
STATECRUNCHER-to-PRIMER Protocol

Graham G. Thomason

Report Relating to the Thesis “The Design

and Construction of a State Machine

System that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

Summary

Subject

STATECRUNCHER is a state transition language which, given a dynamic model of a system,

provides an oracle to state based tests. In TorX terminology, STATECRUNCHER is an

‘explorer’. The choice of tests to perform is delegated to a separate tool, a ‘primer’. This

report is concerned with the kinds of messages that will need to be passed between the

explorer and primer. A primer and STATECRUNCHER, communicating with an agreed

protocol, provide automatic generation of tests and their oracle.

© Graham G. Thomason 2003-2004 iii

Contents

1. Introduction .. 1

2. STATECRUNCHER and its main output ... 3

3. Primer command syntax ... 9

3.1 Startup and prompt ... 9

3.2 Inventory of commands .. 9

3.3 Additional output .. 14

3.4 Implementation consideration ... 15

3.5 Grammar for PROLOG list structures as used in STATECRUNCHER 15

4. What the primer might do ... 19

4.1 Primer requirements.. 19

4.2 Examples of algorithms as requirements .. 20

5. Module organisation ... 24

6. Conclusions .. 28

7. References .. 29

© Graham G. Thomason 2003-2004 1

1. Introduction

State-based testing has been applied on many occasions within Philips, e.g. [Baker 95],

[Yule 97], and has been very successful in finding defects in software.

Tools used have included State Relation Tables, used in the above examples, with Deja Gnu

[DejaGnu] as a test harness. The technique has also been applied under Windows [Trew 98].

One drawback to state-relation tables is that they are hard to read and maintain; a more

developer-friendly representation of state behaviour is needed.

Current work is aimed at having a developer- and test- friendly way of specifying state-

behaviour, and automating test generation and execution to the highest degree. To this end a

convenient state machine language has been developed (STATECRUNCHER) and the TorX tool

chain architecture has been adopted from the Côte de Résyste project [CdR].

A complete tool chain for automated state-based testing is as follows:

Figure 1. Tool chain for automated testing

This tool chain uses STATECRUNCHER as the oracle to the tests (the explorer).

STATECRUNCHER has the capability to process events (as opposed to transitions) and generate

a resultant state configuration and set of variable values. In the case of nondeterminism,

STATECRUNCHER will generate all possible outcomes (new state configurations / variable

values) in separate worlds.

For white-box testing, the state configuration and set of variable values obtained from the

STATECRUNCHER will be compared to the IUT values. For black-box testing, both

STATECRUNCHER and the IUT will (on at least some events) produce observable outputs

called traces, which again will be compared per test.

COMPONENT

SPEC

Textual

dynamic model

Executable

Tests

or

IUT with

On-The-Fly

Testing

STATE-

CRUNCHER

Parser and

Machine

Engine

(TorX

Explorer)

Various

tools

(TorX

Driver/

Adapter)

TEST CASE

GENERATOR

(TorX Primer)

2 © Graham G. Thomason 2003-2004

The subject of this report is the interface between STATECRUNCHER and the primer (test case

generator), which will support both white- and black-box testing. The following dialogue is

an informal example of a protocol between the STATECRUNCHER and the primer.

Primer: Go into your initial state and tell me your state and the events to which you can

respond.

STATECRUNCHER: Done. Here is my state (including variable values) <...>. I can

process events alpha and gamma (with parameters in the following ranges <...>

at the following points of control and observation <...>).

Primer: Process alpha and tell me your state and the events to which you can respond.

STATECRUNCHER: I now have 3 worlds (due to nondeterminism), which I will number

3,5,and 6.

 World 3 has the following state <...> and can process the following events <...>.

 World 5 has the following state <...> and can process the following events <...>.

 World 6 has the following state <...> and can process the following events <...>.

Primer: Process event delta in all worlds and tell me your state and the events to which

you can respond.

STATECRUNCHER: I now have the following worlds and can do the following <...>.

Primer: Go into the following states per world, with variable values indicated, <...> (it is

a block of output you gave me earlier) and process event epsilon.

STATECRUNCHER: I now have the following worlds in which I can do the following

<...>.

It is seen that the basic messages consist of:

 The Primer saying process this event.

 The Primer saying go into this state (including variable values), per world.

 STATECRUNCHER saying what it has done and what events it can respond to.

These messages will be examined in more detail in this report, and sketches of test generation

algorithms will be presented.

© Graham G. Thomason 2003-2004 3

2. STATECRUNCHER and its main

output

We have seen that STATECRUNCHER needs to be able to present what it has done, i.e. its

current state in the broadest sense. Now the current state consists of the following information

(which we will illustrate presently):

 The occupancy configuration, i.e. for every hierarchical state, whether that state is

occupied or vacant

 The historical state of clusters. This is recorded because there is an option when entering

a cluster to enter the historical member (if known) rather than the default member or a

specific member.

 Variable values.

 Trace data. Traces will be illustrated later.

In connection with future extensions, the following will also become part of the state in a

broad sense:

 Object code (not only the compiled statements as such, but also including the derived

symbol table and perhaps the cross-reference table
1
). Object code output will be needed if

some projected extensions to STATECRUNCHER are implemented, enabling dynamic

‘implantations’ of local states, events and variables etc
2
. recursively, so the structure of

the hierarchical states may not be fixed.

STATECRUNCHER has the concept of worlds to represent different nondeterministic outcomes.

All the above items will be output per world.

It should be noted that state and variable names also have a scope, and the local name need

not be unique. So a variable might be represented by v1 [bb,aa,sc] where the variable

name is v1 and it is in a scope defined by entering hierarchical members sc (the statechart

name) then aa (which must be a cluster or set) then bb (which must be a cluster, set or

leafstate).

1
 The cross-reference table is currently only used in validating to find unreferenced items, and is not

used by the run-time engine. However, if a forward-chaining module is added in the future, the cross-

reference might be used to efficiently provide access to relevant nodes that are consequent upon any

one item of data. Such nodes will reference that data on their right-hand-side.
2
 Also: tagnames (enum declarations), PCOs (points of control and observation), if these are declared in

an implantable machine.

4 © Graham G. Thomason 2003-2004

STATECRUNCHER will also supply what to it is derived data:

 The transitionable events, including how many parameters they take, what the range

of values of the parameters is, and at which PCO (point of control and observation)

the event can be supplied.

 Some summary information about what worlds are in existence.

STATECRUNCHER can also supply additional information such as

 all events (not just the transitionable ones)

 time and date

Section gives the 3.2 full repertoire of commands.

We next illustrate STATECRUNCHER's output using a demonstration model that exercises all

kinds of output.

Figure 2. Illustration of all kinds of STATECRUNCHER output [Model t5490]

statechart sc

a2

s

z

α {fire γ; trace(5,7);}

a1
p

γ

z1

z2

z3 δ

b

b1

b2

α {fire δ;

trace("xy");}

ε

β

β

a H

q

ζ(p1,p2,p3,p4,p5)

{v=p1; $v=p2; col1=p3;

 bool1=p4; str=p5;}

$ζ[w>3]{str=str+"a";}

β

θ1@pco1{w++;}

θ2@$pco1{w--;}

exit(::s.a.a2.p){w++;}

v=0, w=0, col1=blue, bool1=true, str1="a"

 α β γ δ ε ζ pco1

v=0,p1,p2,

p3,p4,p5

pco1

ζ

global PCO

local ζ; global & local v

local PCO

global ζ

 θ1 θ1

© Graham G. Thomason 2003-2004 5

Notes

 This model includes a race on event α between fired events γ and δ, with the winner

established by the order of processing fired events γ and δ in member z and by trace data

deposited in members a and b.

 The model illustrates scoped events ζ and $ζ

 The model illustrates scoped variables v and $v

 The model illustrates scoped PCOs pco1 and $pco1

 A nondefault cluster member (q) can be entered using event ε the first time and event α

from state a1 using history the second time.

 Internally generated events, in our example, exit(::a.a2.p) are not offered as user

suppliable.

In the output lists that follow, long lines have been re-formatted into two lines for the purpose

of this report. Such cases are clear because of the lack of a leading world number on the

continuation line.

The initial output for this model, from Release 1.03, after entering it, is as follows.

2 statechart sc

2 set s [sc] = OCC [] **

2 cluster a [s,sc] = OCC [] **

2 leafstate a1 [a,s,sc] = OCC [] **

2 cluster a2 [a,s,sc] = VAC []

2 leafstate p [a2,a,s,sc] = VAC []

2 leafstate q [a2,a,s,sc] = VAC []

2 cluster b [s,sc] = OCC [] **

2 leafstate b1 [b,s,sc] = OCC [] **

2 leafstate b2 [b,s,sc] = VAC []

2 cluster z [s,sc] = OCC [] **

2 leafstate z1 [z,s,sc] = OCC [] **

2 leafstate z2 [z,s,sc] = VAC []

2 leafstate z3 [z,s,sc] = VAC []

2 VAR INTEGER bool1 [sc] =1

2 VAR INTEGER col1 [sc] =8

2 VAR INTEGER p1 [b2,b,s,sc] =unknown

2 VAR INTEGER p2 [b2,b,s,sc] =unknown

2 VAR INTEGER p3 [b2,b,s,sc] =unknown

2 VAR INTEGER p4 [b2,b,s,sc] =unknown

2 VAR STRING p5 [b2,b,s,sc] =unknown

2 VAR STRING str [sc] =[98] =b

2 VAR INTEGER v [b2,b,s,sc] =0

2 VAR INTEGER v [sc] =0

2 VAR INTEGER w [sc] =0

2 TRACE =[]

2 TREV [[alpha,[sc]],0,[],[]]

2 TREV [[gamma,[sc]],0,[],[]]

2 TREV [[delta,[sc]],0,[],[]]

2 TREV [[beta,[sc]],0,[],[]]

outworlds=[2]

number of outworlds=1

This output is as produced by WinProlog. SWI Prolog adds a space after a comma in a list.

6 © Graham G. Thomason 2003-2004

This output shows an active world, in this case world 2, which is the initial world after having

been entered (driven into its initial state). The output shows:

 States and their occupancies. The line
2 cluster a [s,sc] = OCC [] **

shows that cluster a in scope [s,sc] is occupied. This is shown both by the OCC

indication and the double asterisk. The line also shows that no history ([]) has been

recorded for this cluster yet (as it has not yet been exited).

 Variable data. The line
2 VAR INTEGER v [b2,b,s,sc] =0

shows that there is a variable v of some integral type in scope [b2,b,s,sc] has a

value of 0. Details of its allowable range are not given here, but are available by means of

a separate command. Note amongst the other variables a string (str) with its value as a

list of ASCII values (here just [98], the code for "b").

 Traces. The line
2 TRACE =[]

is used to reproduce any trace information traced in a trace(...) call (which is

allowable in any action). Here there is none, so we see the empty list [].

 Transitionable events. The line
2 TREV [[alpha,[sc]],0,[],[]]

indicates that an event alpha can be processed, and that no parameters can be supplied,

so the parameter range element is empty ([]). The final [] indicates that no specific

PCO (point of control and observation) is associated with this event. The current version

of STATECRUNCHER does not attempt to predict what any transition conditions will

evaluate to, and lists all transitions on user-suppliable events from the current

configuration.

We now process event alpha and examine the output:

7 statechart sc

7 set s [sc] = OCC [] **

7 cluster a [s,sc] = OCC [] **

7 leafstate a1 [a,s,sc] = VAC []

7 cluster a2 [a,s,sc] = OCC [] **

7 leafstate p [a2,a,s,sc] = OCC [] **

7 leafstate q [a2,a,s,sc] = VAC []

7 cluster b [s,sc] = OCC [] **

7 leafstate b1 [b,s,sc] = VAC []

7 leafstate b2 [b,s,sc] = OCC [] **

7 cluster z [s,sc] = OCC [] **

7 leafstate z1 [z,s,sc] = VAC []

7 leafstate z2 [z,s,sc] = OCC [] **

7 leafstate z3 [z,s,sc] = VAC []

7 VAR INTEGER bool1 [sc] =1

7 VAR INTEGER col1 [sc] =8

7 VAR INTEGER p1 [b2,b,s,sc] =unknown

7 VAR INTEGER p2 [b2,b,s,sc] =unknown

7 VAR INTEGER p3 [b2,b,s,sc] =unknown

7 VAR INTEGER p4 [b2,b,s,sc] =unknown

7 VAR STRING p5 [b2,b,s,sc] =unknown

7 VAR STRING str [sc] =[98] =b

© Graham G. Thomason 2003-2004 7

7 VAR INTEGER v [b2,b,s,sc] =0

7 VAR INTEGER v [sc] =0

7 VAR INTEGER w [sc] =0

7 TRACE =[xy,7,5]

7 TREV [[epsilon,[sc]],0,[],[]]

7 TREV [[beta,[sc]],0,[],[]]

7 TREV [[zeta,[b2,b,s,sc]],5,[[r,0,9],[r,0,9],[e,0,7,8,4,8],[r,0,1],

[<string>]],[]]

7 TREV [[zeta,[sc]],0,[],[]]

12 statechart sc

12 set s [sc] = OCC [] **

12 cluster a [s,sc] = OCC [] **

12 leafstate a1 [a,s,sc] = VAC []

12 cluster a2 [a,s,sc] = OCC [] **

12 leafstate p [a2,a,s,sc] = OCC [] **

12 leafstate q [a2,a,s,sc] = VAC []

12 cluster b [s,sc] = OCC [] **

12 leafstate b1 [b,s,sc] = VAC []

12 leafstate b2 [b,s,sc] = OCC [] **

12 cluster z [s,sc] = OCC [] **

12 leafstate z1 [z,s,sc] = VAC []

12 leafstate z2 [z,s,sc] = VAC []

12 leafstate z3 [z,s,sc] = OCC [] **

12 VAR INTEGER bool1 [sc] =1

12 VAR INTEGER col1 [sc] =8

12 VAR INTEGER p1 [b2,b,s,sc] =unknown

12 VAR INTEGER p2 [b2,b,s,sc] =unknown

12 VAR INTEGER p3 [b2,b,s,sc] =unknown

12 VAR INTEGER p4 [b2,b,s,sc] =unknown

12 VAR STRING p5 [b2,b,s,sc] =unknown

12 VAR STRING str [sc] =[98] =b

12 VAR INTEGER v [b2,b,s,sc] =0

12 VAR INTEGER v [sc] =0

12 VAR INTEGER w [sc] =0

12 TRACE =[7,5,xy]

12 TREV [[epsilon,[sc]],0,[],[]]

12 TREV [[beta,[sc]],0,[],[]]

12 TREV [[zeta,[b2,b,s,sc]],5,[[r,0,9],[r,0,9],[e,0,7,8,4,8],[r,0,1],

[<string>]],[]]

12 TREV [[zeta,[sc]],0,[],[]]

12 TREV [[theta1,[z3,z,s,sc]],0,[],[pco1,[z3,z,s,sc]]]

12 TREV [[theta2,[z3,z,s,sc]],0,[],[pco1,[sc]]]

outworlds=[7,12]

number of outworlds=2

The race between the two transitions on event alpha has two outcomes depending on the

‘winner’. STATECRUNCHER takes both orderings, and so produces two worlds.

We remark on certain output lines:

 The line
7 TRACE =[xy,7,5]

shows trace information [xy,7,5] deposited, to be read from right to left. The order

corresponds to the fact that in this world, the transition on event alpha from state a1

(depositing trace integer values 5 and 7) preceded the transition from state b1 (depositing

trace string "xy").

8 © Graham G. Thomason 2003-2004

 The following lines relate to transitions from state b2:
7 TREV [[zeta,[b2,b,s,sc]],5,[[r,0,9],[r,0,9],[e,0,7,8,4,8],

[r,0,1],[<string>]],[]]

7 TREV [[zeta,[sc]],0,[],[]]

They show two events, both called zeta, but in different scopes – a local one and a

global one. Note that scopes are read from right to left (if interpreted from outermost in

the hierarchy of states to the innermost). Note that [zeta,[b2,b,s,sc]] takes five

parameters. Ranges are given by [r,LOWVALUE,HIGHVALUE]. Enumerations are

given by [e,VALUE,VALUE,VALUE...]. Booleans are given as a range, [r,0,1].

Strings are represented by [<string>].

 Note that world 7 is in state z2, but it does not list the event exit(::s.a.a2.p) as a

transitionable event, since it is not user-suppliable.

 The following lines show events that are attached to PCOs (points of control and

observation). The two PCOs have the same name, but are different, because they have

different scopes.
12 TREV [[theta1,[z3,z,s,sc]],0,[],[pco1,[z3,z,s,sc]]]

12 TREV [[theta2,[z3,z,s,sc]],0,[],[pco1,[sc]]]

 If we now process events epsilon and beta, we will be able to illustrate a historical

state.
19 cluster a2 [a,s,sc] = VAC q

The state q is the historical state of cluster a2. It is entered on processing alpha again.
72 leafstate q [a2,a,s,sc] = OCC [] **

Additional commands will cause additional information to be provided. There are also

commands for offering an event for processing and for other functions. These are shown in

section 3.

The data that STATECRUNCHER could supply if need be is not limited to the above examples.

As already mentioned, it could as a future option supply dynamic ‘object code’ and related

items if necessary.

© Graham G. Thomason 2003-2004 9

3. Primer command syntax

3.1 Startup and prompt

Startup of the executable version of STATECRUNCHER

On starting up the executable version of STATECRUNCHER, and also after all commands have

been processed, the prompt is

SC:

Under WinProlog, an addition is made to this prompt, and the effective prompt is

SC:|:

All commands must be on one line.

Startup of the development version of STATECRUNCHER

Under the development version of STATECRUNCHER, the goal

 statecruncher.

or just

 cruncher.

will cause the same startup prompt to be given in the same read-process loop. These

predicates are informal ones (in the aux_load_sc.pl file) calling the formal predicate

 cs_read_process. /* The STATECRUNCHER-PRIMER loop */

in file cs_sc_1.pl.

3.2 Inventory of commands

The table below shows abbreviated commands as well as unabbreviated ones. Where

abbreviated ones are not available, the arrow (→) refers the reader to the unabbreviated one.

Meta-syntax: An optional argument to a command is preceded by a question mark, (?).

Normal courier indicates a literal item; italics indicate a non-literal or explanation. A

choice is indicated by a vertical bar (|).

10 © Graham G. Thomason 2003-2004

The important commands that were not possible in previous releases of STATECRUNCHER are

those that allow setting of state occupancies and variables and traces. These make a state-

space exploration algorithm possible. These are

 WORLD STATEKIND STATENAME MPATH = OCCUPANCY HISTORY

 WORLD VAR VARKIND VARIABLENAME MPATH = VALUE

 WORLD TRACE = TRACE

These commands are in STATECRUNCHER's own output format.

Abbrev.

Command

Command

 showing typical example and/or typical output

Main processing: high priority black box testing commands

pe ... process event EVENT ?p=PARAMETERS ?t=EXPECTEDTRACE

 pe gamma p=[4,xy] (statechart scope assumed)

 pe [alpha,[sc]] p=1

 pe [alpha,[sc]]

Parameters can also be supplied in STATECRUNCHER internal form, e.g.

 p=[[ex_co,int,4],[ex_str,[120,121]]]

Worlds in direct violation of EXPECTEDTRACE will be killed, but overtrace and

undertrace are tolerated.

gt get trace

 7 TRACE =[1,2]

ct clear trace

 (this also causes a world merge)

Main processing: medium priority commands

gae get all events

(whether transitionable or not; not world-related)

 EVENT [theta2, [z3,z,s,sc]] [pco1,[z,s,sc]]

gate get all transitionable events

 (union from all worlds; no worlds shown)

 TREV [[delta,[sc]],0,[],[]]

 TREV [[gamma,[sc]],3,

 [[r,0,100000],[r,0,100000],[r,0,100000]],[]]

 TREV [[gamma,[sc]],1,[[r,0,100000]],[]]

 TREV [[gamma,[sc]],2,

 [[r,0,100000],[r,0,100000]],[]]

 TREV [[alpha,[sc]],0,[],[]]

© Graham G. Thomason 2003-2004 11

gav get all variables

Gets the value-ranges, not the current value per world

 VAR INTEGER bool1 [sc] RANGE=[0, 1]

 VAR INTEGER col1 [sc] ENUM=[0, 7, 8, 4, 8]

 VAR INTEGER p1 [b2, b, s, sc] RANGE=[0, 9]

 VAR STRING str [sc]

gaw get all worlds

Gets the current worlds

 [2,7,8]

gc get config

 2 statechart sc

 2 cluster a [s, sc] =OCC [] **

 2 leafstate a1 [a, s, sc] =OCC [] **

 2 cluster a2 [a, s, sc] =VAC []

 2 VAR INTEGER bool1 [sc] =1

 2 VAR INTEGER col1 [sc] =8

 2 VAR INTEGER p1 [b2, b, s, sc] =unknown

 2 VAR STRING p5 [b2, b, s, sc] =unknown

 2 VAR STRING str [sc] =[98] =b

 2 TRACE =[]

 2 TREV [[zeta,[s,sc]],

 4,[[r,0,9],[e,0,7,8,4,8],[r,0,1],[<string>]],

 [pco1,[z3,z,s,sc]]]

 outworlds=[2,4]

 number of outworlds=2

gst get symbol table

 SYMB delta [sc] eventdecl []

 XREF leafstate b1:[b, s, sc]

 XREF leafstate z1:[z, s, sc]

kill ... kill WORLD | WORLDS

 kill 2

 kill [2,7,10]

→ WORLD TRACE = TRACE

 input is as the output of get config

 this does not cause a world merge

(we will probably issue this kind of command several times before

requiring a world merge)

→ WORLD STATEKIND STATENAME MPATH = OCCUPANCY HISTORY

 input is as the output of get config

 this does not cause a world merge (we will probably change more)

→ WORLD VAR VARKIND VARIABLENAME MPATH = VALUE

 input is as the output of get config

 this does not cause a world merge (c.f. WORLD TRACE = TRACE)

12 © Graham G. Thomason 2003-2004

cnw create new world

 Creates a new world in its default state

 - needed before writing variable/state/trace values to a new world

 34 (the new world number is returned)

mw merge worlds

 (useful when all trace/state/variable changes have been made)

gpt get processing time

(timing data is set on processing an event)

 exec time=00h 00m 00s 210ms

gd get date

(get date and time)

 DATE: 24 Apr 2003 16:01:40/649

Containment of combinatorial explosion: low priority commands

These commands limit the number of permutations used in set transit

nondeterminism and race nondeterminism. See [StCrMain] for more

explanation.

nst no set tran

lst low set tran

mst medium set tran

hst high set tran

nr no race

lr low race

mr medium race

hr high race

Compilation, loading, start-up, and finish: very low priority

root ... root ROOTDIRECTORY

Sets the root directory to be used with FILENAMEs

mm mode modelnames

Sets compilation etc. to work with model names. The directory structure

must be set up correctly.

mf mode filenames

(Default). Sets compilation etc. to work with file names. Use the root

command to set the directory (can be null, then give a full path here).

cp ... compile FILENAME | MODELNAME

(also loads machine, and enters it (as of Rel 1.05))

ld ... load FILENAME | MODELNAME

(does not enter machine)

run ... run FILENAME | MODELNAME

=Load and enter machine

nm enter machine

Machine enters default state

© Graham G. Thomason 2003-2004 13

xm exit machine

Leaves a pristine machine ready to be entered

um unload machine

Removes data and object code

rm reset machine

=exit and enter

quit quit

System/diagnostic: very low priority

help help

prolog prolog

 Gives a Prolog prompt; enter a Prolog goal

Table 1. STATECRUNCHER commands

Notes.

 By priority, we mean the priority given through the parse-attempt order, which will affect

the response time.

 If anything is to be set in nonexistent world, it is created (but a model must have been

loaded)

A typical sequence of commands

1. mm set model mode

2. run t5110 load model and enter machine

3. pe alpha process event alpha (in statechart scope)

4. gc get configuration

5. pe gamma process event gamma (in statechart scope)

6. gc get configuration

7. rm reset machine

8. pe gamma process event gamma (in statechart scope)

9. quit quit STATECRUNCHER

14 © Graham G. Thomason 2003-2004

Error and warning messages

These are shown in the following table.

Command parsing

PR-E-020 COMMAND SYNTAX ERROR

Preliminary checks

PR-E-040 NO MODEL LOADED (compiler-produced part)

PR-E-041 NO MODEL LOADED (validator-produced part)

PR-E-042 MULTIPLE COMPILED FILES LOADED

PR-E-043 MULTIPLE VALIDATED FILES LOADED

PR-E-044 THERE WAS A COMPILATION ERROR

PR-E-045 THERE WAS A VALIDATION ERROR

PR-E-046 VERSION INCOMPATIBILITY

Command execution

PR-E-060 COMMAND EXECUTION ERROR

PR-E-061 WORLD IS NEITHER EXTANT NOR EXTINCT

Internal errors

PR-E-900 INTERNAL ERROR - NO COMMAND HANDLER

Table 2. Error and warning messages

3.3 Additional output

The Prolog system may produce extra output as it loads and abolishes Prolog modules, when

a model is loaded or cleared. Typical lines from WinProlog are

About to consult

P:\Kwinpro\StCr\StCr2Sand\..\StCr3ModelsTest\t5000me\t5490_all

_kinds_of_output\all_kinds_of_output.sco.pl

0.047 seconds to consult

p:\kwinpro\stcr\stcr3modelstest\t5000me\t5490_all_kinds_of_out

put\all_kinds_of_output.sco.pl

Abolishing

p:\kwinpro\stcr\stcr3modelstest\t5000me\t5490_all_kinds_of_out

put\all_kinds_of_output.sco.pl

Removing 0 clauses for multifile predicate oc_errorcount / 1

Such lines can be ignored by a Primer.

© Graham G. Thomason 2003-2004 15

3.4 Implementation consideration

A typical command is

 2 VAR p1 [b2, B, s, sc] =unknown

The items in this line could be regarded as PROLOG terms – they were output as such by

STATECRUNCHER.

Question: When reading/parsing commands, do we read PROLOG terms directly, or do we

read at a character level and parse?

Answer: We read at a character level and parse, even when reading e.g. PROLOG lists. As we

parse, we reconstruct the PROLOG list. The reasons why we must do this are:

 All PROLOG items read with read() must be terminated by a dot.

 All capitalised atoms read with read() require quoting.

This would all make the input cumbersome, or it would need pre-processing to:

2. 'VAR'. p1. [b2, 'B', s, sc]. '='. unknown.

3.5 Grammar for PROLOG list structures as used in

STATECRUNCHER

All parses consists of identifiers, integers, particular characters (such as “=”) and lists-of-a-

restricted-kind, which we call s_lists. The s_lists contain identifiers, integers, or nested s_lists.

They may also be the empty list.

The parse of ASCII items in the following syntax descriptions is the PROLOG item itself.

Identifiers beginning with capital letters are ground items (as if quoted on entry), not

variables.

In order for this restricted grammar to work, traces must be restricted to identifiers and

integers. The user must take responsibility for this at present.

Syntax diagrams for the constituent terms needed by commands follow; they correspond very

closely to the Prolog Definite Clause Grammar implementation.

16 © Graham G. Thomason 2003-2004

Figure 3. simple_term

identifier

simple_term

signed integer

Examples

 A_bC // this is parsed as a PROLOG atom as if entered as 'A_bc'

 unknown

 -567

 '&$2L' // future option: not implemented

 '' // future option: not implemented

The parse is a PROLOG item (constructed from the ASCII string)

signed integer
identifier -

quoted atom

quoted atom

atom body '

nonquote

character

'

atom body

atom body

future option only

future option only

© Graham G. Thomason 2003-2004 17

Figure 4. compound_term

Figure 5. optional s_list

simple_term

compound_term

s_list

Examples

 -567

 A_bC

 unknown

 []

 [A_bC,0,[],[B7,-1]]

slist

optional s_list

Examples

 -567

 [A_bC,[]]

 none is parsed as '$f_none'

18 © Graham G. Thomason 2003-2004

Figure 6. s_list

s_list

s_list_body ,

rest_compound_terms

compound_term rest_compound_terms

combine

into a list

s_list_body

[

s_list_body

]

[]

Examples

 []

 [A_bC,0,[],[B7,-1]]

© Graham G. Thomason 2003-2004 19

4. What the primer might do

4.1 Primer requirements

STATECRUNCHER Release 1.03 is an independent executable program (so not requiring any

implementation-language environment to be pre-loaded, such as a Prolog system). The Primer

will typically be a separate executable program in a language such as Prolog, C++, TCL or

Perl, with the ability to store and retrieve large amounts of data (since for some tasks it will be

storing many state configurations), and select specific items from that data.

Messages to and from STATECRUNCHER are supplied via standard input and standard output

via a pipe. If a socket connection is required, a simple standard_io-to-socket program can be

inserted in the chain.

The primer should be able to do the following:

 Explore (i.e. find, reach, and enter) every state in the entire state space. This will involve

marking states as visited and returning to previous state configurations.

 Support constructions for white box testing, in which we exercise every event, if it gives

rise to a transition, from every state with every value assigned to every variable.

 Support constructions for black-box testing, where trace data is analysed, and conformity

of the IUT is proved (or otherwise) by generating event sequences whereby expected

trace output will disambiguate and uniquely identify the original target state.

 Include commands to output information about what it has decided to do with the results

of transitions.

- It should be possible to produce a test script

- It should be possible to do on-the-fly testing and logging in a test report

 Implement any pruning algorithm e.g. one devised to explore a useful subspace of the

total space.

 Where appropriate, the primer will make use of PCO (point of control and observation)

information, so as to support testing of distributed systems. Even where the system is not

distributed, it may be that not all events can be generated by the test harness, so PCOs

will have a wider use.

20 © Graham G. Thomason 2003-2004

4.2 Examples of algorithms as requirements

Note: These algorithms are in pseudo-code, not in STATECRUNCHER's command language, or

in any other language itself.

4.2.1 Exploration algorithms

We start with the algorithm given as specified in [Raptis 99]. The pseudo-code below is

basically as specified in that report, reworded slightly, but with the significant change that we

process events, not transitions. This is a depth first algorithm to find and reach every state in

the state space. The basic algorithm ignores data value issues. We extend the algorithm to

handle data and non-determinism subsequently.

Exploration algorithm [deterministic, just events]

Enter INITIAL STATE

Push INITIAL STATE on stack

While stack not empty

 Pop SOURCE STATE off stack

 Do next observable EVENT -> TARGET STATE

 If there are unprocessed events from SOURCE STATE

 Push SOURCE STATE on stack

 If TARGET STATE unvisited

 Push TARGET STATE on stack

 Mark TARGET STATE as visited

© Graham G. Thomason 2003-2004 21

Equivalent exploration algorithm [Alg-1: deterministic, just events]

Here we use recursion rather than stack operations

EXPLORE(INITIAL STATE)

PROC EXPLORE(STATE)

Mark STATE as visited

For each EVENT // all from same current state, so ...

 Do EVENT -> TARGET_STATE // obtain target state without losing cur state

 If the TARGET_STATE is unvisited

 EXPLORE(TARGET_STATE)

ENDPROC

Prolog demo of the principle for a small model

Figure 7. Prolog demo of explore for a small model

a c
δ

a

dead b

d e

f

Note: the event names are only “for

show” – they will not actually be used in

the demonstration

α α

γ

β

α

β

α

γ

self

22 © Graham G. Thomason 2003-2004

Figure 8. Prolog code of “explore” demo

Output: a b c dead d e f

/*---*/

/* TRANSITIONS */

/*---*/

transition(a,alpha,b).

transition(a,beta,d).

transition(b,alpha,c).

transition(b,beta,a).

transition(c,gamma,b).

transition(c,delta,dead).

transition(d,gamma,e).

transition(d,alpha,f).

transition(e,alpha,b).

transition(f,self,f).

transition(f,beta,e).

/*---*/

/* USER TOP LEVEL GOAL */

/*---*/

goa:-

 clear,

 explore(a),

 writevisited.

/*---*/

/* EXPLORE FROM STATE X */

/* EVENT is not used but we keep it */

/*---*/

explore(X):-

 markvisited(X),

 transition(X,EVENT,TARGET),

 ((

 visited(TARGET) /* have been here before, will backtrack */

);(

 not(visited(TARGET)), /* have not been here before */

 explore(TARGET) /* recursively explore */

)),

 fail. /* backtrack to next transition */

explore(_). /* end up by succeeding */

/*---*/

/* UTILITIES */

/*---*/

writevisited:-

 visited(X),

 write(X),

 tab(1),

 fail.

writevisited:-

 nl.

markvisited(X):-

 assertz(visited(X)).

clear:-

 retractall(visited(_)).

© Graham G. Thomason 2003-2004 23

Extended exploration algorithm [Alg-2: deterministic, event-parameters, variables]

PROC EXPLORE(VSTATE) // A VSTATE is a (variable state) configuration

Mark VSTATE as visited

For each EVENT // All from same current state

 For each EVENT-PARAMETER-VALUE // or combination if many parameters

 Do EVENT -> TARGET_VSTATE // obtain target state without losing cur state

 If the TARGET_VSTATE is unvisited

 EXPLORE(TARGET_VSTATE)

ENDPROC

Extended exploration algorithm [Alg-3: nondeterministic, event-parameters, variables]

PROC EXPLORE(BSTATE) // A BSTATE is a set of VSTATES

Mark BSTATE as visited

For each EVENT // All from same current state

 For each EVENT-PARAMETER-VALUE // or combination if many parameters

 Do EVENT -> TARGET_BSTATE // obtain target state without losing cur state

 If the TARGET_BSTATE is unvisited

 EXPLORE(TARGET_BSTATE) //

ENDPROC

Notes

 We do not mark individual world states as visited, but sets of worlds as visited, as

precisely that set is visited.

Random Testing

For N=1 To NUMBER-OF-TESTS // could loop as long as time permits

 SELECT RANDOM EVENT // consider all events, transitionable or not

 For each EVENT-PARAMETER-VALUE

 SELECT RANDOM VALUE IN RANGE

 PROCESS EVENT

Here a random event is selected from the set of all events that can be supplied to the

implementation. We do not restrict ourselves to transitionable events, since it is necessary to

test that non-transitionable events do not cause a transition in the implementation under test.

24 © Graham G. Thomason 2003-2004

5. Module organisation

This chapter is a brief overview of how the primer-related software is organised in modules.

The overview will be of use in the event of software maintenance.

Review: STATECRUNCHER software is organised in the following directories:

gp4

 aa Prolog /Operating-System Dependent code

 ar Arithmetic

 cp Compiler (generic part)

 ex Expression parser

 gn General routines

 io I/O routines

 p1 Pass-1 parsing for the main STATECRUNCHER language

 re Regular expressions

 tf Test framework

stcr2sand

 ac_sc Compilation of test models (as a test sub-suite in itself)

 am_sc Transition testing on test models

 ap_sc Application specific naming (e.g. compiler header text)

 boot_sc Boot loader (and auxiliary loader)

 ci_sc command interface (for compilation settings)

 cs_sc command shell (for PRIMER-STATECRUNCHER commands)

 da_sc data access (primitive API routines used in transitioning and world merging)

 ev_sc evaluator (for arithmetic and scoping expressions)

 fu_sc evaluator for functions

 me_sc machine engine

 mk_sc "make" routines for scalable stress-testing models

 op_sc operator definitions (for expressions)

 sc_sc command routines for compilation

 sy_sc syntax in DCG form

 ut_sc utilities

 va_sc validator (can be considered the second phase of compilation)

 zt_sc extra area for patches, experiments

The cs_sc directory (in bold above) contains the PRIMER - STATECRUNCHER command

handler. Any lower-level routines called in the code can be identified by their two-letter

© Graham G. Thomason 2003-2004 25

prefix, such as me_ for machine engine, as indicated above. The files in the cs_sc directory

and their contents, in brief, are:

cs_sc_1.pl The underlying parsing predicates, parsing from ASCII:

 cs_p1_opt_compound_term optional compound term ("slist"/simple term)

 cs_p1_compound_term compound term

 cs_p1_opt_slist optional "slist" (recursive list structure)

 cs_p1_slist "slist"

 cs_p1_simple_term simple term

 cs_p1_literal literal text

 cs_p1_sint optionally signed integer

 cs_p1_identifier identifier

 cs_p1_atom quoted/nonquoted atom

 cs_p1_opt_wspace_seq optionalwhite space sequence

 cs_p1_wspace_seq white space sequence

 cs_p1_wspace_item white space item

 cs_p1_any_text_long_atomized Backtrackable "any text" as an atom

 cs_p1_any_text_long Backtackable "any text" as a list

cs_sc_2a.pl The parser for cs_line - a line of input (as from PRIMER)

 cs_line for process event EVENT p=PARAMETERS t=EXPECTED_TRACE

 cs_line for get trace

 cs_line for clear trace

 cs_line for get all events

 cs_line for get all transitionable events

 cs_line for get all variables

 cs_line for get all worlds

 cs_line for get config

 cs_line for get symbol table

 cs_line for kill world(s)

 cs_line for WORLD TRACE=TRACE

 cs_line for SET/CLUSTER/LEAFSTATE lines

 cs_line for VAR lines

 cs_line for create new world

 cs_line for merge worlds

 cs_line for get processing time

 cs_line for get date

cs_sc_2b.pl The parser for cs_line continued

 cs_line for no set tran

 cs_line for low set tran

 cs_line for medium set tran

 cs_line for high set tran

26 © Graham G. Thomason 2003-2004

 cs_line for no race

 cs_line for low race

 cs_line for medium race

 cs_line for high race

 cs_line for root ROOTDIRECTORY

 cs_line for mode modelnames | filenames

 cs_line for compile FILENAME|MODELNAME

 cs_line for load FILENAME|MODELNAME

 cs_line for run FILENAME|MODELNAME

 cs_line for exit machine

 cs_line for unload machine

 cs_line for reset machine

 cs_line for quit

 cs_line for help

 cs_line for prolog

cs_sc_3.pl the main loop, calling:

 cs_read_process read line and process it, calling:

 cs_read_command read a command from standard input

 cs_process_ascii_line parse and process line, calling:

 cs_line parse line (in cs_sc_2a/b)

 cs_process_parsed_line process parsed line calling:

 cs_process_command process command (in cs_sc_4a/b)

cs_sc_4a.pl

 cs_process_command process the commands parsed in cs_sc_2a

cs_sc_4b.pl

 cs_process_command process the commands parsed in cs_sc_2b

cs_sc_4c.pl Auxiliaries for command processing:

 cs_create_old_world re-create a world that has existed

 cs_create_new_world create a new world

 cs_get_pvalue Convert a STATECRUNCHER wrapped value to a plain value

 cs_get_scvalue Convert a plain value to a STATECRUNCHER wrapped value

cs_sc_8.pl The old Release 1.02 command-transition loop

cs_sc_8_socket.pl The socket version of the above (SWI-PROLOG only)

cs_sc_z...pl Test routines

© Graham G. Thomason 2003-2004 27

The old Release 1.02 loop

The old Release 1.02 loop uses the commands

cs_loop_wp(MODELNUMBER)

cs_loop_np(MODELNUMBER)

to process events in a loop on a pre-compiled and indexed model, with and without event

parameters respectively. These commands are called directly by aliases, the informal

predicates:

craft(MODELNUMBER)

craftnp(MODELNUMBER)

which are defined in the aux_load_sc.pl file in the boot_sc directory.

In this loop, commands and events are read as PROLOG terms. This has the disadvantage that

any errors are reported by the Prolog system, not application code. (It is possible to write error

handlers, but they would be Prolog-system dependent, and it would typically not be easy to

recover to the right place in the command loop).

For the socket version of the Release 1.02 loop, the aux_load_sc.pl file must be edited

to load cs_sc_8_socket.pl instead of load cs_sc_8.pl. Use of the socket interface is

not supported with the executable version of STATECRUNCHER.

Maintenance note

For all commands, we require

- a parse

- a test suite for the parse

- an update to the local number of tests for parse predicates

- a handler

- a test suite for the handler

- an update to the local number of tests for handler predicates

- an entry in the help command

- an update to the global number of tests

- documentation in this report

28 © Graham G. Thomason 2003-2004

6. Conclusions

This report has shown the main principles of test case generation using STATECRUNCHER as

an oracle, and the syntax of a PRIMER-STATECRUNCHER dialogue.

The next stage of the project is to examine existing TorX tools and protocols so as to match

STATECRUNCHER to the tool chain. This work is being undertaken jointly by PDSL-Redhill

(under the auspices of Nat.Lab.-IST) and IST-Bangalore. STATECRUNCHER Release 1.02 has

already been integrated into the TorX chain using a socket interface [Koppalkar], but

complete end-to-end integration was subsequently achieved, early in 2003. It is anticipated

that STATECRUNCHER 1.03 will enable more powerful testing algorithm to be deployed.

An alternative option is to produce a chain of independent programs without using TorX,

connecting them by pipes, sockets and Expect Scripts as appropriate [Expect].

A possible scenario where the primer is split in two parts is follows

Figure 9. STATECRUNCHER specific vs. TorX generic tool chain components

Test-case generation is of interest to universities (e.g. Brunel, –see [Hierons 98]). What has

been lacking is industrial tool support for the ‘academic’ (but perfectly valid) algorithms. An

opportunity is arising to for useful co-operation in which the academic work can be harnessed

to the benefit of industries such as ours. It is therefore essential that the tool chain and its

protocol will ultimately be capable of supporting the most powerful adaptive on-the-fly test

generation algorithms under nondeterminism.

PRIMER

COMPONENT

SPEC

Textual

dynamic

model

Executable

Tests

or

IUT with

ON-THE-

FLY

Testing

STATE-

CRUNCHER

Parser and

Machine

Engine

TorX Explorer

Various

tools

TorX

Driver/

Adapter

PRIMER

FRONT

END

PRIMER

MAIN/

BACK

END

Statecruncher-specific items

shaded

© Graham G. Thomason 2003-2004 29

7. References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 3 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 4 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 5 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 7 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 8 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

30 © Graham G. Thomason 2003-2004

References

[Baker 95] M.L. Baker and D.C. Yule

 Automation of Software Testing:

 A Case Study on a Real-Time Embedded System

 PRL Technical Note 3373, September 1995

[CdR] Côte de Résyste

 http://fmt.cs.utwente.nl/CdR

Côte de Resyste (COnformance TEsting of REactive SYSTEms) is a

research and development project (1998-2002) funded by the Dutch

Technology Foundation STW (http://www.stw.nl/), and is a

collaboration between:

- the University of Eindhoven (http://www.tue.nl)

- the University of Twente (http://www.utwente.nl/)

- Philips (http://www.philips.com)

[CdR-iP] René de Vries, Jan Tretmans, Axel Belinfante, Jan Feenstra,

Lex Heerink, Loe Feijs, Sjouke Mauw, Nicolae Goga, Arjan de Heer

 Côte de Résyste in Progress

 see the [CdR] site

[CHSM] P.J. Lucas

 An Object-Oriented System for Implementing Concurrent,

Hierarchical, Finite State Machines.

 MSc. Thesis, University of Illinois at Urbana-Champaign, 1993

[DejaGnu] R. Savoye

 The DejaGnu Testing Framework

 The Free Software Foundation, 1993

[Expect] Don Libes

 Exploring Expect

 O'Reilley & Associates, 1995, ISBN 1-56592-090-2

[Hierons 98] R.M. Hierons

 Adaptive testing of a deterministic implementation against a

 nondeterministic finite state machine

 The Computer Journal, 41, 5 pp 349-355

 Available from the author's home page: www.brunel.ac.uk/~csstrmh

[Koppalkar] Nitin Koppalkar and Animesh Bhowmick

 Integration of Generic Explorer with the TorX Tool Chain

 Nat Lab Technical Note 2002/387

© Graham G. Thomason 2003-2004 31

[Raptis] D. Raptis

 Generation of Test Sequences from FSM’s

 PRL Technical Note 3683, March 1998

[Trew 98] T.I .P. Trew

 State-based Testing with WinRunner: the State-Relation Package

 PRL Internal Note SEA/704/98/05, June 1998

[Yule 97] D.C. Yule

 Automatic State-Based Testing

 PRL Technical Note TN 3611, 1997 /

DVD Document V19 C4 S415.

