design/CPN, (and some

timed/real-time tools).

[Binder] Robert V. Binder

Testing objects: State-based testing: Sneak paths and conditional

transitions

Object Magazine, October 1995, pp. 87-89

This article illustrates the practical need to test an object (it also applies to a system)

with messages that should not be accepted (what STATECRUNCHER calls non-

transitionable events), and to check that the state has not changed. This is, of course,

in addition to normal transitioning tests. A bank account example is given. Code

which allows an illegal transition is a called a sneak path; it could be deliberate for

the purposes of theft or sabotage. An equivalent situation arises with transitions

having a condition that evaluates to false. There is a discussion on how to handle

illegal messages at a coding level.

© Graham G. Thomason 2003-2004 21

[Bogdanov] Kirill Bogdanov and Mike Holcombe (Univ. of Sheffield)

 Statechart testing method for aircraft control systems

 Software Testing, Verification and Reliability, 2001; 11:39-54

The authors take a statechart model of an aircraft control system with commands

climb, descent, flaps_down, flaps_up, terminate, level. The approach requires a

deterministic specification and implementation. Unlike the STATECRUNCHER case,

events can be combined and negated in labelling a transition: command ^ ¬ terminate.

The approach is a black-box one, because states are distinguished using a

characterisation set, described here as a path which exists from one state but not

another.

[Booch] Grady Booch, James Rumbaugh, Ivar Jacobson

 The Unified Modelling Language User Guide

 Addison Wesley, 1999. ISBN 0-201-57168-4

A tutorial by the original developers of UML. Chapters 21 and 24 are on State

Machines and Statechart Diagrams.

[Brinksma] Ed Brinksma

 Testing Transition Systems: An Annotated Bibliography.

 University of Twente, The Netherlands, Formal Methods and

 Tools Group.

 http://fmt.cs.utwente.nl

This paper covers developments in formal testing theory and formal test generation.

Test generation products mentioned: TVEDA, TGV, TestComposer (SDL-based; all

have fed into OBJECTGEODE); VVT-RT (which uses CSP), SaMsTaG and AUTOLINK

(which derive tests from SDL).

[Bruns] Glenn Bruns

 Distributed Systems Analysis with CCS

 Prentice Hall 1997, ISBN 0-13-398389-7

A book that teaches CCS with many examples (arbiters, triple-modular redundancy

and others). Complementary to [Milner], which is the authoritative text.

[Budkowski] A. Budkowski, P. Dembinski, M. Diaz

ISO Standardized Description Technique Estelle

This is a tutorial on [Estelle], available from

http://www-lor.int-evry.fr/idemcop/uk/est-lang/download/short-estelle-tutorial.pdf

22 © Graham G. Thomason 2003-2004

[Büssow] Robert Büssow, Robert Geisler, Wolfgang Grieskamp, Marcus Klar

 The SZ Notation Version 1.0

The SZ notation is used in the [ESPRESS] project. It combines Z and Harel-style

statecharts. Process classes are: data space (variables), operational behaviour

(statechart structure and transitions), behavioural constraints (can be specified with a

temporal logic), structural embedding (aggregations of instances of classes).

[Chow 78] Tsun S. Chow

 Testing Software Design Modeled by Finite-State Machines

 IEEE Transactions on Software Engineering, Vol SE-4, No 3,

 May, 1978

An early paper on obtaining and measuring state coverage. Discusses the use of P, a

set of input sequences to take a machine to every source state of a transition and to

trigger that transition. P can be obtained from T, a testing tree, which is a recursive

exploration of the state space from everywhere not seen before. Discusses further W,

the characterization set, a set of input sequences capable of distinguishing the

behaviours of every pair of states in a minimal finite state machine.

[Component+] Built-in testing for Component-based Development

 EC IST 5th Framework Project IST-1999-20162 Component+

 http://www.component-plus.org

This project aims at making software component systems self-testable and run-time

using Built-In Testing (BIT) facilities. These facilities are structured as additional

interfaces to the components, a provides interface to test and a requires interface to

notify. A tester component might contain corresponding interfaces that are bound to

both of these interfaces. A small extra size overhead in the components is regarded as

acceptable, as in the case of VLSI chips. Both interface contract and quality of service

(QoS) can be tested. QoS testing is continuous verification against e.g. deadlock, time

constraint violation, data corruption, user conformance, memory leaks or conflicts.

An example of contract testing is actually state transition testing, in this case, of a

stack (sections 3.3.1.1 - 3.3.1.2 of the Deliverable D3 document).

[Dahbura] Anton T. Dahbura, Krishnan K. Sabhani, and M. Ümit Uyar

Formal Methods for Generating Protocol Conformance Test

Sequences

 Proceedings of the IEEE, Vol. 78, No. 8, August, 1990

The context is FSMs. This paper gives an overview of the four main methods of

generating test sequences for such deterministic FSMs: (1) the transition tour (the T

method), (2) distinguishing sequences (the D method), (3) characterizing sequences

(the W-method) and (4) unique I/O sequences (the U method). These are illustrated

by worked examples.

© Graham G. Thomason 2003-2004 23

[de Vries] René de Vries and Jan Tretmans

 On-the-fly Conformance Testing Using SPIN

 Formal Methods & Tools Group, University of Twente,

 The Netherlands

A Côte de Resyste report (see[TorX], [Tretmans]), and so labelled transition system

based. [SPIN] is used with PROMELA specifications, allowing for large state spaces.

Nondeterminism is handled in an on-the-fly algorithm (section 3). Quiescence (no

output) is also accepted if it is valid.

[Du Bousquet] Lydie Du Bousquet, Solofo Ramangalahy, Séverine Simon, César Viho

 Formal Test Automation: The Conference Protocol with TGV/TorX

 Available on the web at the [TorX] site.

This paper describes the first experiment with [TGV] and [TorX] in combination. The

system tested was a multicast protocol implementation (a kind of chatbox), specified

in LOTOS. Manually generated and random testing were compared. An on-the-fly

technique was used. Of 25 mutant systems (i.e. with seeded errors), manual testing

found all but one. Random testing found all mutants.

[Dupuy] Arnaud Dupuy and Nancy Leveson

An Empirical Evaluation of the MC/DC Coverage Criterion on the

Hete-2 Satellite Software

DASC (Digital Aviation Systems Conference), October 2000

This paper argues for the testing effectiveness of obtaining the boolean expression

coverage criterion known as MC/DC (Modified Condition / Decision Coverage), as

defined in the USA Department of Defense standard DO178B. In this standard, test

cases are generated such that each term in the expression is shown to be capable of

independently affecting the value of the whole expression. For an application in state-

based testing, see [Offutt].

[Eilenberg] Samuel Eilenberg

 Automata, Languages, and Machines

 Academic Press, New York, 1974

Chapter X Machines is the seminal publication on X-Machines. These are state

machines that operate on data of type X as they transition.

24 © Graham G. Thomason 2003-2004

[Emerson] E.A. Emerson and J.Y. Halpern

 “Sometimes” and “Not Never” revisited:

 On branching versus linear time temporal logic.

 Journal of the ACM, Vol. 33, Nr. 1, pp. 151-178, 1986.

Describes the CTL* language, representing a model checking logic, (used in the

[SMV] tool). The underlying concepts of linear time and branching time had already

been described in a paper by L. Lamport, cited (“Sometime” is sometimes “not

never”,—On the temporal logic of programs, in Proceedings of the 7th Annual ACM

Symposium on Principles of Programming Languages, Las Vegas, Nev., Jan 28-30.

ACM. New York, 1980, pp.174-185). Lamport's concepts are extended and critiqued,

resulting in a unified approach, embodied in the language CTL*.

[Farchi] E. Farchi, A. Hartman and S.S. Pinter

 Using a model-based test generator to test for standard conformance

 IBM Systems Journal, Vol. 41, Nr. 1, 2002.

This article describes state-based testing of a stack, a file system and a Java exception

handler, and how the state explosion problem was avoided by using projection state

and projection transition coverage as a means of specifying test criteria.

[Fuhrmann] Kay Fuhrmann, Jan Hiemer

 Formal Verification of STATEMATE Statecharts

An [ESPRESS] publication. A technique is given whereby STATEMATE statecharts

are translated into CSP for verification with the [FDR] model checking tool. The hard

part appears to be the translation of STATEMATE's step semantics.

[Fujiwara 91] Susumu Fujiwara, Gregor v. Bochmann

 Test Selection Based on Finite State Models

 IEEE Transactions on Software Engineering, Vol. 17, No 6, June 1991

The context is principally deterministic FSMs. The paper presents an optimization to

the W method (see [Chow]), called the partial W method. The optimization is based

on using an identification set to identify a state, rather than the characterization set.

The identification set is a state-dependent subset of the characterization set. (If an

identification set consists of a single sequence, it is equivalent to a UIO approach).

Good worked examples are given. There is a discussion of the following testing

issues: (A) implementations having more states than the specification, (B) issues

arising from incomplete specifications, (C) synchronization of distributed systems,

(D) specifications including data flow, (E) nondeterministic implementations and/or

specifications, and (F) OSI protocol conformance testing.

© Graham G. Thomason 2003-2004 25

[Fujiwara 92] Susumu Fujiwara, Gregor v. Bochmann

 Testing non-deterministic state machines with fault coverage

 Protocol Test Systems IV, J Kroon et al. (editors)

 Elsevier Science Publishers B.V. (North-Holland), 1992

The paper presents a test selection method for testing nondeterministic systems. The

approach is the labelled transition system one, not the finite state machine one. A

successful test run proceeds through all actions specified without deadlocking.

[Gurevich] Yuri Gurevich

 Sequential Abstract State Machines Capture Sequential Algorithms

 Microsoft Research report MSR-TR-99-65

 Also published as: ACM Transactions on Computational Logic,

 vol. 1, no. 1, July 2000, 77-111

Sequential algorithms are related to Abstract State Machines by a correspondence

between variable values and abstract state, though these states can be interpreted as

structures of mathematical logic, and as memory. States are transformed in

computation steps, which are related to transitions. Nondeterminism is seen as the

environment making a choice. “Nondeterministic algorithms are special interactive

programs (section 9).” [ASML] is a tool embodying the notions of Abstract State

Machines. As with ASML, the nature of Abstract State Machines as described has an

imperative rather than reactive character, (reinforced by the examples of

Eratosthenes' sieve and Euclid's greatest common divisor algorithms).

[Harel 87] D. Harel, A. Pnueli, J.P. Schmidt, R. Sherman

 On the Formal Semantics of Statecharts

 Logic in Computer Science, 2nd Annual Conference, 1987, pp.54-64

This paper has effectively laid the foundations for modern approaches to state

modelling. It elaborates on the concept of ‘statecharts’ (as opposed to flat state

diagrams) which Harel had recently introduced [D.Harel, Statecharts: A Visual

Formalism for Complex Systems, Science of Computer Programming, 8, 1987].

Harel's statecharts have XOR (called OR in [Harel 96]) and AND components,

default states, history, and broadcast events. The paper discusses the semantics of

statecharts using the concept of micro-steps, discussing such difficulties as the value

of shared variables that can, in principle, be assigned simultaneously possibly

conflicting values. Nondeterministic situations are recognized, and some constructs

are introduced to resolve them to a deterministic course of action. The concepts of

this paper led to the commercial product STATEMATE.

The paper underlies [CHSM] and so indirectly also STATECRUNCHER.

26 © Graham G. Thomason 2003-2004

[Harel 96] David Harel and Amnon Naamad

 The STATEMATE Semantics of Statecharts

 ACM Transactions on Software Engineering and Methodology 5:4,

 October 1996

This paper gives the semantics that the I-Logix products [STATEMATE] MAGNUM and

[RHAPSODY] employ. The products can be used for testing and for code synthesis. A

notable feature is prioritized transitions. Nondeterminism is handled as follows.

- Conflicting transitions [pp.16-17] (STATECRUNCHER's fork nondeterminism)

result in the generation of sets of steps (transitions and static reactions, the latter

being equivalent to additional transitions). The selection can be carried out

interactively by the user, or by specifying a selection criterion at the start. The

dynamic tests tool will try out all the different possibilities in an exhaustive

fashion. The code synthesized by the software code generator will select the first

possibility it finds that is enabled and will proceed to execute it.

- Racing conditions [pp. 24-25]. Where there are multiple orderings (such as Fig.

25, where t2 and t3 race), the paper states that STATEMATE reports a racing

condition.

[Heimdahl 96] Nats P.E. Heimdahl and Nancy G. Leveson

 Completeness and Consistency in Hierarchical State-Based

 Requirements

 IEEE Transactions on Software Engineering, Vol 22, No 6, June 1996

The paper addresses completeness and consistency in a statechart. Statecharts are

modelled as functions. The language used is [RSML], which is Mealy-machine based

(actions on transitions). Robustness is defined by [p.363]: (1) every state must have a

behaviour (transition) defined for every input; (2) the logical OR of the conditions on

every transition out of any state must form a tautology; (3) every state must have a

timeout. This is called d-completeness. The transition relation is made to behave as a

function. In this way determinism is imposed in d-completeness. Completeness

checking is maintained in composition of state machines.

[Hennie] F.C. Hennie

 Fault Detecting for Sequential Circuits

Proceedings of the 5th Annual Symposium on Switching Theory and

Logical Design, 1964, pp. 95-110.

The approach is Mealy FSMs, though in the guise of circuits that take inputs of 0 or 1

and produce outputs of 0 or 1. It is an early paper introducing and synthesizing

distinguishing sequences as a means of state checking.

© Graham G. Thomason 2003-2004 27

[Hierons 98] Rob M. Hierons

 Adaptive testing of a deterministic implementation against a

 nondeterministic finite state machine

 The Computer Journal, 41, 5 pp 349-355

 Available from the author's home page: www.brunel.ac.uk/~csstrmh

This paper shows how an implementation that is known to be a deterministic state

machine can be tested against a nondeterministic model of it. The paper introduces d-

distinguishing sequences, that distinguish two states in an NFSM provided the

implementation is deterministic (although it is not known how). On-the-fly tests learn

from the observed behaviour and so adapt the test generation accordingly.

STATECRUNCHER, in conjunction with other programs communicating with it, could

be of assistance in implementations of algorithms like this, perhaps by exploring a

nondeterministic UML model and helping find d-distinguishing sequences.

[Hierons 03] Rob M. Hierons

Generating Candidates when testing a deterministic implementation

against a Non-deterministic Finite State Machine

The Computer Journal, 46, 3, pp. 307-318

The paper addresses the problem of testing an implementation that is known to be

deterministic against a nondeterministic specification. A candidate is a deterministic

FSM that is generated from the nondeterministic specification and the

implementation. It has the property that if the implementation conforms to the

candidate, the implementation conforms to the specification. Tests can then be

derived from the candidate, using test generation algorithms for deterministic FSMs.

[Hoare] C.A.R. Hoare

 Communicating Sequential Processes,

 Prentice Hall International Series in Computer Science, 1985.

 ISBN 0-13-153271-5 (0-13-153289-8 Paperback)

This book describes CSP, (Communicating Sequential Processes): a process algebra

(or calculus) for specifying state behaviour in terms of processes and events. There

are various operators for parallel composition of processes. Ordinary engagement of

two or more processes is based on sharing of events in their ‘alphabet’. There are

operators (n, o) for nondeterministic compositions. Algebraic laws enable rewriting,

simplification and comparison of process expressions.

http://www.prenhall.co.uk/
/phiscs/
/cgi/archive/isbn?0-13-153271-5
/cgi/archive/isbn?0-13-153289-8

28 © Graham G. Thomason 2003-2004

[Hong 95] Hyoung Seok Hong, Jeong Hyun Kim, Sung Deok Cha and

 Yong Rae Kwon (Dept. Computer Science, Korea Advanced Inst. of

 Science & Technology)

 Static Semantics and Priority Schemes for Statecharts

 Proceedings of COMPSAC '95, IEEE Computer Society Press.

This paper defines static semantics of statecharts and identifies types of

nondeterminism. The semantics allow for conjunctions two or more simultaneous

events and their negations, e.g. , (unlike STATECRUNCHER). Nondeterminism

in a statechart is identified as:

 external nondeterminism, where with two simultaneous events the system can

have differing resultant states.

 internal nondeterminism, where there are different resulting states after

processing one event.

The paper also discusses invalid transitions, with formal properties for valid

transitions, and the use of priority when there are simultaneous events.

[Jagadeesan] L.J. Jagadeesan, A. Porter, C. Puchol, J.C. Ramming, L.G. Votta

 Specification-Based Testing of Reactive Software:

 Tools and Experiments. Experience report,

 Proc. of the International Conference on Software Engineering,

 May 1997

This paper describes an unusual combination of model checking and implementation

testing. A temporal logic specification is made of the system, defining safety

properties. From this, finite state machines (FSMs) that accept input-output traces that

violate the safety properties are automatically generated. From the FSMs, test inputs

are generated, and the IUT is checked for whether the safety properties are violated

by these inputs, and if so, an alert is given. The specification may be

nondeterministic, but this is not elaborated on. Examples given: an elevator system

and a telephone switching system.

[Kloosterman] Hans Kloosterman

 Test derivation from non-deterministic finite state machines

 Protocol Test Systems, V (C-11), G. v. Bochman et al. (editors),

 Elsevier Science Publishers B.V. (North-Holland), 1993.

This paper describes “algorithms for the generation of test sequences from

non-deterministic finite state machines (NFSMs). The test sequences are

synchronizing sequences (SS), transferring sequences (TS) and unique input/output

(UIO) sequences.” An SS may not exist, but in practice for protocols they usually do.

Compared to a (strongly connected) deterministic situation, the following issues arise:

A TS does not always exist because it may not always be possible to transfer

deterministically to this state. The UIO has to check a set of states, not just one

© Graham G. Thomason 2003-2004 29

expected state. The SS and TS can be regarded executing the test and the UIO as

getting extra output to verify the result.

[Kwan] Kwan Mei-Ko

 Graphic programming Using Odd or Even Points

 Chinese Mathematics 1962, Vol. 1, pp. 273-277.

The paper shows how to generate a postman's route, i.e. a transition tour. The Chinese

postman problem is so named in honour of the author.

[Lee 96] David Lee and Mihalis Yannakakis

 Principles and Methods of Testing Finite State Machines

 Proceedings of the IEEE, Vol. 84, No 8, August, 1996

This paper gives a good overview of testing based on Mealy machines (actions on

transitions, not on state exit/entry). The paper states explicitly that it does not cover

validation and verification (model checking), which are distinct from testing. Key

concepts: distinguishing sequence of events to identify states; unique input/output

(UIO) sequence of events to verify some particular state; checking sequence to test

for conformance of a black box to it specification. The paper also describes

characterization sets (see [Chow]) which distinguish pairs of states, and transition

tours (see the Philips report [Raptis 98]). Nondeterminism is mentioned, but the main

exposition focuses on deterministic machines.

[Leveson] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, J.D. Reese

 Requirements Specification for Process Control Systems

 IEEE Transactions on Software Engineering, vol. 20, no. 9, Sept 1994

The paper describes how the need for a specification language for safety-critical

systems led to [RSML], and describes RMSL semantics. RSML is based on Harel's

statechart notation, with some omissions where the complexity did not warrant them,

and some extensions to allow for the requirements needing to be expressed. The

application considered is an aircraft collision avoidance system. A simulator for

RSML was built by Heimdahl.

[Li] J Jenny Li, Hong Liu, Rudolph E. Seviora

Constructing Automated Protocol Testing Oracles to Accommodate

Specification Nondeterminism

Sixth International Conference on Computer Communications and

Networks (ICCCN '97), September 22 - 25, 1997, Las Vegas, NV

The paper describes an SDL-based implementation of a nondeterministic test oracle.

For local nondeterminism (like a STATECRUNCHER a fork), a construct ALL that

supports AND-states is introduced, a counterpart to ANY in the specification. (AND-

states are alternative nondeterministic states, not Harel's parallel states of the same

30 © Graham G. Thomason 2003-2004

designation). For global nondeterminism (like a STATECRUNCHER race), permutations

of signal arrival orders are needed, apparently also handled by the AND-states. The

method was trialled with a small protocol serving 60 nodes. Test generation was

random testing. The maximum number of ‘concurrent’ states generated was 1442.

[Lüttgen 00] Gerald Lüttgen, Michael. von der Beeck and Rance Cleaveland

 A Compositional Approach to Statecharts Semantics

 Presented at FSE (Foundations of Software Engineering) 2000,

 San Diego

 http://www.cs.virginia.edu/fse8/

 Available from Cleaveland

 http://www.cs.sunysb.edu/~rance/publications/./2000.html

The paper discusses the semantics of a statecharts composed of smaller statecharts.

The approach is one of micro-step semantics as in [Harel], on the ticking of a global

clock, from which the macro-composition is recovered, (rather than the sequenced

approach of UML). It also has the concept of more than one conjoined event, or

absence of an event, (e.g. ab), on a transition.

[Milner] Robin Milner

 Communication and Concurrency

 Prentice Hall, 1989. ISBN 0-13-114948-9

This book describes CCS: the Calculus of Communicating Systems, a process algebra

(or calculus), for specifying state behaviour in terms of processes and events.

Ordinary engagement of two processes (no more than that) is based an event and its

complement being possible, giving rise to a possible internal transition τ, (so

introducing potential nondeterminism). The ordinary summation operator, (+),

specifies alternative behaviours, which may include nondeterministic choices on the

same event. Algebraic laws enable rewriting, simplification and comparison of

process expressions.

 [Murata] Tadao Murata

 Petri Nets: Properties, Analysis and Applications

 Proceedings of the IEEE, Vol 77, No 4, April, 1989

The paper gives a comprehensive survey of what the title proposes, with 315

references. Petri nets can be used to model deterministic and nondeterministic finite

state machines [p.544]. Property checking (of Petri nets themselves rather than state

machines) is discussed (e.g. liveness and safety) [p.550, p.555]. Many applications

apart from state-machine related ones are discussed. Higher level nets, including

coloured Petri nets (for which an implementation now exists, see [Design/CPN]), are

described.

© Graham G. Thomason 2003-2004 31

[Myers 79] G.J. Myers

 The Art of Software Testing

 John Wiley & Sons, 1979. ISBN 0-471-04328-1

This is an early, but still popular, book on standard software testing techniques. It is

strong on cause-effect graphing (in Chapter 4), a major complementary testing

technique to state-based testing. A future research area will probably be to combine

cause effect graphing and state based modelling, perhaps in connection with

parameterized events.

[Offutt] Jeff Offutt

 Generating tests from UML specifications

 George Mason University, Fairfax VA 22030, USA

 http://isse.gmu.edu/faculty/ofut/rsrch/papers/uml99.pdf

This paper describes a tool called UMLTEST, which takes Rational Rose UML

specifications of state machines, requiring that they be deterministic, and generates

test cases at full predicate and transition pair coverage level. By full predicate, the

author means that the guard (or enabling) condition on the transition is exercised

according to a boolean expression coverage criterion known as MC/DC (Modified

Condition / Decision Coverage), as defined in the USA Department of Defense

standard DO178B. In this standard, test cases are generated such that each term in the

expression is shown to be capable of independently affecting the value of the whole

expression. The tool was empirically evaluated against a cruise control system with

seeded faults, all of which were found, which was better than with just transition pair

or statement coverage testing.

[Ostroff 89] Jonathan S. Ostroff

 Temporal Logic for Real-Time Systems

 John Wiley & Sons Inc, 1989. ISBN 0 08380 086 6

The book describes ESMs (Extended State Machines), which, unlike statecharts,

contain communication channels over which events are executed, Manna-Pnueli

temporal logic, RTTL (Real Time Temporal Logic), and a proof system associated

with this, PS-RTTL. The perspective is property checking, not testing.

[Petrenko] Alexandre Petrenko, Nina Yevtushenko, Alexandre Lebedev,

 Anindya Das

 Nondeterministic State Machines in Protocol Conformance Testing

 Protocol Test Systems VI (C-19), pp. 363-378, 1994

This paper describes test suite generation for NFSMs, introducing the concept of r-

distinguishing sequences to distinguish states in an observable NFSM.

32 © Graham G. Thomason 2003-2004

[Phadke] Madhav S. Phadke

 Planning efficient software tests

 http://www.stsc.hill.af.mil/crosstalk/1997/10/planning.asp

This is a popular article explaining orthogonal arrays. Suppose a routine needs

testing with 4 parameters, (A,B,C, and D), each of which can take 3 values (1,2, and

3). Exhaustive testing would require running 3
4
=81 tests. But suppose we find it

adequate that all pairwise parameter value combinations are taken. A table can be

found satisfying this with 9 entries of values of the 4 parameters as follows:

ABCD

1111

1223

1332

2122

2231

2313

3133

3212

3321

For pairwise coverage we speak of orthogonal arrays of strength 2. If we had required

that all triples of parameters should be covered for all combinations of values, the

strength would be 3 and so on. See [Sloane] for libraries of orthogonal arrays; the

above array is equivalent to the one at

http://www.research.att.com/~njas/oadir/oa.9.4.3.2.txt. (There is opportunity to

combine orthogonal array techniques with state-based testing where there are

parameterized events).

[Robinson 00] Harry Robinson

 Intelligent Test Automation

 Software Testing and Quality Engineering, Sept/Oct 2000, pp. 24-32

This popular article makes the practical case for model-based testing using four

amusing cartoons.

[Robinson www] Harry Robinson

 Model Based Testing Home Page (maintained by)

 http://wwwgeocities.com/model_based_testing

This is a popular website with many articles on model-based testing.

[Sabnani] Krishnan Sabnani and Anton T. Dahbura

 A Protocol Test Generation Procedure

 Computer networks and ISDN Systems 15 (1988), pp. 285-297

The context is Mealy FSMs. The paper describes the UIO (unique I/O sequence)

method of checking states, so that the target state of all transitions can be checked.

© Graham G. Thomason 2003-2004 33

[Schlinghoff] Dr Holger Schlinghoff, Oliver Meyer, Thomas Hülsing

 Correctness Analysis of an Embedded Controller

 http://www.informatik.hu-berlin.de/~hs/Publikationen/

 pointing to

http://www.informatik.hu-

berlin.de/~hs/Publikationen/1999_DASIA_Schlingloff-Meyer-

Huelsing_Correctness-Analysis-of-an-Embedded-Controller.ps

This paper reports on the use of the [VVT-RT] tool to test a safety-critical

application: a thermal control unit of the X-ray satellite ABRIXAS. A target system is

tested against CSP specifications. All possible execution sequences (presumably of

inputs, i.e. events) were executed. The results were to find incomplete parts of

specifications and several bugs, including a hardware problem, where EEPROMs did

not meet their specification.

[Schneider] Steve Schneider

 Concurrent and Real-time Systems, The CSP Approach

 John Wiley & Sons Ltd, 2000, ISBN 0-471-62373-3

A book on CSP, good for learning CSP, that is complementary to [Hoare], which is

the authoritative text.

[Shen] Y.-N. Shen, F. Lombardi and A.T. Dahbura

 Protocol Conformance Testing Using Multiple UIO Sequences

 IEEE Transactions on Communications, Vol. 40, No. 8, August, 1992

In the context of deterministic Mealy FSMs, the paper presents results for test

sequences using a transition tour, validating the target state of each transition with a

UIO (Unique I/O sequence), built into the tour, with the refinement that the best UIO

is chosen (where there are several options), so as to produce an optimised tour.

[Simons] Anthony J.H. Simons

 On the Compositional Properties of UML Statechart Diagrams

 Rigorous Object-Oriented Methods, 2000

“This paper proposes a revised semantic interpretation of UML Statechart Diagrams

which ensures, under the specified design rules, that Statecharts may be constructed

to have true compositional properties.” The example of an automatic gearbox is

given, and the issue of concurrent events at different compositional levels is

discussed. We remark that in STATECRUNCHER, the issue of concurrent, interrupting

or conflicting events does not arise, as any triggered transition is processed to

completion as regards state occupancies, before any associated actions, which will

have been collected, are processed from a consistent and stable configuration.

34 © Graham G. Thomason 2003-2004

[Sloane] N.J.A. Sloane

A library of orthogonal arrays

 http://www.research.att.com/~njas/doc/OA.html

For a description of orthogonal arrays, see [Phadke].

[Stannett] Mike Stannett and A.J.H. Simons

Complete Behavioural testing of Object-Oriented Systems using CCS-

Augmented X-Machines

Test Report CS-02-04, Dept. of Computer Science, United Kingdom

The paper combines X-Machines and [CCS], generating a new behavioural

specification and modelling language, CCS-XM. A form of communicating X-

machine, communicating in the CCS sense, not in the shared memory sense, is

defined: a Process X-machine (PXM). The analysis of the way PXMs communicate is

analogous to STATECRUNCHERs composition mechanism. The paper has:

Figure 2. PXM assignmment to a static class variable by an object

The STATECRUNCHER analogue is:

Figure 3. STATECRUNCHER's composition paradigm making an assignment

Here, we have not made the ack_serv event unique to the specific caller as in the

paper (the this keyword). Since this server does not support recursion, the server

can only be serving one client at a time, so it is sufficient for ack_serv to be unique

to the server; it cannot then be confused with the acknowledgement from any other

server serving a different function. In [StCrFunMod], we propose a composition

mechanism for recursive state machines, where the returned acknowledgement need

not have a unique name at all, and targets its caller by means of scoping operators.

[Tao Xie] http://www.cs.washington.edu/homes/taoxie/testingresearchers.htm

A large list of testing researchers, with web links.

C1 C2 C3
ack_serv/... α /fire setvalue(100)

composition

client

S1 S2
setvalue(p)/t=p;fire ack_serv; server

ack_t/ .../setvalue(100,this)

setvalue(x,who)/t=p/ack[who];

object-machine

class-machine

© Graham G. Thomason 2003-2004 35

[Tretmans] Jan Tretmans

 Test Generation with Inputs, Outputs and Repetitive Quiescence

 Department of Computer Science, University of Twente

“...A test generation algorithm is given which is proved to produce a sound and

exhaustive test suite from a specification, i.e. a test suite that fully characterizes the

set of correct implementations”. This paper underlies the later [TorX] publications.

The approach is the labelled transition system one, not the finite state machine one.

Publications by Jan Tretmans are listed/summarised/downloadable as the case may be

at: http://fmt.cs.utwente.nl/publications/tretmans.pap.html

 [von der Beeck] Michael von der Beeck

 A Comparison of Statechart Variants

 Aachen University of Technology, Aachen, Germany

This paper uses a set of distinctive features to make a detailed comparison of 21

statechart variants. These are: [RSML] (Leveson), [Argos] (Maraninchi), and

statecharts indicated by developers/designers only (sometimes with collaborators):

Harel, Huizing, Pnueli, Hooman, Classen, Maggioli-Schettini, Day, Peron, Keston,

von der Beeck. All but one of these statecharts allows for the specification of

nondeterminism, but the only description of handling of nondeterminism given is to

resolve the potential nondeterminism to a deterministic choice.

If we attempt to characterise STATECRUNCHER by von der Beeck's criteria, we have

 (1) Perfect synchrony: Yes, there is no buffering of events, but when one event

fires another, output is generated in particular orderings of on-state-exit actions,

on-transition actions, on-state-entry actions etc.

 (2) Self-triggering: No. Two transitions triggered by α/fire β and β/fire α

will not spontaneously take place - they require a separate generation of an initial

α or β.

 (3) Negated trigger event: No. There is no concept of negated events, or

conjunction of events, such as αβ. Events can only be offered sequentially,

and triggered transitions are seen as a set of sequences representing interleaving.

 (4) Effect of a transition is contradictory to its cause: Not applicable, because

there is no concept of triggering from a negated event. A transition α /fire α

is not specifiable.

 (5) Inter-level transition: Yes. Source and (multiple) target states of a transition

can all be in at any level in the hierarchy (provided the transition is not illegal).

 (6) State reference: Yes. This is the in(...) function.

 (7) Compositional semantics, Self-termination: Yes, inasmuch as a client-server

paradigm exists for composition, mirroring formal software component

composition. The client and server can be tested independently, and the inter-

36 © Graham G. Thomason 2003-2004

component events can be hidden by attaching them to a PCO (point of control

and observation) that indicates that they are not external events in compositions.

Discussed in [StCrSemCom]. Self-termination is supported, but it is not needed

as an inter-level work-around.

 (8) Operational versus denotational semantics: Denotational, inasmuch as we

specify the exact transition algorithm in a computer-independent way, and an

abstract-model-independent way.

 (9) Instantaneous state: Yes. This is the knock-on effect in a chain of transitions,

and states are simultaneously entered and exited, regarding the whole chain of

execution as being atomic, and so conceptually instantaneous, to the user.

 (10) Durability of events: No, events are discrete, and have no duration.

 (11) Parallel execution of transitions: Yes, parallel execution of transitions is

supported, but with selectable interleavings. The article regards this feature as

being contradictory to (9), but we have explained and qualified our interpretation

of these points

 (12) Transition refinement: Not applicable, because we support instantaneous

states, giving the equivalence of transition sequences.

 (13) Multiply entered or exited instantaneous state: Yes. This is the cycling

issue, which we regard as advantageous (provided it is bounded), especially in

conjunction with nondeterminism, for reasons given in [StCrMain].

 (14) Infinite sequence of transition executions at an instant in time: Not

prohibited. A useless infinite loop could theoretically be detected, at the cost of

execution time resources (performance and memory). We leave it up to the user

not to program an infinite loop, as it were, as is the case in a language such as

‘C’.

 (15) Determinism: Nondeterminism is well-supported, this being

STATECRUNCHER's speciality.

 (16) Priorities for transition execution: UML-style specialization priority (i.e.

transitions on inner elements of the hierarchy) is currently implemented.

 (17) Pre-emptive versus non-pre-emptive interrupt: Not applicable, as it

involves simultaneous events, whereas in STATECRUNCHER all user events are

offered sequentially.

 (18) Distinguishing internal from external events: There is no formal

distinction, except that a different PCO (point of control and observation) can be

attached to each kind of event. Events that can be generated internally in an IUT

are modelled by having them generated as fired events on the preceding transition

in the STATECRUNCHER model, using nondeterministic constructs if the internal

events only may occur.

 (19) Time specification, timeout, timed transition: No time support. Time

handling is regarded as a test generator or test driver/harness affair (e.g. when we

wish to wait for the SUT to perhaps execute an internal event). STATECRUNCHER

© Graham G. Thomason 2003-2004 37

can indicate that this is the situation by providing an event called e.g. wait,

which has this special meaning.

 (Feature items - semantics, when not covered by the above)

 True concurrency: No.

 Discrete/continuous time: Discrete

 (Feature items - syntax)

 Graphical/Textual: Textual.

 Negated trigger event: No

 Timeout event: No

 Timed transition item: No

 Disjunction of trigger events: No

 Trigger condition: Yes

 State reference: Yes

 Assignment to a variable: Yes

 Inter-level transition: Yes

 History mechanism: Yes

Other statechart features that could be included in a comparison are (1-10 supported

by STATECRUNCHER): (1) multiple target states, (2) orbital transitions, (3) traces, (4)

nondeterministic worlds, (5) scoping operators, (6) points of control and observation,

(7) upon enter and upon exit actions, (8) entering and exiting of states as internally

generated events, (9) parameterised events, (10) a command language supporting: (i)

output of transitionable or all events, (ii) re-instatement of previous worlds (iii)

creation of new worlds, (iv) explicit killing of worlds, (v) implicit killing of worlds on

trace violations, etc. Some features not currently supported by STATECRUNCHER: (A)

lambda transitions (i.e. transitions on data values, not requiring events), (B) recursive

state machine implantation.

[Zhang] Fan Zhang and To-yat Cheung

Optimal Transfer Trees and Distinguishing Trees for Testing

Observable Nondeterministic Finite-State Machines

IEEE Transactions on Software Engineering, Vol. 29, No. 1, Jan. 2003

The approach is the finite state machine one, not the labelled transition system one.

Testing a black box NFSM involves bringing it into a specific state, for which a

transfer tree (TT) is required, and then verifying that it is in the correct state by

further transitioning, using diagnosis/distinguishing trees (DTs). This paper

investigates for observable NFSMs (different outputs generated on forks from the

same event to different states) how, when weights (or probabilities) are assigned to

nondeterministic transitions, TTs can be constructed to have a minimal expected

value of weights over all paths, or to have minimal maximum of the weights. A

similar problem for a certain kind of DT is also addressed.

38 © Graham G. Thomason 2003-2004

5. Supporting projects / products /

information

[Beveridge] Jim Beveridge and Robert Wiener

 Multithreading Applications in Win32. The Complete Guide to

 Threads

 Addison-Wesley, 1996, ISBN 0-201-44234-5 (Paperback)

A very good book on threads in Windows 32 systems. An example of using

semaphores to protect against deadlock in the dining philosophers problem is given.

(This problem is also considered by [Hoare], [Schneider] and many other textbooks

on logic and parallelism).

[Boley] Harold Boley

 Relationships between Logic Programming and XML

 Proceedings of the 14th Workshop Logische Programmierung,

 Würzburg, Jan. 2000

The relevance of this paper is that it describes the nearest application of Prolog to a

compiler-related field that we find in recent conferences on applications of Prolog

(see [INAP 2001]), though for an early paper on the subject, see [Warren]. The paper

shows how XML documents might be represented as PROLOG clauses and vice-

versa, covering not just PROLOG facts but relationships with non-ground terms. The

application to XML query languages is discussed, where a response can be that

Prolog structures are nondeterministically enumerated.

[Bratko] Ivan Bratko

 PROLOG Programming for Artificial Intelligence

 Addison-Wesley, ISBN 0-201-41606-9

This book on PROLOG has an artificial intelligence slant. It is good on advanced tree

structures and searching.

[Callahan] John R. Callahan

 http://www.cs.wvu.edu/~callahan/interests.html

Callahan, and also the Nasa Goddard IV&V facility, (http://www.ivv.nasa.gov)

interpret verification and validation in the following contexts:

© Graham G. Thomason 2003-2004 39

 Verification: Are we building the product right?

 Validation: Are we building the right product?

These are useful interpretations, corresponding to testing and property checking, but

are by no means universally understood this way. Compare [IEEE 610.12.1990] and

[CMMI].

[Clocksin 84] W. F. Clocksin & C. S. Mellish

 Programming in Prolog

 Springer Verlag, 1981. ISBN 3-540-11046-1

This is a standard Prolog book, using Edinburgh syntax. It is very well structured, and

it clearly explains all constructs of the language with elementary examples.

[CMMI] CMMI-SE/SW, Version 0.2b, Sept 1999

Capability Maturity Model - Integrated Systems/Software

Engineering

CMMI website: http://www.sei.cmu.edu/cmmi/cmmi.html

We seek definitions of validation and verification, and find:

 Validation (v.2, p.109): The purpose of validation is to confirm that a product

fulfills its intended use when placed in its intended environment.

 Product Verification (v.2, p.106): The purpose of Product Verification is to

assure that work products meet the specified requirements

The distinction between property checking and implementation testing does not

appear to be made in these definitions. But see [Callahan] for a useful distinction.

[CYGWIN] www.cygwin.com

CYGWIN is a public-domain Linux-like environment for Windows. It consists of two

parts: (1) a DLL (cygwin1.dll) which acts as a Linux emulation layer providing

substantial Linux API functionality; (2) A collection of tools, which provide Linux

look and feel. CYGWIN provides a platform for the popular test harness [DejaGnu].

[Darnell] Peter A. Darnell and Philip E. Margolis

 C: A Software Engineering Approach

 Springer-Verlag 2
nd

 edition, 1988. ISBN 0-387-97389-3 / 3-540-97389-3

The ANSI C railroad syntax diagrams in this standard ‘C’ textbook give the basis of

the expression grammar of STATECRUNCHER. In STATECRUNCHER an extension was

used, and the left-recursive diagrams were transformed into a non-left recursive feed-

forward grammar for parsing as a PROLOG DCG (Definite Clause Grammar), as

described in [StCrGP4].

40 © Graham G. Thomason 2003-2004

[DejaGnu]

This is an example of a public domain test harness, originally developed for Unix,

using [TCL] (Tool Command Language) and [EXPECT]. It spawns a program (or

several) and works by sending lines of input to its standard input, and receives

standard output. It tests for a pattern match on the standard output or registers a

timeout. Pass or Fail is logged per test, typically according to the success or failure of

a pattern match. Philips has used it for state-based testing using state relation tables,

from which tests are generated using a program written in TCL, effectively sending

events and receiving the target states, matching against the tabular oracle. See

[Savoye] for the manual.

[EXPECT]

Expect is a very powerful scripting language, built on [TCL], capable of spawning

many processes and communicating with them independently via standard input and

standard output. It is the underlying layer of the test harness [DejaGnu]. It is also

useful for writing glue code in chains of testing tools, e.g. for converting one format

or protocol to another, and is used as such in the integration of STATECRUNCHER into

the [TorX] tool chain. The book on the language, written by its creator, is [Libes].

[IEEE 610.12.1990] IEEE Standards, Software Engineering

 Volume I, Customer and Terminology Standards, 1999 Edition

We seek definitions of validation and verification, and find:

 Validation (p.80): The process of evaluating a system or component during or at

the end of the development process to determine whether it satisfies specified

requirements.

 Verification (p.81): (1) The process of evaluating a system or component to

determine whether the products of a given development phase satisfy the

conditions imposed at the start of that phase. (2) Formal proof of program

correctness.

The distinction between property checking and implementation testing does not

appear to be made in these definitions. But see [Callahan] for a useful distinction.

[Libes] Don Libes

 Exploring Expect

 O'Reilley & Associates, 1995, ISBN 1-56592-090-2

The book by the creator of [EXPECT] describing [TCL] and EXPECT.

[INAP 2001] The 14
th

 International Conference of Applications of Prolog

 INAP 2001, held in Tokyo, 20-22 October, 2001.

http://www.ifcomputer.com/inap/inap2001/home_en.html

© Graham G. Thomason 2003-2004 41

We examine the programme of this conference (and some previous years) to see what

PROLOG is being used for, and whether it has been used as a compiler for what

might be called a domain specific language, whether in the testing domain or any

other. The session streams at this conference were:

 Supporting Organisational Learning: Knowledge Management and Case-based Reasoning

 Deductive Databases and Knowledge Management

 Web Applications for the Legal Domain

 Logic Programming for Natural Language Processing

 Practical Applications of Controlled Natural Languages

 Optimization and Simulation of Complex Industrial Systems. Extensions and

Applications of Constraint-Logic Programming

 Business Opportunities in Advanced Technologies

 Decision Support in Medicine and Health Care

 Rule-Based Data Mining

Invited talks were on Making decisions with incomplete information (Donald Nute)

and The Rule Markup Language: RDF-XML Data Model, XML Schema Hierarchy,

and XSL Transformations, (Harold Boley). The latter is perhaps as close to the

compiler domain as anything presented. For this subject area, see the related article

[Boley]. For an article on the use of PROLOG for compilation, see [Warren].

[Koala] R. van Ommering, F. van der Linden, J. Kramer, J. Magee

 The Koala Component model for Consumer Electronics Software

 IEEE Computer, March 2000, pp. 78-85.

Koala is a static-binding component model, used for Philips TV software. The initial

trialling of STATECRUNCHER is with Koala components and compositions of them.

[McCabe] http://www.mccabe.com/main.htm

The McCabe toolset provides for

- visualisation of code (C, C++ etc.), showing e.g. a module statement flow

structure and, on a larger scale, what calls what.

- instrumentation of code, so that when tests are run, the degree of statement of

branch coverage can be examined per module. The visualisation features show

which statements were executed and which not. This is useful to reveal the

effectiveness of (state-based) testing. See [Baker 95] for some Philips experience

in this area.

[O'Keefe] Richard O'Keefe

 The Craft of Prolog

 MIT Press. ISBN 0-262-15039-5

A good PROLOG book with a particularly good section on the PROLOG ‘cut’.

42 © Graham G. Thomason 2003-2004

[Ousterhout] TCL and the TCL Toolkit

 John K Ousterhout

 Addison Wesley, ISBN 0-201-63337-X

The above book is by the creator of [TCL] (Tool Command Language). TCL is a

powerful scripting language, underlying [EXPECT] and the [DejaGnu] test harness.

[Savoye] R. Savoye

 The DejaGnu Testing Framework

 The Free Software Foundation, 1993

This is a manual for the [DejaGnu] public domain test harness.

[Sterling] Leon Sterling & Ehud Shapiro

 The Art of Prolog

 MIT Press, 1986. ISBN 0-262-19338-8

A good PROLOG book with many detailed examples, and useful guidance on good

PROLOG programming style.

[SWI-Prolog] http://www.swi.psy.uva.nl/projects/SWI-Prolog/

A public domain PROLOG, used in addition to [WinProlog] for developing

STATECRUNCHER.

[Tau] www.telelogic.com

A commercial tool by Telelogic for [TTCN] testing, with support for e.g. TCP/IP,

RS-232 and “almost any target operating system”

[TCL] Tool Command Language

TCL is a powerful scripting language, underlying [EXPECT] and the [DejaGnu] test

harness. It is described in [Ousterhout] and [Libes].

[TTCN] The Tree and Tabular Combined Notation

 ISO (the International Organisation for Standardisation) /

 IEC (International Electrotechnical Commission) standard 9646-3

A format and methodology for describing conformance tests, designed especially in

connection with telecommunications standards and OSI protocols. Batch-generated

state-based tests can be represented in TTCN. The basic structure is a depth first tree

of alternatives (so supporting nondeterminism). A tutorial is available on the web by

Mazen Malek

 http://www.item.ntnu.no/~malek/research/TTCNcourse

© Graham G. Thomason 2003-2004 43

[Warren] David H.D. Warren

 Logic Programming and Compiler Writing

 Software Practice and Experience, Vol. 10, 97-125 (1980).

This paper showed the feasibility of using PROLOG as an implementation language

for compilers at an early date. The principle is illustrated for a ‘toy’ assembler, but

the most important techniques are covered, including expression parsing with two

operator precedences. The DCG (Definite Clause Grammar) technique is used, but

without the more compact notation (the -> operator, which hides systematically

repeated parameters) which was later introduced into the PROLOG language.

Computer memory and speed were restricting factors at the time; Warren considered

memory the greater limitation. For STATECRUNCHER, a few megabytes of memory

are needed, and speed is perhaps a limitation on PC machines below 300 MHz,

corresponding to pre-1998 manufacture.

[WinProlog] WinProlog, Logic Programming Associates Ltd

 http://www.lpa.co.uk

This is a version of PROLOG which was used for the development of

STATECRUNCHER, on a PC (in addition to SWI-Prolog).

[WinRun] WinRunner v4.0/v5.01, Mercury Interactive

 http://www.merc-int.com/products/winrunguide.html

A tool for Graphical-User-Interface-based testing of Window products. Philips has an

extension, informally known as Deja Gnu-Y-Trewl, [Trew 98], to support state-

relation tables. Another Philips tool that is useful in conjunction with WinRunner is

GFET [GFET], which gives a graphical user interface to software that otherwise does

not have one.

44 © Graham G. Thomason 2003-2004

6. STATECRUNCHER references

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

