

GP4 - A Generic Prolog Parsing and

Prototyping Package

Graham G. Thomason

Report Relating to the Thesis “The Design

and Construction of a State Machine

System that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

GP4 - A Generic Prolog Parsing and Prototyping Package

GP4 is a package that facilitates the translation between, and prototype implementation of,

domain-specific languages for automatic test case generation. It is equally applicable to

domains other than testing. Although the main reason for developing it was for

STATECRUNCHER, a program that provides a test oracle for state based testing, the package is

independent of STATECRUNCHER, and is described mainly without further reference to it.

Although Unix tools such as Yacc and Lex could have been used for parsing, GP4 uses

PROLOG only for its implementation. This is because PROLOG is extremely well-suited to

implementing the run-time part of the languages to be developed, and we wish to avoid tool

diversity.

GP4 is not a testing tool in itself. But it is an underlying part of a testing tool which itself is

only part of a tool chain. The tool chain will typically contain commercial tools as well.

© Graham G. Thomason 2003-2004 iii

Contents

1. Introduction .. 1

2. GP4 Architecture .. 3

3. Pass 1 parsing ... 7

3.1 Pass 1 overview .. 7

3.2 Rationale concerning pass-1 processing ... 8

3.3 The pass-1 call .. 11

3.4 Pass-1 output tokens ... 12

3.5 Pass-1 grammar .. 13

4. Operator definitions .. 19

4.1 Operator overview .. 19

4.2 Operator attributes .. 20

4.3 Operator definition format .. 24

4.4 Tables of operators defined for parsing .. 28

4.5 Operator grammar .. 32

5. Expression parsing.. 33

5.1 Overview .. 33

5.2 Some considerations ... 34

5.3 Choice of expression grammar to implement ... 35

5.4 Addressing the tough issues .. 36

5.5 Representation of parsed expressions ... 45

5.6 Expression grammar ... 46

6. Application-specific syntax definition .. 52

7. Application specific data .. 56

8. The compiler control module .. 57

9. The command interpreter module ... 64

10. Expression evaluation ... 66

10.1 Introduction to the evaluation module .. 66

10.2 Example of an evaluation call .. 68

10.3 Operators implemented for evaluation ... 70

iv © Graham G. Thomason 2003-2004

11. Function calls ... 73

11.1 How functions are called .. 73

11.2 Functions implemented .. 74

12. The library modules .. 76

12.1 Module "aa" (System Dependent) .. 76

12.2 Module "ar" (Arithmetic) ... 77

12.3 Module "gn" (General) ... 78

12.4 Module "io" (Input/Output) .. 79

12.5 Permutation and tree walking ... 81

12.6 Each/One tree walking ... 85

13. Regular expressions .. 87

13.1 Basic usage .. 87

13.2 Greedy and nongreedy algorithms.. 90

13.3 Module "tf" (Test Framework) ... 92

14. Extent of implemented features .. 99

14.1 Grammar productions... 99

14.2 Operator definition for parsing ... 99

14.3 Operator evaluation .. 99

14.4 Function call evaluation ... 99

15. References .. 100

Appendices ... 100

© Graham G. Thomason 2003-2004 1

1. Introduction

GP4 provides a generic framework in which language elements such as operators and

statements can be defined. It supports parsing from source code in that language to a Prolog-

readable nested list structure. Certain generic aspects of run-time support for program

execution (e.g. expression evaluation) are also supported. The following figure illustrates the

framework:

Figure 1. GP4 framework

GP4 does not support the semantic side to compilation. It does not distinguish between

declarations and executable statements and it does not construct symbol tables. This must be

done separately. The emphasis is on syntax-driven parsing.

One unusual (but not unique) feature of GP4 adds to its power as a prototype compiler tool.

Operator sequences are not tokenized during lexical analysis. Instead, they are parsed as part

of the operator/expression grammar. This makes it possible to use several different operator

sets in different contexts in the same source language. This is applicable where portions of C-

style syntax may be embedded in a non-C-conformant domain-specific language.

GP4 is implemented in PROLOG. Since PROLOG is a good choice of language for the end

application execution such as test case generation, and as it supports Definite Clause

Grammars (DCG's), it is convenient to use it for parsing as well. A large part of GP4 is

simply a collection of statements in DCG notation. The use of one language for parsing and

execution helps ensure consistency between these phases, and reduces overall tool diversity.

GP4 is intended to be a practical means to a practical end: tools in a tool-set for automated

test generation.

The techniques used in GP4 are not claimed to be original; they are a practical means to help

implement other tools that may contain original material. However, the techniques for

expression parsing were developed from first principles, after the basics of the PROLOG

GP4 base layer: tokenization, expression parsing

User layer: application name,

application specific operators,

statement syntax as Prolog definite clause grammar.

GP4 Run-time support:

operator evaluation

2 © Graham G. Thomason 2003-2004

Definite Clause Grammar had been learned, mainly from [Clocksin]. The feed-forward

expression grammar result may be of interest to those working in the field of compiler

technology.

The techniques described here were first used by the author in a simpler form for an expert

system shell called DEXIOS, reference [Dexios].

© Graham G. Thomason 2003-2004 3

2. GP4 Architecture

The GP4 system provides a generic parsing layer to enable a domain-specific language to be

parsed with a minimum of overhead. The emphasis is on generality. In principle, all the user

need do is define

 the higher level part of the syntax of the language (comparable with the statement level in

an imperative language)

 a set of operators to be used wherever an expression occurs.

The output of a parse is a set of Prolog-readable nested list structures. However, the output

could easily serve as input to other languages such as Perl and TCL. The kind of engine that is

envisaged could be

 A state-machine engine or translator

 A cause-effect graph test case generator

 A probabilistic network and inference engine

An application may require the use of a validator and data generator to supplement this, e.g.

to generate a symbol table and cross-reference, and to generate predicates representing data

variables. A validator / data generator is rather application specific, and is outside the scope of

GP4.

 Figure 2 shows data flow of an application with a division between the compile-time

modules, run-time modules, and general support routines.

 Figure 3 shows the compile-time modules in a layered architecture. Note that all the user

supplies are operator definitions, syntax rules, and application-specific data and texts. The

non-generic example names use the affix “sm” (state machine application). Even the operator

definitions are likely to be highly reusable, since basic arithmetic and relational operators are

common to many application areas.

 Figure 4 shows the additional modules for run-time support. The “highly reusable” operators

supported by the compiler are supported by “highly reusable” evaluation routines for these

operators. In addition a number of useful functions (such as maximum, minimum) are

supported.

4 © Graham G. Thomason 2003-2004

Figure 2. Data Flow of a GP4-based Application in Use

GP4 components shown

For examples of source, object and listing files, refer to section 8.

shaded.

GP4: General GP4: Compile-time routines

myfile.smo.pl

"object" code

myfile.sms.txt

"source" code

myfile.sml.txt

listing

Application Specific: Run-time engine

myfile.smv.pl

data/tables

myfile.smv.txt

listing

i.e. statements in the

domain specific language

Prolog-

readable

Prolog-

readable

interactively or

batch driven

Application Specific: Validator/data generator

Prolog-

readable

© Graham G. Thomason 2003-2004 5

Figure 3. Compile Time Compositional Architecture

Compile-time specific

cp

read-compile-output

p1

pass-1 (lexical)

General

sy_sm

statement syntax for the "sm" application

tf

test

framework

gn

general

io

input/output

ar

arithmetic

ap_sm

application

specific data

ex

expression

parser op_sm

operators

for "sm"

application

myfile.sms.txt

"source" code

aa

system

dependent

myfile.smo.pl

"object" code

ci

command interface

myfile.sml.txt

listing

op_cc

operators

for C

op_aa

operator

global

definitions

Legend for re-usability of modules

GP4:

library

Non-GP4:

application

specific

6 © Graham G. Thomason 2003-2004

Figure 4. Run-time specific

Run-time specific

fu_sm

evaluate

functions

ev_sm

evaluate

operators

ci_sm

command

interface

sm_<misc>

algorithms

myfile.smo.pl

"object" code

General

tf

test

framework

gn

general

io

input/output

ar

arithmetic

aa

system

dependent

Legend for re-usability of modules

GP4:

library

Non-GP4:

application

specific

GP4: highly

reusable

myfile.smv.pl

data/tables

interactively or

batch driven

© Graham G. Thomason 2003-2004 7

3. Pass 1 parsing

3.1 Pass 1 overview

The term “pass 1” in GP4 is the first pass and transformation of the input string to be parsed;

it rather similar to the lexical analysis phase of a conventional compiler. As such, it is at a

lower level than the first pass of many complete two-pass compilers where the term pass 1 is

used of much more than lexically analysing input, where it includes the construction of a

symbol table. The second pass of such compilers generates object code using known values of

forwardly-referenced symbols.

The task of GP4 pass 1 parsing is to identify certain lexical items in the input source code.

Source code is read in line by line, and may be offered to the parser in chunks (provided

suitable delimiters between the chunks can be identified), or as the entire contents of a file.

The input to pass 1 is a list of ASCII codes, as obtained when reading an ASCII file. A non-

list input item will be returned as the output. Non-ASCII list elements will be returned in the

output list. This being the case, no error messages are produced in pass 1.

The output of pass 1 is a list containing certain lexical items such as identifiers and constants,

and unaffected ASCII codes.

Figure 5. Pass-1 processing overview

Read file

Pass-1

ASCII list: Pass 1 input

Pass 1 output

Source text x1= -2.34E-1*5;

[120,49,61,32,45,50,46,51,52,69,45,49,42,53,59]

[[p1_id,x1],61,p1_delim,45,[p1_co,real,none,10

,0.234],42,[p1_co,int,none,10,5],59]

8 © Graham G. Thomason 2003-2004

3.2 Rationale concerning pass-1 processing

Pass-1 processing here is a lexical analysis phase. Although it would be possible to parse a

language in one pass using grammar rules that span symbols from statements and expressions

to alphanumeric terminals, there are advantages to separating this process into two phases:

 Performance: it guarantees that processing that is only required once, e.g. examining a

substring to see if it contains an identifier, only takes place once (or at worst, as many

times as pass-1 does this processing).

 Modularity: there is a natural layered relationship between pass-1 processing and pass-2

processing. Pass-1 reduces the lexical space in which pass-2 works, so that each process

is considerably simpler than the combination.

 Testability: pass-1 and pass-2 can be tested separately with fewer tests than would be the

case without the separation. This is due to the reduced lexical space in which pass-2

works.

A major issue is: what should pass-1 do, and what should it leave untouched? We address

some questions here and show what choices have been made in the answers.

Q 1: What should Pass-1 definitely do?

A:

 Identify and package as output tokens identifiers (but whether to distinguish language

keywords is an issue). We do, however, need to assume that identifiers are of the C/Java

kind - see the question relating to this below.

 Identify and package numerical constants (but whether to evaluate them is an issue).

 Identify and package strings.

 Identify and simplify white space and comments (but whether to remove them

completely or replace sequences of them by a single token is an issue).

Q 2: Should Pass-1 assume C conventions in the source language?

A: Yes in many respects, (but not for operators). Otherwise, pass-1 is too weak and has very

little to do. C conventions cover C++, Java, and Unix tools generally. The prototype

languages that are envisaged have much commonality with C. If non-C conventions are

required, (e.g. not case sensitive and different case mixings will be used in identifiers), we

should use a variant pass-1 module. In our standard pass-1 routine, we observe

 C identifier conventions

 C constant representations (chars, octals, hexadecimals, numerical suffixes)

 C escape sequences (\n \r etc in chars and strings)

 C and C++ style comments (/*...*/, //-----)

© Graham G. Thomason 2003-2004 9

Q 3: Should language keywords, function names and keyword operators be

distinguished?

A: No. It would spoil the low degree of coupling of pass-1 to other modules. It is acceptable

to package all identifiers in the same way, even if they are really operators. Pass-2 should be

responsible for distinguishing.

Q 4: Should an attempt be made to identify operators in pass 1?

A: No. The rule may be that from an operator sequence, the longest match will yield the

operator (e.g. in C, -> would always be a single operator), but we should not assume this in

pass-1. We should give pass-2 the freedom to pick-and-choose operator sets per expression

context, so pass-1 would need more information than we want to give if it is it to single out

operators. An identifier-like-item might be a keyword operator in one place, but an ordinary

identifier in another place. This feature is not unique, but it is not common in conventional

parsers.

A disadvantage of this choice is that it introduces a little backtracking in pass 2 in determining

what actual operators are present.

An even more flexible way to achieve "dynamic syntax" would have been for pass 2 to

request pass 1 tokens in a parameterised way one at a time as needed. This approach would

have been an interesting alternative, and may have been a better choice, but it is not known

whether it would be easy to accommodate it to Prolog Definite Clause grammars. The current

approach is adequate for the envisaged applications. A hybrid approach is also conceivable

where an additional pass is made to convert from very primitive tokens to 'operatorised'

tokens. In either case, there is the advantage that if a longest-sequence-match strategy can be

employed, then pass 2 parsing can be done without backtracking.

Q 5: Should numerical constants be evaluated in pass 1?

A: Yes - at least for a prototype system. For a Prolog-based implementation, we are restricted

to Prolog's own representation of numerical values anyway (unless we are prepared to write

our own floating-point package and mathematical library, or link to an external one, such as

the Gnu library gmp). There is nothing to be gained by postponing the conversion to the

numerical value until after pass 1. This may mean that long integers or long doubles cannot be

represented. But if the Prolog implementation does not support them, then a difficult work-

around will be needed anyway. If possible, our language should avoid them. The only

compensation that we do offer is that suffix information (long, unsigned etc.) is retained in the

output token.

Q 6: Should we identify negative constants?

A: No. We do not wish to state with certainty that a minus sign before a constant really does

apply to the constant. The user may define other operators ending in a minus sign. We leave it

to Pass-2 to supply a monadic operator. Similarly the monadic plus operator is left to pass-2.

10 © Graham G. Thomason 2003-2004

Q 7: Should white space be removed entirely in pass-1?

A: No. White-space
1
 sequences, including comment sequences, should be reduced to a single

white-space output token. Although this means that pass 2 will have to absorb white-space in

various places, the white-space information is needed to distinguish between e.g. in C:

c++1 the expression c++ followed by the integer 1 (never legal C).

and

c+ +1 the sum of c and +1 (legal C expression).

We note that a C-only parser need not retain white space in the tokenization because it has

already committed to the tokens at the lexical analysis stage.

Note that if the method of requesting parameterised pass 1 tokens had been used (see Q 4:)

then no white space would need to be kept after pass 1.

If GP4 had been designed just imposing the following restriction on the sets of operators that

make up any one application:

the sets of operators in use must admit of a unique tokenization scheme (not one for

one set and another for another set)

then non-parameterised tokenization of operators could have take place in pass 1 and white

space could have been removed entirely in pass 1. The tokenization scheme would typically

be: longest match wins. This restriction would not imply that the different operator sets in use

would have to share precedences, associativities etc. for the various operators; it only affects

the longest-first tokenization rule across all operators.

The above restriction would have simplified life in pass 2 considerably. But the choice was

made to retain maximum flexibility in operator definitions (within the scope of PROLOG

Definite Clause Grammars); hence the need to retain white space in pass 1.

1
 As a legacy issue, in the GP4 code of version 1.0, and in the related figures, but not in the main text of

this paper, white space is rather inaccurately referred to as a delimiter. The term delimiter would have

been better reserved for delimitation by parentheses, and white space for spaces and tabs, and can

include comments. For the purposes of this report, delimiters and white space mean the same thing.

© Graham G. Thomason 2003-2004 11

3.3 The pass-1 call

The call is

p1_p(OUTPUT,INPUT,[]).

INPUT: A list of ASCII values.

OUTPUT: A list of output tokens.

Note: this call is of the standard format to invoke goals involving definite clause grammar

rules - see [Clocksin, p.225]. The empty list as a third parameter specifies that we require no

rest-string of unparsable items.

Example:

Figure 6. Pass-1 call example

Obtain as ASCII

Pass-1

ASCII list: Pass 1 input

Pass 1 output

Source text x1= -2.34E-1*5;

[120,49,61,32,45,50,46,51,52,69,45,49,42,53,59]

[[p1_id,x1],61,p1_delim,45,[p1_co,real,none,10

,0.234],42,[p1_co,int,none,10,5],59]

p1_p(P,N,[]),

write(P),nl.

name('x1= -2.34E-1*5;',N),

write(N),nl,nl,

PROLOG

PROLOG

12 © Graham G. Thomason 2003-2004

3.4 Pass-1 output tokens

The following tables show the output tokens produced.

Token Produced from Explanation of attributes

[p1_id,IDENTIFIER] an identifier

[p1_co,char,n,n,VALUE] a char (as in ‘C’) VALUE is the ASCII value of the

char

[p1_co,int,QUALIFIER,BASE,

VALUE]

an integer QUALIFIER=integer suffix

representation as in C: none, u, ul or

l (irrespective of case/order in the

source definition)

BASE=original base used

VALUE=integer value

[p1_co,real,QUALIFIER,10,

VALUE]
a real QUALIFIER=real suffix

representation as in C: none, l or f

(irrespective of case in the source

definition)

VALUE=real value

[p1_str,LIST] a string, enclosed in

double quotes

LIST contains ASCII values.

p1_delim white space and/or

comments

only one token produced per

sequence of white space/comment

combinations

Unaffected-ASCII-Code all other input

Table 1. Pass-1 outout tokens

Examples:

INPUT item (as ASCII string) OUTPUT token(s) - element(s) of output list

tweedledum [p1_id,tweedledum]

'B' [p1_co,char,n,n,66]

23LU [p1_co,int,ul,10,23]

2.34E-1 [p1_co,real,none,10,0.234]

"ABC" [p1_str,[65,66,67]]

+ 43

a 6 [p1_id,a],p1_delim,[p1_co,int,none,10,6]

/* comment */ p1_delim

Table 2. Examples of pass-1 tokens

© Graham G. Thomason 2003-2004 13

3.5 Pass-1 grammar

Pass-1 is performed by applying grammar rules. The following diagrams show these rules in a

form that is close to the actual implementation.

The syntax diagrams are backtrackable and imply sequence of attempt at parsing.

Consider the following figure:

Figure 7. Grammar rule example

It can be read as follows: A syntactic item "aa" is preferably a syntactic item "bb" – if this can

be satisfied by the input string, accept it. If "bb" cannot be satisfied, attempt to satisfy "cc". A

third choice is "dd".

The diagrams occasionally deviate from a pure syntax definition. The symbol in the figure

below indicates that some semantic information is set, or that a condition must be satisfied for

the parse to succeed.

processing

condition

e.g. evaluate a constant

e.g. apply constraint on preceding parsed items

dd

bb aa

cc

14 © Graham G. Thomason 2003-2004

Figure 8. Pass-1 grammar rules (1)

p1_constant p1_char

p1_p
(pass-1-parsed

ASCII string)

p1_constant
evaluate

p1_p

p1_identifier

p1_string

p1_delcomseq

other

character

p1_hex_integer

p1_octal_integer

p1_real

p1_decimal integer

p1_char

Note: ANSI C also allows for multibyte characters

single

quote

single

quote

escchar \

?, " \ a b f trvn v

Implementation note: these

items (p1_char etc.) are not

separately named

predicates in the PROLOG

code

p1_constant
octal, decimal or hex

\
evaluate

character

single

quote

single

quote

single

quote
\

escchar

Note: single quote is not an escchar. \' in a string is not an escape sequence

© Graham G. Thomason 2003-2004 15

Figure 9. Pass-1 grammar rules (2)

p1_hex_integer hex sequenceX0

x

p1_int_suffix

p1_int_suffix

p1_octal_integer octal sequence0 p1_int_suffix

p1_decimal_integer decimal sequence p1_int_suffix

p1_int_suffix_ul

p1_int_suffix_u

p1_int_suffix_l

p1_int_suffix_ul p1_int_suffix_u p1_int_suffix_l

p1_int_suffix_l p1_int_suffix_u

p1_int_suffix_u u

U

p1_int_suffix_l l

L

16 © Graham G. Thomason 2003-2004

Figure 10. Pass-1 grammar rules (3)

p1_real p1_mantissa p1_exponent p1_real_suffix

not: no decimal part

of mantissa and no

exponent

p1_mantissa p1_int_part p1_dec_part
not: no integer part

and no decimal part

not: no integer part

and decimal part is

decimal point only

p1_int_part decimal sequence

p1_dec_part decimal sequence.

p1_exponent decimal sequence

p1_real_suffix

p1_exp_symbol p1_optional_sign

p1_exp_symbol e

E

+

-

p1_optional_sign

f

F

l

L

© Graham G. Thomason 2003-2004 17

Figure 11. Pass-1 grammar rules (4)

p1_identifier

p1_string

p1_identifier_head p1_identifier_restlist

p1_identifier_head

underscore

uppercase

letter

lowercase

letter

p1_identifier_restchar
uppercase

letter

lowercase

letter

decimal digit

underscore

p1_identifier_restlist p1_identifier_restchar p1_identifier_restlist

double

quote

double

quote
p1_string_body

p1_string_body

p1_string_body

character

(non-escaped)

escchar

p1_constant
octal, decimal or hex

\
evaluate

18 © Graham G. Thomason 2003-2004

Figure 12. Pass-1 grammar rules (5)

p1_delcomseq
(delimiter and/or

comment sequence)

p1_comment

p1_delim_seq

p1_delcomrest

p1_delcomrest p1_comment

p1_delim_seq

p1_delcomrest

p1_comment
p1_comment_body/ * * /

/ / p1_comment_body linefeed

p1_comment body

p1_comment_bodyany character

p1_delim_seq p1_delimiter p1_delim_restseq

p1_delim_restseq p1_delimiter p1_delim_restseq

p1_delimiter

space
ASCII 32

alert
ASCII 7

b'space

ASCII 8

f'mfeed

ASCII 12

ver tab
ASCII 11

line feed
ASCII 10

c'return
ASCII 13

hor tab
ASCII 9

Note: this rule is non-greedy in satisfying the comment body

© Graham G. Thomason 2003-2004 19

4. Operator definitions

4.1 Operator overview

Operators lie in a layer between pass-1 and expression parse modules. They are called by the

expression parser in order to combine operands into expressions. Expression parsing and

operator parsing work with pass-1 output as their raw material. A successful parse produces

operator attributes such as name, precedence, position, associativity, arity, and morphology.

The operator definition system does not prescribe type or lvalue requirements on operands.

This processing is left to a validator module.

Figure 13. Operator layer

It is a feature of GP4 that various sets of operators can be defined by the user. The expression

parser takes as a parameter the names of all the sets of operators to be used in an expression

parse call. For example,

ex_expr([cc,fz,sm],...)

will look for an expression involving the operator sets cc (the C/Java set), fz (the

fuzzy/probabilistic operator set) and sm (the state machine operator set).

Operator

set 1

Pass-1

Expression parser

Operator

set 2

20 © Graham G. Thomason 2003-2004

4.2 Operator attributes

The attributes of an operator are as follows.

Name

Operators are given a name that can be distinct from their production sequence. This allows

for aliases as well as disambiguation of homonyms (i.e. overloaded operators such as ++). It

provides isolation of much of the complete software system from syntax changes. In Prolog it

is also more convenient to have alphanumeric names rather than non-alphanumeric ones,

since the latter require quoting.

For example, the C style pre-increment and post-increment operators both have the

production "++" , and are called preinc and postinc respectively.

Precedence

An alternative term for precedence is priority. We adopt the convention that the higher the

precedence, the sooner they are bound to their arguments, regardless of the order in which

they appear in the expression. Precedence (but not only precedence) determines what the

structure of an expression is. Note that this does not mean that they will necessarily be

evaluated sooner, although this is sometimes perforce the case.

Under standard precedence conventions, multiplication and division have a higher precedence

that addition and subtraction. In the expression

a+b+c*d-e

the multiplication binds terms c and d. The expression should be read as

a+b+(c*d)-e

Obviously, c*d will need to be evaluated before its result can be combined with other terms,

but it would typically be permissible to add a and b before multiplying c and d.

Position

The position of an operator can be

 prefix, as in ++i

 dyadic infix, as in i+j

 postfix, as in a++, foo(bar), arr[6]

 triadic infix, as in a?b:c

Note how postfix operators () and [] come in two parts, circumfixing their argument.

© Graham G. Thomason 2003-2004 21

Associativity

Associativity determines the binding order of a sequence of terms with operators of equal

precedence. Associativity can be

 left associative, as in

 a+b+c+d, equivalent to (a+b)+c)+d

 a++++, equivalent to (a++)++

(conceivable, but not legal C because a++ is never an lvalue, whatever its type – even

if it is of type int*)

 a[b][c], equivalent to (a[b])[c]

 a?b:c?d:e , equivalent to (a?b:c)?d:e (but in C this operator is right

associative)

 right associative, as in

 a=b=c=d, equivalent to a=(b=(c=d))

 !!b, equivalent to !(!b)

 a?b:c?d:e, equivalent to a?b:(c?d:e)

 non-associative This applies when an operator does not associate with operands

containing operators of equal precedence to this operator. There are no examples of this

kind of operator in C, but in some languages (including Prolog) the expression

 a=b=c

would be illegal on grounds of non-associativity.

We can interpret left associativity as meaning: the operand on the left of this operator must

contain operators of the same or higher precedence than this operator. The operand on the

right of this operator must contain operators of strictly higher precedence.

Similarly right associativity means: The operand to the right of this operator must contain

operators of the same or higher precedence than this operator. The operand on the left of this

operator must contain operators of strictly higher precedence.

Note that a?b?c:d:e is unambiguously equivalent to a?(b?c:d):e.

Arity

The arity specifies how many terms bind to the operator. The arity can be:

 monadic (also known as unary), as in a++

 dyadic (also known as binary) as in a+b, a[b]

 triadic (also known as ternary) as in a?b:c

22 © Graham G. Thomason 2003-2004

Note: we regard a(b,c,d) as a dyadic operator function_call operating on the operands a

(the function name) and b,c,d (the argument list). The argument list is itself a data

structure that could be regarded as being constructed by a polyadic operator. GP4 represents

the argument list as a Prolog list. An alternative would have been to build a left-associative

tree using the comma operator.

Similarly the array operator, as in a[b], is regarded as a dyadic operator with operands a

and b.

Morphology

The morphology can be

 keyword type, where the operator is an identifier-conformant keyword,

e.g. fand (fuzzy and).

 symbol type, where the operator is defined in terms of non-alphanumeric symbols,

e.g. -> .

 keyword-assignment type, where the operation is combined with assignment,

e.g fand= .

 symbol-assignment type, where the operation is combined with assignment,

e.g. += .

 brackets, used to override precedence rules. They are hard coded into the expression

parser. Precedence-overriding brackets are to be distinguished from function argument

brackets, which are defined as an operator.

The morphology is of no fundamental consequence in the GP4 system; the production rules

simply use the pass-1 tokens required. These are typically ASCII codes and [p1_id,

identifier] tokens.

© Graham G. Thomason 2003-2004 23

Remarks

1. Mixed associativity at the same precedence level

Suppose we define operators las and ras as left associative and right associative operators

respectively, at the same precedence level. How should we interpret: the following?

a ras b ras c las 2 las 3

Two parses fit the rules, as shown in the following figure:

Figure 14. Mixed associativity

We observe that the first parse is what we would get if the las operator were to have a

precedence greater than ras, and the second if the precedence of ras were to be greater than

las. So either effect can be explicitly achieved by allocating different precedences. So:

We require that the user allocates different precedences to disambiguate this situation.

ras

a ras (b ras ((c las 2) las 3)) ((a ras (b ras c)) las 2) las 3

ras

las

las

a

3

c

b

2

las

las

ras

ras

3

a

b

2

c

24 © Graham G. Thomason 2003-2004

Another case is the expression

a las b las c ras 2 ras 3

If las and ras have the same precedence, this expression does not parse at all. Again, if the

user allocates different precedences then it does parse, one way or another, whether the

precedence of las is greater than that of ras or vice versa.

The reason that the parse ((a las b) las c) ras (2 ras 3) is not obtained as a

parse is that the first ras would have operands on both sides of equal precedence to its own

precedence. The associativity requirement given above disallows this; the requirement states

that the operand to the left must be of strictly higher precedence.

4.3 Operator definition format

GP4 defines operators as follows

op_df(NTOKENS,OPSET,[op,PRECEDENCE,SHAPE,OPNAME])--> grammar rhs

NTOKENS the number of tokens the operator consumes. This information is supplied by

the user for efficiency reasons. It could be obtained by reverse-driving the predicate

e.g. as follows to find the number of tokens in the "dyadic scope" operator, given that

its name is dscope. Its production is seen to be "::", of length 2 tokens.

op_df(_,_,[_,_,_,dscope],WHAT,[]),

gn_length_list(WHAT,LEN).

giving

WHAT = [58,58] ,

LEN = 2

Here , the dscope (dyadic scope) operator has been made to yield its production, which is

the ASCII for '::'. However, this is very inefficient in a critical part of the system (it requires

a search through all operators), so for efficiency we have had to supply this information

explicitly. A test in the test suite checks for the correctness of this parameter.

OPSET the name of the operator set to which this definition is to belong, e.g. cc for

the C/Java set, fz for the fuzzy set etc.

PRECEDENCE the precedence level (high numbers for high precedence, =high priority)

© Graham G. Thomason 2003-2004 25

SHAPE defines the Arity, Position, and Associativity.

 [f,x]
2 monadic, prefix, non- associative

 [f,y] monadic, prefix, right-associative

 [x,f] monadic, postfix, non-associative

 [y,f] monadic, postfix, left-associative

 [x,f,x] dyadic, infix, non- associative

 [x,f,y] dyadic, infix, right-associative

 [y,f,x] dyadic, infix, left- associative

 [x,f,x,g,y] triadic, infix, right-associative a?(i?j:k)?(p?q:r)

this must be followed by [continued] in a definition with the same OPNAME

 [f,argl] dyadic, for argument LISTS, circumfixed by two productions.

The definition comes in two parts

- The left-circumfixing production

- The right-circumfixing production; which must have a SHAPE of

[continued] in a definition with the same OPNAME

In practice, this is the operator that is used for a function call. The productions are

"(" and ")". It dyadically combines the function to be called and the argument

list.

 [f,argi] dyadic, but for argument ITEMS, circumfixed by two productions.

The definition comes in two parts

- The left-circumfixing production

- The right-circumfixing production; which must have a SHAPE of

[continued] in a definition with the same OPNAME

In practice, this is the operator that is used for array indexing. The productions

are "[" and "]". It dyadically combines the array to be indexed and the argument

item.

The symbols used above (f, x, y, argl, argi etc.) are literals.

The arguments to operators are in general expressions. The[f,argl] interprets the

comma as a separator between arguments, and each argument has to use operators

that have a higher precedence than the comma operator. The [f,argi] operator

accepts expressions containing the comma operator in the same way as any other

operator.

OPNAME is the name given to the operator, e.g. postinc for the post-increment operator,

++.

2
 The [f,x] etc. notation is borrowed from the PROLOG way of specifying operators, as in e.g.

[Clocksin. p.93].

26 © Graham G. Thomason 2003-2004

grammar rhs defines the syntax, using standard Prolog Definite Clause Grammar rules.

This production should not contain a Prolog cut, for backtracking reasons, and for

reversibility reasons (the test script retranslates parses to what they were produced

from).

Implementation-specific note: Operator op_df/5 will in general be defined in more than one

file (e.g. there may be one file for C-operators, one file for fuzzy operators). Some

Prolog implementations, including WinProlog, will require a multifile declaration.

Note there are no restrictions on the order in which predicates are defined.

 There is no requirement to define e.g. -> before - (leading substring issue).

 There is no requirement to define higher precedence operators before lower precedence

ones.

Examples

/* A MONADIC EXAMPLE */

op_df(2,cc,[op,180,[f,y],mscope]) --> {name('::',[A,B])}, [A],[B].

/* SOME DYADIC EXAMPLES */

op_df(2,cc,[op,170,[y,f,x],imemsel]) --> {name('->',[A,B])}, [A],[B].

op_df(2,cc,[op,40,[x,f,y],asxmul]) --> {name('*=',[A,B])}, [A],[B].

op_df(1,fz,[op, 60,[y,f,x],fand]) --> [[p1_id,fand]].

/* TRIADIC OPERATOR IN TWO PARTS */

op_df(1,cc,[op,45,[x,f,x,g,y],aif]) --> {name('?',[A])}, [A].

op_df(1,cc,[op,45,[continued],aif]) --> {name(':',[A])}, [A].

/* FUNCTION CALL TYPE OPERATOR IN TWO PARTS */

op_df(1,cc,[op,170,[f,argl],fcall]) --> {name('(',[A])},[A].

op_df(1,cc,[op,170,[continued],fcall]) --> {name(')',[A])},[A].

/* ARRAY SUBSCRIPT OPERATOR IN TWO PARTS */

op_df(1,cc,[op,170,[f,argi],sqbr]) --> {name('[',[A])},[A].

op_df(1,cc,[op,170,[continued],sqbr]) --> {name(']',[A])},[A].

Additional definition required, defined in module op_aa.pl:

op_info(START,MAXIMUM,INCREMENT)

START: The START priority, i.e. the lowest priority in use

MAXIMUM: The MAXIMUM priority in use

INCREMENT: The priority increment (for efficiency: otherwise just use 1)

This clause is used by the expression parser to define its range of searching for operators at

different precedence levels. It must be consistent with all operator sets. If the increment is set

to 1, then this is safe, but inefficient if in fact the priority spacing is, say, 5 or 10. The

© Graham G. Thomason 2003-2004 27

performance of the system is strongly related to the number of precedence levels that need to

be covered.

28 © Graham G. Thomason 2003-2004

4.4 Tables of operators defined for parsing

The fact that an operator has been defined for parsing is separate from whether an operator

has been implemented for evaluation. Refer to section 10.3 for details of the implementation

operators for evaluation.

Under the Language column, extensions absent in C or Java are provisionally defined by

GP4, as a suggestion to new domain-specific languages if required.

4.4.1 Operator set "cc"

This set is based on C, some C++, Java and a few extensions.

Operation Symbol Definition parameter Lang

Scope Resolution

member scope :: [op,180,[y,f,x],dscope] C++

global scope :: [op,180,[f,y],mscope] C++

Primary Suffixes

Function call () [op,170,[f,argl],fcall]

[op,170,[continued],fcall]

C

Array indexing [] [op,170,[f,argi],sqbr]

[op,170,[continued],sqbr]

C

Memory

member select . [op,170,[y,f,x],memsel] C

indirect member select -> [op,170,[y,f,x],imemsel] C

Various monadic

address-of & [op,160,[f,y],addrof]

dereference * [op,160,[f,y],deref] C

reciprocal / [op,160,[f,y],recip] GP4

plus + [op,160,[f,y],mplus] C

minus - [op,160,[f,y],mminus] C

bitwise not ~ [op,160,[f,y],bnot] C

logical not ! [op,160,[f,y],lnot] C

pre-increment ++ [op,160,[f,y],preinc] C

pre-decrement -- [op,160,[f,y],predec] C

post-increment ++ [op,160,[y,f],postinc] C

post-decrement -- [op,160,[y,f],postdec] C

© Graham G. Thomason 2003-2004 29

Memory pointer

member pointer select ->* [op,150,[y,f,x],memptrsel] C++

indirect mem ptr select .* [op,150,[y,f,x],imemptrsel] C++

Exponentiative

exponentiation ** [op,145,[y,f,x],pwr] Fortran

Multiplicative

multiplication * [op,140,[y,f,x],xmul] C

division / [op,140,[y,f,x],xdiv] C

modulo % [op,140,[y,f,x],mod] C

Additive

addition + [op,130,[y,f,x],dplus] C

subtraction - [op,130,[y,f,x],dminus] C

Shifting

arithmetic shift right >> [op,120,[y,f,x],asr] C

arithmetic shift left << [op,120,[y,f,x],asl] C

logical shift right >>> [op,120,[y,f,x],lsr] Java

logical shift left <<< [op,120,[y,f,x],lsl] GP4

circular shift right >>>> [op,120,[y,f,x],csr] GP4

circular shift left <<<< [op,120,[y,f,x],csl] GP4

Relational

less than or equal <= [op,110,[y,f,x],le] C

greater than or equal >= [op,110,[y,f,x],ge] C

less than < [op,110,[y,f,x],lt] C

greater than > [op,110,[y,f,x],gt] C

equal == [op,100,[y,f,x],eq] C

not equal != [op,100,[y,f,x],ne] C

Bitwise

bitwise and & [op, 90,[y,f,x],band] C

bitwise xor ^ [op, 80,[y,f,x],bxor] C

bitwise eqv ~^ [op, 80,[y,f,x],beqv] GP4

bitwise incl or | [op, 70,[y,f,x],bior] C

Logical

short-circuit and && [op, 60,[y,f,x],land] C

long-circuit and &&& [op, 60,[y,f,x],lland] GP4

xor ^^ [op, 55,[y,f,x],lxor] GP4

equivalence !^^ [op, 55,[y,f,x],leqv] GP4

30 © Graham G. Thomason 2003-2004

short-circuit or || [op, 50,[y,f,x],lior] C

long-circuit or ||| [op, 50,[y,f,x],llior] GP4

Arithmetic conditional

arithmetic if ? : [op,45,[x,f,x,g,y],aif]

[op,45,[continued],aif]

C

Assignment

assign = [op,40,[x,f,y],assign] C

exponentiate-assign **= [op,40,[x,f,y],aspwr] GP4

multiply-assign *= [op,40,[x,f,y],asxmul] C

divide-assign /= [op,40,[x,f,y],asxdiv] C

modulo-assign %= [op,40,[x,f,y],asmod] C

add-assign += [op,40,[x,f,y],asplus] C

subtract-assign -= [op,40,[x,f,y],asminus] C

bitwise-and-assign &= [op,40,[x,f,y],asband] C

bitwise-xor-assign ^= [op,40,[x,f,y],asbxor] C

bitwise-equiv-assign !^= [op,40,[x,f,y],asbeqv] GP4

bitwise-incl-or-assign |= [op,40,[x,f,y],asbior] C

arith shift right assign >>= [op,40,[x,f,y],asasr] C

arith shift left assign <<= [op,40,[x,f,y],asasl] C

log'l shift right assign >>>= [op,40,[x,f,y],aslsr] Java

log'l shift left asign <<<= [op,40,[x,f,y],aslsl] GP4

circ shift right assign >>>>= [op,40,[x,f,y],ascsr] GP4

circ shift left assign <<<<= [op,40,[x,f,y],ascsl] GP4

Sequence

sequence , [op,10,[y,f,x],seq] C

Table 3. Operator set "cc"

Notes

1. We cannot differentiate between integer multiply/divide and real multiply/divide at this

stage.

2. Not implemented are C keyword operators (sizeof), cast operators.

3. Not implemented are C++ keyword operators (new, delete, throw).

4. Not implemented are Java keyword operators (instanceof)

© Graham G. Thomason 2003-2004 31

5. Java interprets

 <logical item> & <logical item> as “long circuit and” (our &&&)

 <integral item> & <integral item> as “bitwise and”

 Similarly with “|”

6. The C bitfield symbol (:) is not used in expressions - only in declarations

4.4.2 Operator set "fz"

Operation Symbol Definition parameter Lang

Probabilistic

boost odds boost [op,140,[y,f,x],boost] Dexios

depress odds depress [op,140,[y,f,x],depress] Dexios

Fuzzy

fuzzy not fnot [op,160,[f,y],fnot] Dexios

fuzzy and fand [op, 60,[y,f,x],fand] Dexios

fuzzy xor fxor [op, 55,[y,f,x],fxor] Dexios

fuzzy equivalent feqv [op, 55,[y,f,x],feqv] Dexios

fuzzy inclusive or fior [op, 50,[y,f,x],fior] Dexios

Assignment

boost-assign asboost [op,40,[x,f,y],asboost] Dexios

depress-assign asdepr [op,40,[x,f,y],asdepr] Dexios

fuzzy and assign asfand [op,40,[x,f,y],asfand] Dexios

fuzzy xor assign asfxor [op,40,[x,f,y],asfxor] Dexios

fuzzy equivalent assign asfeqv [op,40,[x,f,y],asfeqv] Dexios

fuzzy incl or assign asfior [op,40,[x,f,y],asfior] Dexios

Table 4. Operator set "fz"

Notes

 These operators were applied to a probabilistic/fuzzy inference engine in the Dexios

project [Dexios].

 The semantics are defined in the chapter on expression evaluation.

32 © Graham G. Thomason 2003-2004

4.5 Operator grammar

The terminals of these grammar rules are output tokens from pass-1 (not pass-1 rules

themselves).

Figure 15. Operator grammar

op_dd
(operator def inition

absorbing delimiter)

op_dl optional_delim

optional_delim p1_delim

&

++

etc.

Refer to table for the operators

in each operator set. The table

also shows:

 precedence

 position

 associativity

 arity

op_dl
(operator def inition

f rom sev eral sets)

op_df
consider each

operator set

op_df
(operator def inition

f rom one specif ied

set)

© Graham G. Thomason 2003-2004 33

5. Expression parsing

5.1 Overview

The task of expression parsing is to combine terms and operator sequences into expressions.

This is shown in the following figure:

Figure 16. Overview of expression parsing

expression

parsing

Read file

Pass-1

ASCII list: Pass 1 input

Pass 1 output

Source text 1+a*2-5

[49,43,97,42,50,45,53]

[[p1_co,int,none,10,1],43,[p1_id,a],42,[p1_co,

int,none,10,2],45,[p1_co,int,none,10,5]]

Pass 2 output

[ex_expr,

 [[ex_dyadic,dminus],

 [[ex_dyadic,dplus],

 [ex_co,int,1],

 [[ex_dyadic,xmul],

 [ex_id,a],

 [ex_co,int,2]

]

],

 [ex_co,int,5]

]

].

34 © Graham G. Thomason 2003-2004

5.2 Some considerations

If expression parsing can be achieved in using Prolog Definite Clause Grammars, then parsing

the rest of a language is probably relatively straightforward. The challenge is to parse

expressions by consuming input tokens from the left only, i.e. without knowing in advance

where the end of the expression is. The rest-string must be the token sequence starting at the

first token that cannot belong to the expression.

An alternative approach that was considered is to identify the end of an expression with a

weaker grammar that does not know about precedences etc., but which can identify the text of

an expression. This would give us a handle on both ends of the expression. Then one could

use productions such as

 any_text_longest_first operator any_text_shortest_first

to pick out the operators at highest priority first and recursively descend. This gives left

associativity. For right associative operators the rule would be

any_text_shortest_first operator any_text_longest_first

One would have to ensure the entire expression string is consumed on each call. The method

has the advantage of being isomorphic to the way a human would tend to parse an expression.

However, this method would be inefficient for long expressions, as it would have to split the

string in a quadratically rising number of ways. The idea of applying this technique on the

entire input string without identifying the end of an expression in advance can be ruled out a

fortiori for this reason.

The goal of left-hand-consuming input tokens has been achieved, but many issues required

special attention:

 grammar transformation to avoid left recursion

 achieving left associativity

 disambiguation of overloaded operators

 disambiguation of overloaded leading substrings in operators

 absorption of white-space

 run-time efficiency

 testability

Expressions can be parsed working from multiple operator sets per call, as mentioned in the

section 4.1

The expression parser does not consider type or lvalue contexts. An example of an invalid

statement in C because an lvalue is required is:

 "hello world"=x;

Variables, constants and strings are considered with impartiality. A language system should

provide a separate validator to check for mismatches in this respect.

© Graham G. Thomason 2003-2004 35

One restriction in the above scheme is that incorrect type/lvalue contexts will not cause

backtracking in expression parsing. However, computer languages (e.g. C) are usually

(always, maybe), designed so that no backtracking in such a situation is required.

Comment not based on the current parsing strategy: The backtracking on type/lvalue

mismatch issue would be of importance in the following situation. Suppose we were to

relinquish the C strategy of longest operator wins and replace it by the highest priority

operator with an operand wins strategy. Consider parsing an expression such as

c+++++d

If we define ++ to be a right associative prefix and left-associative suffix, then we can parse

this as

((c++)++)+d or (c++)+(++d) or c+(++(++d))

However, if we cannot tell the expression parser that ++ does not yield an lvalue, then it will

accept the first parse rather than backtracking to find the second one. A way to obtain the

second parse is to define ++ as nonassociative – i.e. shape [x,f] and [f,x] in the

definition described in section 4.3.

 There is of course no ambiguity when white space is used:

c++ + ++d

5.3 Choice of expression grammar to implement

 Figure 24 shows the grammar of expressions in the C language in a railroad diagram. The

diagram does not consider context issues such as types and lvalues.

This grammar exhibits a certain lack of generality:

 Suffix expressions can only operate on primary expressions. This is why in C an indirect

function call might be (*pf)(x,y,z), although as it happens this is equivalent to

pf(x,y,z). The call cannot be *pf(x,y,z) because it is not possible (even if we

could adjust operator precedences), given C syntax as defined by Figure 24, to arrange for

the dereference operator to bind before the argument list suffix. Argument list suffixes

can only bind to primary expressions, and *pf is not a primary expression.

 The operators . and -> have a context restriction in that their right hand argument must

be an identifier. This is in itself a desirable feature, but for a generic parser, we postpone

type and lvalue constraints to a later validation phase.

 The suffix symbols [] and () are the only instances of single-argument-circumfixing

operators and multiple-argument-circumfixing operators.

We generalise, for better of for worse, (where for the worse, we compensate with a validation

module), and specify a grammar for GP4 with the following features:

 Postfix expressions can operate on any expression in principle, (i.e. providing the

precedences allow it).

36 © Graham G. Thomason 2003-2004

 There are no facilities for context restrictions based on type and lvalue considerations.

 The operator features described in Section 4 allow for multiple operators of the

circumfixing suffix type.

The resulting expression grammar of GP4 is given in Figure 25. However, this description,

although perfectly valid, does not bring out precedence and associativity issues, and does not

reflect an implementation strategy. These issues are considered in the next subsection.

5.4 Addressing the tough issues

5.4.1 Grammar transformation to avoid left recursion

The grammar given in Figure 25 can be transformed so that there is no left recursion. The

figure below illustrates left recursion:

Figure 17. Left-recursive rule

Standard Prolog definite clause grammars cannot not cope with left recursion. Code such as

the following (omitting parameters to the predicates a, b, and c which would normally be

present)

a:-a,b.

a:-c.

can be read as:

To prove "a", first prove "a" and then prove "b". If the previous strategy fails, prove

"c" instead.

This results in infinite recursion on "a" - there is no way to break out. The fact that definite

clause grammars are used makes no difference. If we have

 expression-->

 expression,operator,expression.

there are hidden parameters; it is equivalent to

 expression(S0,S):-

 expression(S0,S1),operator(S1,S2),expression(S2,S).

where S0 is the string to be parsed, and S is the unused rest-string. The right-hand-side call to

expression(S0,S1) works with the same input as the original left-hand-side call to

expression(S0,S) - so no progress will be made in reducing the input string and so

preventing infinite recursion.

expression operator expression expression

© Graham G. Thomason 2003-2004 37

The situation is different with e.g.

expression-->

 openbracket,expression,operator,expression,closebracket.

since by the time "expression" is evaluated on the right hand side, the string which it is

passed is shorter than the original string, openbracket having "bitten something off".

For a discussion of grammar transformation in general, and with an example, refer to [Bennet,

p.35].

The solution to transforming the grammar of GP4 lies in defining the arguments to operators

as terms at some precedence level. As arguments to operators at the highest precedence level,

terms are primitive (identifiers, constants or strings), and cannot involve expressions with

other operators. A bracketed expression also behaves like a primitive term. When parsing an

expression containing operators of various precedences, recursive calls to the expression goal

take place, but they are at higher and higher levels, so there is no infinite recursion. It is where

a primitive term is encountered that the recursion is broken, and part of the input string is

"bitten off". If no primitive term is encountered, the level reaches a maximum level and the

parse fails.

The result is the transformed grammar of Figure 26, Figure 27 and Figure 28 on pages 49, 50

and 51.

The transformed grammar is very close to the actual implementation. It incorporates some

efficiency features. These are

 factored-out leading goals,

 a very important cut-fail sequence to prevent combinatorial explosion of backtracking.

These issues are discussed in a subsequent subsection.

The transformed grammar contains syntactic items at a certain precedence level, e.g. term(N).

The starting level is given as zero as a typical value. The starting and maximum levels are set

in the GP4 op_aa.pl module.

38 © Graham G. Thomason 2003-2004

It is interesting to note the mutual recursion of expression and term in:

Figure 18. Mutual recursion of expression and term

An expression is defined by means of a term, and a term is defined by means of an

expression. As discussed above, this mutual recursion is not infinite because of the associated

"level" parameter. The last production above involving expression (N+1) is the only place in

the grammar where the precedence level is increased.

The grammar also contains operations to associate sequences of terms. These operations

apply to monadic operator sequences and dyadic term-operator-term-operator sequences.

Note also the introduction of the item ex_identifier (as opposed to a pass-1 identifier

p1_identifier), defined in Figure 28, and used in the preceding figures. This allows us to

specify identifiers that are not keyword operators, although the underlying pass-1

representation of each is identical. This does involve searching through all operators at every

occurrence; the price is considerable but is affordable.

term (N) expression(N)

 term_prefixes_only (N) term (N)

term_no_affixes (N) term_prefixes_only (N)

expression (N+1) term_no_affixes (N)

© Graham G. Thomason 2003-2004 39

5.4.2 Achieving left associativity

It is not particularly difficult to left-associate a sequence of operators and terms, but if we

were to try to work without sequences, we would be in trouble. The temptation is to observe

that right associativity comes naturally, and to try to find something similar for left

associativity. For example, the production following leads to natural right associativity.

Figure 19. Natural right associativity

For left associativity, we cannot use the following because of left recursion.

Figure 20. Left recursion hinders left associativity

It is tempting to consider using the right-associative rule and then transforming a right-

associated structure into a left-associated one. The difficulty with this approach is knowing

what part of an expression structure requires this transformation and what does not, as some

parts of the parsed structure may be legitimately structured by the use of brackets.

The solution with term sequences appeared to be the most convenient, and it works well. At

some precedence level, we see an expression as follows, and then apply a left-associate

function to the list.

Figure 21. Expression at a precedence level

The "associate" function for triadic operators was not required as the C "arithmetic if"

operator is right associative.

term operator expression expression

expression operator term expression

term operator expression expression expression operator

40 © Graham G. Thomason 2003-2004

5.4.3 Disambiguation of overloaded operators

There are different types of overloading:

 monadic/dyadic overloading of + and -

 prefix/suffix overloading of ++ --

 possible ambiguities with operator combinations, e.g. c+++++1

 overloading of leading substrings, e.g. + and ++, - and ->

A rule, which C imposes on us, is that the longest operators occurring in an input sequence

(i.e. most characters) are taken to the exclusion of shorter ones. No regard is paid to operator

precedence in this. So irrespective of precedences, a&&b will always be a "logical and", never

be a "bitwise-and" and "address-of" combination, a&(&b), (which happens to be invalid for

typing reasons, but we are considering first principles here). Note that the precedence of both

& operators is higher than &&, but this is not considered by the parser because of the existence

of a longer operator in the input stream.

We still have to consider overloading at some operator length, e.g. the single-character

operator "&". In almost all cases, a misinterpretation of a symbol will result in a failed parse

and backtracking will take place to find a correct parse. Normally this will enable the dyadic

&-operator to be distinguished form the monadic &-operator. Possible confusion could arise if

two monadic and dyadic overloaded operators occur in succession, e.g. a*&b. In this case

precedence and associativity play a role.

The parser will search and backtrack to find a fitting kind of term sequence. However, within

precedence constraints the expression parser will take the first legal parse it can find. It is up

to the operator definer to avoid ambiguities. The ways to constrain an expression are

 Operator precedence

 Operator associativity

 Operator symbol selection, verifying that overloading will not make multiple parses

possible.

As already discussed, the following are not applicable to constraining expression parsing,

only to post mortem error messages:

 Type restrictions

 Lvalue restrictions

The following are last resorts imposed on the user (as in C):

 Supply white space, e.g. c++ + ++d or c++ ++ +d

 Supply brackets, e.g. (c++)+(++d) or ((c++)++) +d

© Graham G. Thomason 2003-2004 41

5.4.4 Absorption of white space

Optional pass-1 white-space is absorbed by the items ex_identifier, ex_constant, ex_string

and op_dd. From an expression parsing perspective, these items are the effective terminals.

5.4.5 Run-time efficiency

When a large number of operators are defined, then memory requirements and performance

can be an issue. We have defined about 75 operators as "standard", and about 35 precedences

as standard. Performance is acceptable but not fast on a 300 MHz machine (as sold in 1998);

on a 3 GHz machine (as sold in 2003), it is good.

The GP4 expression grammar incorporates the optimisations described in the following

subsections.

5.4.5.1 Factoring out duplicate leading goals

In PROLOG code, a duplicate leading goal can lead to inefficiency.

A duplicate leading goal occurs in the following Prolog code:

a:-b,c.

a:-b,d.

We can read this as: To prove "a", either prove "b" and then "c", or prove "b" and then "d".

Now suppose we do this, starting by proving "b", then attempting to prove "c", but suppose

also we fail to prove "c". We must now attempt to prove "b" and "d". But we have just proved

"b"! Unfortunately, that information is now out of scope, and we must prove "b" again. This is

the root cause of the inefficiency.

Assuming we are not interested in side-effects of a failed attempt at proving "a", a better way

to define "a" would be

a:-b,z.

z:-c.

z:-d.

We can read this as: To prove "a", prove "b", then prove "z". To prove "z", prove "c", or if

this fails, prove d instead. If, in a similar case to the one above, we apply this, we prove "b",

then attempt to prove "c". The proof of "c" fails, but we now turn to proving "d" without re-

proving "b".

We now give some Prolog code that demonstrates this point. Whenever "b" is called, it prints

the letter b as a representation of doing some work. We add some parameters for realism. We

are looking for a solution involving a(4), which means finding b(4),c(4) or

b(4),d(4). The way the goal has been defined, various values of X in a(X) will be

generated before they are tested for the value we require, i.e. 4.

42 © Graham G. Thomason 2003-2004

The following code calls b eight times:

go:-a(X),X=4,nl.

a(X):-b(X),c(X).

a(X):-b(X),d(X).

b(1):-write(b).

b(2):-write(b).

b(3):-write(b).

b(4):-write(b).

c(1). c(2). c(3).

d(1). d(2). d(3). d(4).

| ?- go.

bbbbbbbb

yes

| ?-

The following equivalent code (barring side effects) factors out the leading term b and only

calls b four times:

a(X):-b(X),z(X).

z(X):-c(X).

z(X):-d(X).

b(1):-write(b).

b(2):-write(b).

b(3):-write(b).

b(4):-write(b).

c(1). c(2). c(3).

d(1). d(2). d(3). d(4).

| ?- go.

bbbb

yes

| ?-

© Graham G. Thomason 2003-2004 43

The inefficiency can multiply into combinatorial explosion if it is not contained.

Combinatorial explosion occurs where a duplicated leading term is defined in terms of lower

level goals which are in turn defined using duplicate leading terms.

Duplicate leading goals arise in specifications such as the following:

Figure 22. Duplicate goals

5.4.5.2 Controlling recursion incurred by precedence levels.

The expression grammar has a rule that a term at level N can be, via a few intermediate rules,

an expression at level N+1. This in turn will lead to a search for an expression at level N+2.

This process will continue up to the highest precedence level. Now suppose the input section

in question is not an expression at all. The goal will fail at level MAX. Suppose we started at

level 30, and suppose that MAX is 200. We will have stacked up expression calls at levels

31,32,33...200, and we will fail at level 200. The last rule attempted will be for a primary

expression. Now if this fails at level 200, it will fail at all previous levels. The Prolog

terminology for a committal to a particular solution path is to call the "cut" predicate. If after

a cut, we call "fail", we exclude further attempts to satisfy the head goal (but not the calling

goal above it). We can represent our desired behaviour by a cut-fail combination as shown in

the following figure:

Figure 23. Cut-fail in a parse

Experiments showed that without this cut-fail combination, the parser was practically useless

except for very simple expressions, but with it, long expressions can be parsed in very

reasonable execution times. This control information is so important that it has been included

in the syntax diagrams.

term xfy operator term expression

term yfx operator term expression

primary expression

expression(N+1)term_no_affixes(N)

N<MAX,cut,fail

44 © Graham G. Thomason 2003-2004

5.4.6 Testability

An important aspect to testing expressions is the ability to test hundreds of expressions easily.

It is tedious and error-prone for the tester to have to predict the exact parsed output per test,

and it consumes a lot of test-script "real-estate" to define tests this way.

To alleviate this situation an algebraic reconstruction predicate has been written that

reconstructs a bracketed expression from the parse. The tester need only provide such

bracketed expressions as oracles to tests. For example, the following defines a test, where

'a+b(a)++ rr' is supplied to the parser, and 'a+(b(a)++)' is the reconstruction

after parse. The text rr belongs to the "rest-string".

The data for a test can be defined in terms of the input text and the reconstructed expression

after parsing:

exzd(exs05, 'a+b(a)++ rr','a+(b(a)++)').

Section 12.5 describes the test framework, and how use a predicate such as the above in a test

suite.

© Graham G. Thomason 2003-2004 45

5.5 Representation of parsed expressions

Entire expressions after a parse are of the form

[ex_expr,EXPRESSION]

The parameter EXPRESSION is the expression body and is of the form

 [ex_co,char,ASCII_CODE]

 [ex_co,int,INTEGER]

 [ex_co,real,REAL]

 [ex_str,LIST_OF_ASCII_CODES]

 [[ex_monadic,OPERATOR],OPERAND1]

 [[ex_dyadic,OPERATOR],OPERAND1,OPERAND2]

 [[ex_triadic,OPERATOR],OPERAND1,OPERAND2,OPERAND3]

In the case of an argument list, an operand takes the form of a list of expression bodies. It can

be the empty list. In all other cases, an operand is an expression body.

The OPERATOR names are not the sequences that defined the syntax of the operator, but the

names as specified in op_df definitions (refer to Section 4).

The OPERANDS to a function call type operator are the function reference and the argument

list where the operands can themselves be expression bodies.

The operands to an array dimension operator are the array reference and the dimension

expression.

Notice that the pass-1 tokens for identifier, char, int, real and string, e.g.

[p1_id,IDENTIFIER], have been replaced by new expression parser ones, e.g.

[ex_id,IDENTIFIER].

46 © Graham G. Thomason 2003-2004

5.6 Expression grammar

 Figure 24 shows an expression grammar for C, similar to that given in [C, p.496]. It contains

left-recursive rules, and would require transformation before it could be implemented as a

Definite Clause Grammar.

 Figure 25 shows a slightly more powerful grammar than the grammar for C, but it is still left-

recursive. It differs in the following respects:

 It generalises on the monadic suffix operator (rather than only allowing the explicit ++

and -- operators).

 The .identifier and ->identifier suffix expressions are widened by allowing .expression

and ->expression, which means that the . and -> operators become ordinary dyadic

operators.

 The sizeof operator is subsumed by any function call, which is handled by expression and

suffix expression with the arglist operator.

The above grammar is transformed to a non-left-recursive grammar, which is moreover

represented in an entirely feed-forward way. It is the expression grammar used by GP4.

Various features were introduced:

 Expression grammar rules are parameterised with a precedence level, which is the

precedence level of the operators used to combine terms in the grammar rule for the

expression at that level.

 Term sequences are also parameterised with an associativity parameter.

 Some small non-grammar operations are performed, indicated by .

Examples:

 to left associate, which basically transforms a+b-c+d into [[a+b]-c]+d]

 to test for a property, such as the parameter ASSOC representing xfy (i.e. [x,f,y])

associativity.

The transformed grammar is shown in Figure 26, Figure 27 and Figure 28. This exercise,

carried out from first principles, was the most interesting and challenging part of designing

and implementing GP4.

© Graham G. Thomason 2003-2004 47

Figure 24. Expressions in C - left recursive specification

primary

expression

expression

suf f ix

expression

monadic pref ix

operator
expression

operator

(dy adic/assignment)
expression expression

expression ? expression expression:

primary expression

identif ier

constant

string literal

ty pe

specif ier

expression

sizeof

()

()

suffix expression

expression[]

.

->

++

--

identif ier

identif ier

()expression

,

48 © Graham G. Thomason 2003-2004

Figure 25. GP4 Expressions - left recursive specification

expression

expression

suf f ix expression

(monadic/dy adic)

monadic pref ix

operator
expression

 dy adic operatorexpression expression

expression expression expression

primary expression

identif ier

constant

string literal

expression()

suffix expression (monadic/dyadic)

primary

expression

triadic

operator B

triadic

operator A

expression

monadic suf f ix

operator

arglist

operator A

arglist

operator B

array dim

operator B

array dim

operator A

expression

,

© Graham G. Thomason 2003-2004 49

Figure 26. GP4 Expressions - Transformed grammar (1)

expression

expression(N) term(N) termseq(N,ASSOC)
associate

expression(0)

termseq(N,ASSOC) xfyseq(N)

ASSOC=xfy

yfxseq(N)

ASSOC=yfx

triseq(N)

ASSOC=none

ASSOC=xfxgy

xfyseq(N) op_xfy(N) term(N) xfyrestseq(N)

xfyrestseq(N) xfyseq(N)

yfxseq(N) op_yfx(N) term(N) yfxrestseq(N)

yfxrestseq(N) yfxseq(N)

triseq(N) op_tri(N) A expression(N) op_tri(N) B expression(N)

term(N) term_prefixes_only(N) suffix_list(N)
left associate

term_no_affixes(N)

term_prefixes_only(N)prefix(N)term_prefixes_only(N)

50 © Graham G. Thomason 2003-2004

Figure 27. GP4 Expressions - Transformed grammar (2)

suffix_list(N) suffix_item(N)

expression(0)

monadic suffix

operator(N)

arglist_open

operator(N)

arglist_close

operator(N)

arraydim_close

operator(N)

arraydim_open

operator(N)
suffix_item(N)

arglist

arglist expression(CommaPrec) rest_arglist

rest_arglist , arglist

primary expression ex_identifier

ex_constant

ex_string

expression(0)()

primary expression

expression(N+1)term_no_affixes(N)

N<MAX,cut,fail

suffix_list(N)

The cut,fail combination is reached if the input stream cannot be

parsed as expression(N+1).

If N=MAX, we ignore the N<MAX,cut,fail route and proceed to

look for a primary expression in the input stream.

If N<MAX, we execute the cut,fail combination. This means that

the syntactic item term_no_affixes(N) is considered to have failed

to parse and no further options for it are to be examined.

© Graham G. Thomason 2003-2004 51

Figure 28. GP4 Expressions - Transformed grammar - (3)

ex_identifier p1_identifier opt_delim
not an operator keyword

ex_constant p1_constant opt_delim

ex_string p1_string opt_delim

ex_opt_delim
(optional delimiter)

p1_delim

52 © Graham G. Thomason 2003-2004

6. Application-specific syntax definition

This module is named "sy_sm" in Figure 3. The _sm suffix stands for an arbitrary application.

This module contains:

 The statement delimiter for the application language being implemented.

 Prolog definite clause grammar (DCG) predicates describing statements

 "Write Summary" predicates that use a parsed statement to generate a one-liner summary

so that limited output can be generated.

This information is used by the compiler control module, which itself has no knowledge of

application specifics such as the above items.

Statement delimiter definition

The statement delimiter definition is as follows (for delimiter -:-):

sy_statement_delimiter(X):-

name('-:-',X).

If it is not possible to separate portions of input by a delimiter, a non-ASCII symbol can be

used so that the entire file will be read in one go, e.g.

sy_statement_delimiter([none]).

Syntax definitions

The syntax definitions work with pass-1 tokens, but should reference the following predicates

from the expression-parsing module:

 ex_identifier(OPSETLIST,[_,IDENTIFIER]), where IDENTIFIER can be

ground or non-ground.

 ex_opt_delim(_), for optional comment/white-space sequences

 ex_expr(OPSETLIST,E), to parse an entire expression (E) using operators in the

operator sets given.

© Graham G. Thomason 2003-2004 53

Statement parser

The compiler module works independently of any of any particular application, so every

statement must be parsed by the same call. This call is

sy_statement(STATUS,OBJECT_STATEMENT,P1_STATEMENT,[]).

The input parameter is P1_STATEMENT. This is the pass-1 output list, consisting of pass-1

output tokens.

The empty list parameter [] implies that the entire input string must be used up in doing the

parse.

The output parameter is OBJECT_STATEMENT. This consists of a nested list, built up by the

parsing grammar rules that the user defines.

The STATUS parameter tells the compiler whether the parse was successful or not. The

values used are

 g_er for a parse containing errors

 g_ok for a valid parse

A final possibility is that

 the parse call fails (in the Prolog sense)

The compiler takes appropriate action in each of these eventualities (and some additional

ones): see Section 8.

A warning

The implementer should be judicious with the use of cuts in defining the syntax. Bear in mind

that a cut freezes the "rest-string" parameter and that this may not be desirable under some

circumstances.

54 © Graham G. Thomason 2003-2004

Example

Statement delimiter

sy_statement_delimiter(X):-

 name('-:-',X).

Operator set definition (operators in use in expressions)

sy_opset([cc,fz]).

General statement: sy_statement(S)

sy_statement(STATUS,S) -->

 ex_opt_delim(_),

 sy_statement_heart(STATUS,S),

 ex_opt_delim(_),

{!}. /* rest-string is bound here, can cut */

Repertoire of statements

sy_statement_heart(STATUS,CO)--> sy_co(STATUS,CO). /* constant */

sy_statement_heart(STATUS,IS)--> sy_is(STATUS,IS). /* initial survey */

sy_statement_heart(STATUS,FS)--> sy_fs(STATUS,FS). /* final survey */

sy_statement_heart(STATUS,SG)--> sy_sg(STATUS,SG). /* symptom group */
etc.

A statement syntax example: constant
/*---*/

/* */

/* BRAND-X SYNTAX for CONSTANT */

/* =========================== */

/* */

/* Prefix: sy_co */

/* */

/* <constant statement> ::= */

/* constant [<identifier> <expression>]* */

/* */

/*---*/

/*--*/

/* Status ok */

/*--*/

sy_co(STATUS,[nw_co,CL]) --> /* will be called with no restlist */

 {sy_opset(OPSETLIST)},

 ex_identifier(OPSETLIST,[_,constant]),

© Graham G. Thomason 2003-2004 55

 ex_opt_delim(_),

 sy_co_constant_list(STATUS,[_,CL]),

 ex_opt_delim(_).

 /*--*/

 /* No cut, so that if RESTLIST not empty, */

 /* backtracks to any-text error-parse */

 /*--*/

sy_co_constant_list(STATUS,[nw_co_constant_list,[[I,E]|T]]) -->

 {sy_opset(OPSETLIST)},

 ex_identifier(OPSETLIST,[_,I]),

 ex_opt_delim(_),

 ex_expr(OPSETLIST,E),

 ex_opt_delim(_),

 sy_co_constant_list(STATUS,[_,T]).

 /*--*/

 /* No cut, so that if RESTLIST not empty, */

 /* backtracks to any-text error-parse */

 /*--*/

sy_co_constant_list(ok,[nw_co_constant_list,[]]) -->

 [].

/*--*/

/* Status error */

/* for junk text in constant list */

/*--*/

sy_co_constant_list(err,

 [nw_co_constant_list,

 ['**Error: constant list: <identifier> <expression> not found']]) -->

 ex_any_text_long(_).

56 © Graham G. Thomason 2003-2004

7. Application specific data

This module is named "ap_sm" in Figure 3. The _sm suffix is an arbitrary application. The

module defines certain texts that are used by the compile module:

 Compiler name

 Copyright text

 File extensions for source, listing and object files.

 Compiler-and-version text as one atom

Example

/*--*/

/* application definitions */

/*--*/

ap_name('BRAND-X').

ap_copyright('Copyright (C) Philips Electronics N.V, 1999').

ap_version('1.00').

ap_extn(source,dxs).

ap_extn(object,dxo).

ap_extn(listing,dxl).

/*--*/

/* ap_compiler_line */

/* ================ */

/* Returns an atom of */

/* COMPILERNAME (Version X.nn) */

/*--*/

ap_compiler_line(CL):-

 ap_name(NAM),

 ap_version(VERSION),

 gn_append_atoms(NAM,' COMPILER (Version ',T1),

 gn_append_atoms(T1,VERSION,T2),

 gn_append_atoms(T2,')',CL).

© Graham G. Thomason 2003-2004 57

8. The compiler control module

This module is named "cp" in Figure 3. The module does not contain any application-specific

code or data. It draws on the following application-specific modules (refer to the relevant

section for details):

 ap_xx for application data (e.g. compiler name)

 ci_xx for compiler verbosity settings

 op_xx for operator definitions

 sy_xx for syntax definitions (and also the statement delimiter)

The module works in a read-compile loop, working with a unique statement delimiter. This

breaks up the input into separate chunks, which are compiled individually. However, it may

not always be practical to do this because the statement delimiter must not occur in any other

place such as a comment or string. There is no parse-as-you-read strategy. Under some

circumstances, it may be necessary to read the entire source file in one go, perform pass-1 on

it, and then maybe offer portions to pass-2 at a time, or to offer everything to pass-2.

The parsing return code of a statement (returns from sy_statement) can be the following

 g_ok Success, i.e. the parse worked and is marked as correct in a returned status

parameter.

 g_er Erroneous, i.e. the statement is recognised as such but it contains syntax

errors. It is up to the syntax implementer to provide for erroneous parses, e.g.

by using "any-text" predicates to skip over failed parts of a statement. In a

Prolog sense, the statement-parsing predicate succeeds with erroneous

statements, but only because provision was made to detect erroneous parts of

the statement. It is marked as erroneous in a returned status parameter. The

compiler then knows to output an error message and to count the error.

 g_ig Ignore. The compiler should ignore this, except to reproduce it in listings

(e.g. statement is null)

 g_stop Stop. The statement is in irrecoverable error, and compiler should stop,

except that sy_finalize will still be called

 (fail) Failed in the Prolog sense. This means that the statement not recognised at

all. The compiler will output an error message and the Pass-1 output.

58 © Graham G. Thomason 2003-2004

Figure 29. Compilation control in main loop

 Figure 30 below shows the structure of the compiler control module in more detail. Shaded

calls are those to the application-specific module.

pass-1 failed pass-2

read_compile

read compile repeat

pass-2

write output
write error

message

ok erroneous

write error

message

© Graham G. Thomason 2003-2004 59

Figure 30. Main features of call graph in cp module

 cp_compile(FILENAME) atomic name, without extension

close down I/O

This involves a loop, see below

repeat

sy_read_statement(P0_STATEMENT,EOF)

cp_initialize

cp_compile_statement(P0_STATEMENT,CSTATUS

)

cp_finalize

sy_initialize

sy_finalize(MSG)

process MSG Allows for overall errors

CSTATUS=c_stop ; EOF=eof

MSG is an output parameter

cp_exec_pass1(P0_STATEMENT,P1_STATEMENT)

p1_p(P1_STATEMENT,P0_STATEMENT,[])

cp_exec_pass2(P0_STATEMENT,P1_STATEMENT,CSTATUS)

sy_statement(STATUS,OBJECT_STATEMENT,P1_STATEMENT,[])

cp_exec_pass2_b(g_ok,P0_STATEMENT,P1_STATEMENT,OBJECT_STATEMENT,CSTATUS)

see(SORFILE)

cp_read_compile

set up some I/O, build file names

2nd instance, fail parse cp_compile_statement(P0_STATEMENT,CSTATUS)

sy_statement_delimiter(DELIM)

sy_write_summary(OBJECT_STATEMENT)

DELIM=[none]

cp_exec_pass2_b(g_er,P0_STATEMENT,P1_STATEMENT,OBJECT_STATEMENT,CSTATUS)

cp_write_obj

2nd instance,

error parse

CSTATUS is c_go or c_stop

Loop or fall through

sy_read_flag

60 © Graham G. Thomason 2003-2004

Examples of compilation

Source code
constant abc 6+4*8+3

 def 2*abc

-:-

 constant ghi 7+5*9+4

 rst ### // junk

 jkl 2*def

-:-

 errorstatement x y+1

-:-

 constant xyz abc+1

Object code (Prolog readable lists)
/*---*/

/* BRAND-X COMPILER (Version 1.00) */

/* Copyright (C) Philips Electronics N.V, 1999 */

/*---*/

oc_version('1.00').

nw_co(

[[abc,[ex_expr,[[ex_dyadic,dplus],[[ex_dyadic,dplus],[ex_co

,int,6],[[ex_dyadic,xmul],[ex_co,int,4],[ex_co,int,8]]],[

ex_co,int,3]]]],[def,[ex_expr,[[ex_dyadic,xmul],[ex_co,int,

2],[ex_id,abc]]]]]).

/*---------------------------------*/

/* FAILED STATEMENT HERE */

/*---------------------------------*/

oc_statement_error(1).

/*---------------------------------*/

/* FAILED STATEMENT HERE */

/*---------------------------------*/

oc_statement_error(2).

nw_co(

[[xyz,[ex_expr,[[ex_dyadic,dplus],[ex_id,abc],[ex_co,int,1]

]]]]).

oc_errorcount(2).

© Graham G. Thomason 2003-2004 61

Verbose Listing
+---+

| BRAND-X COMPILER (Version 1.00) |

| Copyright (C) Philips Electronics N.V, 1999 |

+---+

+---+

| STATEMENT |

+---+

 constant abc 6+4*8+3

 def 2*abc

-:-

+- -+

| PASS 1 OUTPUT |

+- -+

<p1_delim>

[p1_id,constant]

<p1_delim>

[p1_id,abc]

<p1_delim>

[p1_co,int,none,10,6]

+

[p1_co,int,none,10,4]

*

[p1_co,int,none,10,8]

+

[p1_co,int,none,10,3]

<p1_delim>

[p1_id,def]

<p1_delim>

[p1_co,int,none,10,2]

*

[p1_id,abc]

<p1_delim>

+- -+

| PASS 2 OUTPUT |

+- -+

 {nw_co}

 {abc}

 [ex_expr,

 [[ex_dyadic,dplus],

 [[ex_dyadic,dplus],

 [ex_co,int,6],

 [[ex_dyadic,xmul],

 [ex_co,int,4],

 [ex_co,int,8]

]

],

 [ex_co,int,3]

]

].

 {def}

 [ex_expr,

 [[ex_dyadic,xmul],

 [ex_co,int,2],

 [ex_id,abc]

62 © Graham G. Thomason 2003-2004

]

].

+---+

| *ERROR* STATEMENT WITH LOCALIZED ERROR(S) |

+---+

 constant ghi 7+5*9+4

 rst ### // junk

 jkl 2*def

-:-

+- -+

| PASS 1 OUTPUT |

+- -+

<p1_delim>

[p1_id,constant]

<p1_delim>

[p1_id,ghi]

<p1_delim>

[p1_co,int,none,10,7]

+

[p1_co,int,none,10,5]

*

[p1_co,int,none,10,9]

+

[p1_co,int,none,10,4]

<p1_delim>

[p1_id,rst]

<p1_delim>

<p1_delim>

[p1_id,jkl]

<p1_delim>

[p1_co,int,none,10,2]

*

[p1_id,def]

<p1_delim>

+- -+

| PASS 2 OUTPUT |

+- -+

 {nw_co}

 {ghi}

 [ex_expr,

 [[ex_dyadic,dplus],

 [[ex_dyadic,dplus],

 [ex_co,int,7],

 [[ex_dyadic,xmul],

 [ex_co,int,5],

 [ex_co,int,9]

]

],

 [ex_co,int,4]

]

].

 {**Error: constant list: <identifier> <expression> not found}

© Graham G. Thomason 2003-2004 63

+---+

| *ERROR* FAILED STATEMENT |

+---+

 errorstatement x y+1

+- -+

| PASS 1 OUTPUT |

+- -+

<p1_delim>

[p1_id,errorstatement]

<p1_delim>

[p1_id,x]

<p1_delim>

[p1_id,y]

+

[p1_co,int,none,10,1]

<p1_delim>

+---+

| STATEMENT |

+---+

 constant xyz abc+1

+- -+

| PASS 1 OUTPUT |

+- -+

<p1_delim>

[p1_id,constant]

<p1_delim>

[p1_id,xyz]

<p1_delim>

[p1_id,abc]

+

[p1_co,int,none,10,1]

<p1_delim>

+- -+

| PASS 2 OUTPUT |

+- -+

 {nw_co}

 {xyz}

 [ex_expr,

 [[ex_dyadic,dplus],

 [ex_id,abc],

 [ex_co,int,1]

]

].

+---+

| BRAND-X: COMPILATION COMPLETE - 2 ERROR(S) |

+---+

64 © Graham G. Thomason 2003-2004

9. The command interpreter module

This module is a placeholder for a graphical user interface. A mature commercial product

under Windows would probably require a graphical user interface for marketing reasons. But

for a prototyping tool that needs flexibility in the face of changes, building a graphical user

interface may be an expensive luxury. For the time being, the settings that a graphical user

interface would acquire are simply defined in this module.

The ci_compile_option predicates determine the quantity of output (and indeed, whether any

output is generated at all).

Compiler option settings

The following settings control the verbosity level of output in the listing file, on the screen

and in the "object code" (i.e. parse output) file, respectively.

ci_compile_option(listing,LEVEL).

ci_compile_option(user,LEVEL).

ci_compile_option(object,LEVEL3).

Verbosity levels

The numerical level parameter is a verbosity level, used as follows:

Quantity of output for user/listing

5 = global-summary failure-detail statement pass-1-detail pass-2-detail

4 = global-summary failure-detail statement pass-1-detail

3 = global-summary failure-detail statement

2 = global-summary failure-detail statement-summary

1 = global-summary

0 = none

Quantity of output for "object" code (Prolog-readable output)

5 = failure-count failure-indication OBJECT-CODE

4 = failure-count failure-indication OBJECT-CODE

3 = failure-count failure-indication OBJECT-CODE

2 = failure-count failure-indication

1 = failure-count

0 = none

Note that a level of at least 3 is needed to obtain object code.

© Graham G. Thomason 2003-2004 65

Example definitions

ci_compile_option(listing,5).

ci_compile_option(user,5).

ci_compile_option(object,3).

66 © Graham G. Thomason 2003-2004

10. Expression evaluation

10.1 Introduction to the evaluation module

The essence of the expression evaluator is to take an argument such as

[[ex_dyadic,dplus],P1,P2]

which represents the dyadic add operator, to evaluate the two operands (by recursive

application of the expression evaluator), and combine these evaluated operands by the

operation being handled.

Standard implementations of the commonest operators have been implemented. Tri-valued

logic has been used (true/false/unknown). Some arithmetic operators have been overloaded to

provide string manipulation functions. Although this is not standard C practice, it provides a

convenient basis for many a prototype language.

The following figure illustrates the evaluation process.

© Graham G. Thomason 2003-2004 67

Figure 31. Evaluation call

Obtain ASCII

Pass-1

ASCII list: Pass 1 input

Pass 1 output

Source text

[49,48,32,43,32,116,101,118,105,110,116,50,32,4

2,32,51,32,43,32,40,51,48,48,43,50,48,48,41]

[[p1_co,int,none,10,10],p1_delim,43,p1_delim,[p1

_id,tevint2],p1_delim,42,p1_delim,[p1_co,int,non

e,10,3],p1_delim,43,p1_delim,40,[p1_co,int,none,

10,300],43,[p1_co,int,none,10,200],41]

name(X,P0),

write(P0),nl,

write(N),nl,nl,

PROLOG

Pass-2

Pass 2 output

evaluate

evaluation

p1_p(P1,P0,[]),

write(P1),nl,

write(N),nl,nl,

PROLOG

X='10 + tevint2 * 3 + (300+200)',

write(X),nl,

write(N),nl,nl,

PROLOG

'10 + tevint2 * 3 + (300+200)'

ex_expr([cc,fz,t1],P2,P1,REST),

write(P2),nl,

write(N),nl,nl,

PROLOG

[ex_expr,[[ex_dyadic,dplus],[[ex_dyadic,dplus],[

ex_co,int,10],[[ex_dyadic,xmul],[ex_id,tevint2],

[ex_co,int,3]]],[[ex_dyadic,dplus],[ex_co,int,30

0],[ex_co,int,200]]]]

P2=[ex_expr,EXPR],ev_expr(EXPR,VALUE),

write(VALUE),nl,

write(N),nl,nl,

PROLOG

[ex_co,int,516]

data db_variable(tevint2,[ex_co,int,2]).

PROLOG

68 © Graham G. Thomason 2003-2004

10.2 Example of an evaluation call

The following example is basically the same as the one in Figure 31, but it contains some

extra features:

 pretty-print of the expression

 reconstruction of the algebraic expression as a bracketed expression.

 explicit output of the "reststring", i.e. the unused tail of the parser input list, if any.

Data
db_variable(tevint2 ,[ex_co,int,2]).

Driver predicate
te(X):- /* PARSES AND EVALUATES AN EXPRESSION */

 nl,

 write(' X= '), write(X),nl,

 name(X,P0), write(' P0= '),write(P0),nl,

 p1_p(P1,P0,[]), write(' P1= '),write(P1),nl,

 ex_expr([cc,fz,t1],P2,P1,REST), write(' P2= '),write(P2),nl,

 write('REST= '),write(REST),nl,nl,

 ex_pp(ppp,P2,_),nl,

 write('RECONSTRUCTION='),ex_abr([cc,fz,t1],P2,OUT),

 write(''),write(OUT),write(''),nl,

 P2=[ex_expr,EXPR],

 ev_expr(EXPR,VALUE),

 write('VALUE='),write(VALUE),nl.

Prolog Query
| ?- te('10 + tevint2 * 3 + (300+200)').

Output
 X= 10 + tevint2 * 3 + (300+200)

 P0= [49,48,32,43,32,116,101,118,105,110,116,50,32,42,32,51,32,43,

32,40,51,48,48,43,50,48,48,41]

 P1= [[p1_co,int,none,10,10],p1_delim,43,p1_delim,[p1_id,tevint2],

p1_delim,42,p1_delim,[p1_co,int,none,10,3],p1_delim,43,p1_delim,40,

[p1_co,int,none,10,300],43,[p1_co,int,none,10,200],41]

 P2= [ex_expr,[[ex_dyadic,dplus],[[ex_dyadic,dplus],[ex_co,int,10],

[[ex_dyadic,xmul],[ex_id,tevint2],[ex_co,int,3]]],[[ex_dyadic,dplus],

[ex_co,int,300],[ex_co,int,200]]]]

REST= []

[ex_expr,

 [[ex_dyadic,dplus],

 [[ex_dyadic,dplus],

 [ex_co,int,10],

 [[ex_dyadic,xmul],

 [ex_id,tevint2],

 [ex_co,int,3]

]

],

 [[ex_dyadic,dplus],

 [ex_co,int,300],

© Graham G. Thomason 2003-2004 69

 [ex_co,int,200]

]

]

].

RECONSTRUCTION=(10+(tevint2*3))+(300+200)

VALUE=[ex_co,int,516]

Desciption of the evaluation predicate ev_expr

The predicate ev_expr takes as input argument the ARG of [ex_expr,ARG] which the

expression parser returns. Section 5.5 lists these representations of expressions. We give some

examples below:

Nonterminal items

 [[ex_monadic,mminus],P1] monadic

 [[ex_dyadic,dplus],P1,P2] dyadic

 [[ex_dyadic,fcall],P1,PLIST] dyadic, second argument is a list

 [[ex_triadic,aif],P1,P2,P3] triadic

Terminal items for an operand can be:

 [ex_co,int,INTEGER] e.g. [ex_co,int,39]

 [ex_co,char,INTEGER] e.g. [ex_co,char,39]

 [ex_co,real,REAL] e.g. [ex_co,real,39.9]

 [ex_str,LIST] e.g. [ex_str,[61,62]]

 unknown

 [ex_id,IDENTIFIER]

where the value of IDENTIFIER can be found from:

 db_fixed_constant(IDENTIFIER,VALUE)

 db_model_constant(IDENTIFIER,VALUE)

 db_variable(IDENTIFIER,VALUE)

Illegal arguments to operators (operands) give a result of 'unknown'

The output parameter is an item of type

 [ex_co,int,INTEGER]

 [ex_co,char,INTEGER]

 [ex_co,real,REAL]

 [ex_str,LIST]

 unknown

70 © Graham G. Thomason 2003-2004

10.3 Operators implemented for evaluation

The following tables show the result for various kinds of operands. A specific value or type

preceding a generic type takes precedence, e.g. where the "recip" operator takes a numeric

parameter, read this as "other than 0". A "numeric" argument can be of type char, int or real.

An argument can also be a string, or "unknown".

A numeric result from two numeric arguments will generally be of the most generic type (real

is more general than int, which is more general than char).

Reminder: Results are wrapped, e.g. of form [ex_co,TYPE,VALUE], not just a plain

VALUE.

Tables of operators follow.

 Operator Input

Param 1

Type

Result

 mplus

monadic plus

numeric

string

unknown

identity operation

identity operation

identity operation

 mminus

monadic minus

numeric

string

unknown

negates

reverses

unknown

 recip

reciprocal

0

numeric

string

unknown

unknown

real

unknown

unknown

 lnot

logical not

numeric

OTHER

numeric int, by logical not

unknown

 fnot

fuzzy not

numeric: 0..1

OTHER

numeric real 0..1, by fuzzy not

unknown

Table 5. Monadic operators

Operator Input

Param 1

Type

Input

Param 2

Type

Result

dplus

dyadic plus

numeric

string

numeric

string

OTHER

numeric

string

string

numeric

OTHER

numeric, by addition

string, concatenates

string, concatenates a character

string, concatenates a character

unknown

© Graham G. Thomason 2003-2004 71

dminus

dyadic minus

numeric

string

numeric

string

OTHER

numeric

string

string

numeric

OTHER

numeric, by subtraction

string, eliminates 1st substring P2 else =P1

string, eliminates 1st substring P2 else =P1as string

string, eliminates 1st substring P2 else =P1

unknown

xmul

multiply

numeric

string

numeric

string

OTHER

numeric

string

string

numeric

OTHER

numeric, by multiplication

unknown

string, reduplicated n times

string, reduplicated n times

unknown

xdiv

divide

numeric:

 ANY

 real

 ANY

 int

 int

 char

 char

OTHER

numeric:

 0 (any form)

 ANY

 real

 int

 char

 int

 char

OTHER

unknown

numeric, real (by REAL division)

numeric, real (by REAL division)

numeric, int (by INTEGER division)

numeric, int (by INTEGER division)

numeric, int (by INTEGER division)

numeric, char (by INTEGER division)

unknown

mod

modulo

numeric:

 ANY

 real

 ANY

 int

 int

 char

 char

OTHER

numeric:

 0 (any form)

 ANY

 real

 int

 char

 int

 char

OTHER

unknown

numeric, int (rounds the real, INTEGER division)

numeric, int (rounds the real, INTEGER division)

numeric, int (by INTEGER division)

numeric, int (by INTEGER division)

numeric, int (by INTEGER division)

numeric, char (by INTEGER division)

unknown

pwr

raise to the power

numeric:

 real

 ANY

 int

 int

 char

 char

OTHER

numeric:

 ANY

 real

 int

 char

 int

 char

OTHER

numeric:

 real

 real

 int

 int

 int

 char

unknown

eq

equality

numeric

numeric

string

string

numeric

string

numeric

string

int, 0 or 1. NB: operands need not be of same type

int, =0 always

int, =0 always

int, 0 or 1. Case sensitive.

ne

inequality

numeric

numeric

string

string

numeric

string

numeric

string

int, 0 or 1. NB: operands need not be of same type

int, =1 always

int, =1 always

int, 0 or 1. Case sensitive.

ge

greater than or equal

numeric

numeric

string

string

numeric

string

numeric

string

int, 0 or 1. NB: operands need not be of same type

unknown

unknown

int, 0 or 1. Case sensitive, ASCII order. "A" >= "AB".

72 © Graham G. Thomason 2003-2004

le

less than or equal

numeric

numeric

string

string

numeric

string

numeric

string

int, 0 or 1. NB: operands need not be of same type

unknown

unknown

int, 0 or 1. Case sensitive, ASCII order. "AB" <= "A".

gt

greater than

numeric

numeric

string

string

numeric

string

numeric

string

int, 0 or 1. NB: operands need not be of same type

unknown

unknown

int, 0 or 1. Case sensitive, ASCII order. "A" > "AB".

lt

less than

numeric

numeric

string

string

numeric

string

numeric

string

int, 0 or 1. NB: operands need not be of same type

unknown

unknown

int, 0 or 1. Case sensitive, ASCII order. "AB" < "A".

land

logical and

(short-circuit)

ANY

0

numeric

OTHER

0

ANY

numeric

OTHER

int, 0

int, 0

int, 0 or 1

unknown

lior

logical inclusive or

(short-circuit)

ANY

numeric0

numeric

OTHER

numeric0

ANY

numeric

OTHER

int, 1

int, 1

int, 0 or 1

unknown

lxor

logical exclusive or

numeric

OTHER

numeric

OTHER

int, 0 or 1

unknown

leqv

logical equivalence

numeric

OTHER

numeric

OTHER

int, 0 or 1

unknown

fand

fuzzy and

ANY

0

0..1

OTHER

0

ANY

0..1

OTHER

real, 0

real, 0

real, 0..1 Formula: P1*P2

unknown

fior

fuzzy inclusive or

ANY

1

0..1

OTHER

1

ANY

0..1

OTHER

real, 1

real, 0

real 0..1 Formula:1- (1-P1)*(1-P2)

unknown

fxor

fuzzy exclusive or

0..1

OTHER

0..1

OTHER

real 0..1 Formula: (P1fand(fnot P2))+(P2 fand(fnot P1))

unknown

feqv

fuzzy equivalence

0..1

OTHER

0..1

OTHER

real 0..1 Formula: (P1 fand P2)+((fnot Y)fand(fnot X))

unknown

boost

multiply up odds

1

0

0..1

OTHER

ANY

ANY

numeric pos.

OTHER

real 1

real 0

real 0..1

unknown

depress

divide down odds

1

0

0..1

OTHER

ANY

ANY

numeric pos.

OTHER

real 1

real 0

real 0..1

unknown

Table 6. Dyadic operators

© Graham G. Thomason 2003-2004 73

11. Function calls

11.1 How functions are called

The parse of a function call is as follows (an example)

Source

format(0, 1+2, x)

Parse

[ex_expr,

 [[ex_dyadic,fcall],

 [ex_id,format],

 [

 [ex_co,int,0],

 [[ex_dyadic,dplus],

 [ex_co,int,1],

 [ex_co,int,2]

],

 [ex_id,x]

]

]

].

The expression evaluator handles the function call operator by evaluating the function

parameters and calling a Prolog function with a user-specified implementation name, which is

always of signature

somefunction(RETURNVALUE,PARAMETERLIST)

The parameter list can be the empty set. Otherwise, the elements it contains should be of the

return types

 [ex_co,int,INTEGER]

 [ex_co,char,INTEGER]

 [ex_co,real,REAL]

 [ex_str,LIST]

 unknown

The return value should also be one of these types.

74 © Graham G. Thomason 2003-2004

Example:

To implement

foo(X,Y,Z)

the evaluation of the function name, which is just [ex_id,foo], must yield e.g.

[fu_fname,fi_foo]

This is achieved if there is a predicate somewhere of:

fu_function(foo,[fu_fname,fi_foo]).

There must be no name clash between function names and variables, so foo must not also be

a variable.

The implementor writes

fi_foo(RETURNVALUE,[X,Y,Z]):-...

The name "fi_foo" is arbitrary, as long as it is used consistently, and could be just "foo",

but a convention to avoid accidental name clashes is to use the prefix fi_, giving fi_foo.

11.2 Functions implemented

For more detailed explanation of a function, refer to the source code. This table serves to

indicate what is available.

Function Input

Param 1

Type

Input

Additional

Parameters

Type

Result Notes

abs

absolute value

numeric

OTHER

 numeric

unknown

same type as input

maximum

maximum of

several (1 or more)

numeric

OTHER

numeric

OTHER

numeric

unknown

type is same as of the maximum

minimum

minimum of several

(1 or more)

numeric

OTHER

numeric

OTHER

numeric

unknown

type is same as of the minimum

round

round to nearest

integer

numeric

OTHER

 numeric, int

unknown

round_down

round down

numeric

OTHER

 numeric, int

unknown

rounds towards -, not necessarily

towards zero

round_up

round up

numeric

OTHER

 numeric, int

unknown

rounds towards +, not necessarily

away from zero

exp

e to the power

numeric

OTHER

 numeric, real

unknown

exp10

10 to the power

numeric

OTHER

 numeric, real

unknown

© Graham G. Thomason 2003-2004 75

ln

natural logarithm

numeric

OTHER

 numeric, real

unknown

log

log base 10

numeric

OTHER

 numeric, real

unknown

member

membership

numeric

OTHER

numeric (4x)

OTHER

numeric, real

unknown

P2,P3,P4,P5 define a trapezium

bayes

bayesian updating

numeric

OTHER

numeric

OTHER

numeric, real

unknown

P1=Prior probability of hypothesis

P2, P3, P4 = evidence data =

Prior, Sufficiency, Necessity

Similarly additional triplets

format (I)

format an integer

into a string

numeric

OTHER

numeric, int

unknown

string

unknown

P2=field width

-ve = left justify

0 = just justify

+ve = right justify

format (II)

format a real into a

string

numeric

OTHER

numeric, int string

unknown

P2=field width, as above

P3=number of decimals (truncated)

length

length of a string

string

OTHER

 numeric, int

unknown

upper_case

convert string to

upper case

string

OTHER

 string

unknown

lower_case

convert string to

lower case

string

OTHER

 string

unknown

Table 7. Function calls

76 © Graham G. Thomason 2003-2004

12. The library modules

The library modules described in this section are Prolog modules that contain predicates that

could be of use in any application, (not just parsing and language prototyping).

The purpose of the following tables is not to give exact details, but to show what is available.

The tables are not exhaustive of all predicates defined in the modules; they rather cover those

that should have external visibility and could be of general use.

12.1 Module "aa" (System Dependent)

The purpose of this module is that all code that is dependent on a particular system of Prolog

should be in this module. Also, any code that is dependent on the operating system should

also be in this module. The current Prolog system is WinProlog [WinPro]. The current

operating system is Windows-NT. Should a port be needed to other systems, then ideally only

this module need be examined.

The main areas of system dependency are

 i/o

 operations on reals, mathematical functions

The convention in this module is to prefix predicate names with the prefix that they would

naturally take if they were in their "native" module: ar=arithmetic, gn=general,

io=input/output etc.

The arithmetic modules work with unwrapped Prolog data, i.e. just Prolog integers, reals etc.

This is in contrast to the GP4 operators and functions, which work with GP4-wrapped data

items, (i.e. [ex_co, real,REAL] etc.). Arithmetic routines with invalid parameters normally

fail (they do not return unknown). This applies to e.g. the logarithm of a negative number.

Predicate Function

io_eof(X) Defines the character that is returned by get0(X) at END OF FILE

ar_number(X) Succeeds if its argument is an integer or real

ar_mod(X,Y,Z) Arguments Y and Z must be of integral type

Z:= X modulo Y

X mod -Y = +(X mod Y)

© Graham G. Thomason 2003-2004 77

ar_div(X,Y,Z) Arguments Y and Z must be of integral type

Z:= X/Y in integer arithmetic

X div -Y = -(X div Y)

The following always holds: (A div B) * B + (A mod B) = A

ar_real(X) Succeeds if its argument is a real (but not an integer)

ar_round(X,Y) X must be a real

Y:=nearest integer to X

ar_round_down(X,Y) X must be a real

Y:=first integer <= X. Rounds towards -, not towards zero

ar_round_up(X,Y) X must be a real

Y:=first integer >= X. Rounds towards +, not away from zero

ar_power(X,Y,Z) X must be a positive real

Z:=X
Y

Table 8. Table of predicates in module "aa"

Additional predicates that are/may also be system dependent, but which are not housed in

module "aa".

 gn_bag2set1(BAG,SET). We keep this next to its companion gn_bag2set2.

 The use of name(REAL) in fi_format. Behaviour in other systems has not been

investigated.

12.2 Module "ar" (Arithmetic)

Many arithmetic predicates are Prolog-system dependent, and so are housed in module "aa"

(Section 12.1).

Predicate Function

ar_raise(A,B,C) C:= A
B
.

B must be an integer.

This predicate is used to build the value of a constant (integer and real)

from its ASCII string in pass-1 parsing.

ar_for(N,M,X) like BASIC FOR X = N TO M, or C for (x=n; x<=m; x++) {}

N and M must be integral

ar_next_integer(N) Produces integers 1,2,3 infinity.

Table 9. Table of predicates in module "ar"

78 © Graham G. Thomason 2003-2004

12.3 Module "gn" (General)

Some of these predicates are in-built into most Prolog Systems, but for portability, standard

implementations have been included in the gn module. In the case of gn_not, the semantics

may be different to the in-built semantics of some systems.

A number of these predicates are well-known techniques from the literature. A primary source

is [Clocksin].

Predicate Function

gn_member(M,LIST) Membership of a list [Clocksin, p.55]

gn_append(L1,L2,L3) Append lists [Clocksin, p.63]

gn_append_atoms(A1,A2,A3) Append atoms, concatenating direction only

gn_not(P) Succeeds iff a call to P fails. [Clocksin, p.87]

The semantics may be different to the in-built semantics of some

systems.

A common application is proving non-membership:

gn_not((gn_member(M,LIST))).

gn_asserta(X) Same as standard asserta(X), but guarantees a cut after it.

gn_assertz(X) Same as standard assertz(X), but guarantees a cut after it.

gn_retract(X) Same as standard retract(X), but guarantees a cut after it.

gn_retractall(X) Retracts all matching predicates. [Clocksin, p.179]

gn_length_list(LIST,LEN) Returns the length of a list

gn_revzap(L1,L3) Reverses a list efficiently [Clocksin p.150]

gn_delete(X,L,M). Delete all occurrences of element X in list L to produce list M.

[Clocksin, p.141]

gn_last(LIST,

 LONGHEAD,SHORTTAIL).

Split list into long-head (a list) and short-tail (last element)

Also reverse-drivable to join up a list.

gn_call_list(LIST) Call each predicate in LIST

gn_duplicate(S,N,SSS) Duplicate a list S, N times, (as one equally flat list).

gn_sublist(X,Y) Succeeds if X is a sublist in Y [Clocksin p.151]

gn_bag2set(BAG,SET) Convert bag to set (eliminate duplicates)

implemented using gn_bag2set1 or gn_bag2set2

gn_bag2set1(BAG,SET) Convert bag to set using WinProlog in-built predicate. Sorts

alphabetically.

gn_bag2set2(BAG,SET) Convert bag to set from first principles, removes rightmost

duplications

gn_make_set(BAG,SET) Convert bag to set from first principles, removes rightmost

duplications

This is an alternative to the above. A performance comparison

has not yet been carried out.

© Graham G. Thomason 2003-2004 79

gn_findall(X,G,L) Constructs a list L of all the objects X such that the goal G is

satisfied. Recursive find (i.e. in G) is supported. [Clocksin,

p.163]

gn_insert(X,OLDLIST,NEWLIST,

COMPARATOR)

Insert an element into a sorted list, using a supplied reference to a

comparator predicate.

gn_merge_sort(INLIST,OUTLIST,

COMPARATOR)

Sort a list. It seems to be quite efficient.

COMPARATOR can be:

 for numbers, a straight operator, e.g. >

 for strings, a predicate, e.g. gn_less_string

 for atoms, a predicate, e.g. gn_less_atom

 user defined

gn_univ(X,Y) Recursive application of the univ (=..) operator.

N.B. Not designed for functors taking 3 or more arguments

Table 10. Table of general predicates

12.4 Module "io" (Input/Output)

Some of these routines perform i/o, while others support i/o operations without actually

performing any i/o.

Predicate Function

Input

io_read_line(LINE) reads up to a line feed (ASCII code 10) and returns the list

io_read_line(LINE,EOF) reads up to a line feed (ASCII code 10) and returns the list

gives end-of-file indication

 =eof when end of file read in the line

 =ok when no end of file is read in the line

io_read_in(

 STATEMENT,DELIM,EOF)

statement read with arbitrary look ahead to statement delimiter.

P1 (output): statement read, as a list

P2 (input): The delimiter, as a list, e.g. from name('-:-',DELIM)

P3 (output): End-of-file indication

 =ok The current statement is not followed by an end-of-file

 =eof The current statement is followed by an end of file

low level routines

io_wr_oc write Prolog-style open-comment: /*

 since write('/*') may be interpreted as start comment

after write('

80 © Graham G. Thomason 2003-2004

io_wr_cc write Prolog-style close-comment: */

 since write('*/') may be interpreted as end comment

after write('

io_writeq(X) write quoted

io_write_repeat(N,X) write X N times.

io_tab_sp(X) tab X spaces, with protection against negative argument

io_length_atom(ATOM,LEN) length of an atom

io_length_int(INT,LEN) length of an integer

writing a single item

io_write_atom(ATOM,FIELD,J) write an atom in a field

ATOM: atom to write

FIELD: field length (including sign)

J r=right justified, l=left justified

io_write_int(INT,FIELD,J) write an integer in a field

INT: integer to write

FIELD: field length (including sign)

J r=right justified, l=left justified

io_write_real(REAL,[A,B]) write a real in format [A,B]

1 place for sign (can be used as extra place for digit)

A places for integer part

1 place for decimal point

B places for decimal part

Writing a list

io_wlist(LIST) write each element of a list

io_wlistc(LIST) write list commented, i.e. /* list items */

io_wlist_nl(LIST) write elements of a list on new lines

io_put_list(LIST) put elements of a list

io_put_list_limited(N,LIST) put initial elements of a list in a limited field of size N

io_pp(X) pretty print of a list. Based on [Clocksin, p.97]

io_long_list(X) write long list in limited width (ugly print)

uses io_long_list_width to define output width (default =60).

io_long_tail(X) similar to io_long_list(X)but without outermost brackets.

© Graham G. Thomason 2003-2004 81

logging

io_log_setlevel(X) setting of threshold Level at and below which calls io_log are

processed.

Guide:

 0 No logging

 1 Only very high level messages

 5 Moderate detail

 9 Maximum detail

io_log(LEVEL,MESSAGE,DATA) logging call

 LEVEL: Level (must be at or below threshold to

appear)

 MESSAGE: The message to be written

 DATA: Extra data to go with message

Table 11. Module "io"

12.5 Permutation and tree walking

Permutations

We do not necessarily generate all permutations. An [n,k] indication means that when

permuting a list of n elements, any k embedded elements will exhibit all k! ordering of

themselves somewhere in the permuted orderings of the original list. We show the

permutations of [a,b,c,d] as generated.

 gn_permute_k1 The [n,1] solution: no permutations - just the original
[a,b,c,d]

 gn_permute_k2 The [n,2] solution: forwards and backwards
[a,b,c,d],[d,c,b,a]

 gn_permute_k3a An [n,3] solution: 2n permutations
[a,b,c,d],[b,c,d,a],[c,d,a,b],[d,a,b,c],[d,c,b,a],[c,b,a,d],[b,a,d,c],[a,d,c,b]

 gn_permute_1 Full permutations - algorithm 1
[a,b,c,d],[a,b,d,c],[a,c,b,d],[a,c,d,b],[a,d,b,c],[a,d,c,b],[b,a,c,d],[b,a,d,c],

[b,c,a,d],[b,c,d,a],[b,d,a,c],[b,d,c,a],[c,a,b,d],[c,a,d,b],[c,b,a,d],[c,b,d,a],

[c,d,a,b],[c,d,b,a],[d,a,b,c],[d,a,c,b],[d,b,a,c],[d,b,c,a],[d,c,a,b],[d,c,b,a]

 gn_permute_2 Full permutations - algorithm 2
[a,b,c,d],[b,a,c,d],[b,c,a,d],[b,c,d,a],[a,c,b,d],[c,a,b,d],[c,b,a,d],[c,b,d,a],

[a,c,d,b],[c,a,d,b],[c,d,a,b],[c,d,b,a],[a,b,d,c],[b,a,d,c],[b,d,a,c],[b,d,c,a],

[a,d,b,c],[d,a,b,c],[d,b,a,c],[d,b,c,a],[a,d,c,b],[d,a,c,b],[d,c,a,b],[d,c,b,a]

82 © Graham G. Thomason 2003-2004

Permutation walking

There is an anlogy in the recursion structure technique with the pretty print technique, which

is more familiar, and, we feel, worth illustrating. A list L can be printed with an initial

indentation of 0 by calling io_pp(L,0) (which is a default call made if io_pp/1 is used,

i.e. with just one parameter, the list.

Figure 32. io_pp

Figure 33. Call graph of io_pp

?- io_pp([a,b,[c,d,[e,f],g,h,[i,j]],k,l]).

 a

 b

 c

 d

 e

 f

 g

 h

 i

 j

 k

 l

io_pp([H|T],I):-

 !,

 J is I+3,

 io_pp(H,J),

 io_ppx(T,J).

io_pp(X,I):-

 tab(I),

 write(X),nl.

io_ppx([],_).

io_ppx([H|T],I):-

 io_pp(H,I),

 io_ppx(T,I).

Output

io_pp operating on an atom (or similar)

print the atom at the current indent

io_pp pp the head, at deeper indent

io_pp operating on a list

io_ppx ppx the tail, at deeper indent

io_ppx ppx the tail, at deeper indent

io_pp pp the head, at deeper indent

io_ppx ppx the tail, at deeper indent

© Graham G. Thomason 2003-2004 83

Figure 34. Basic permutation walking

Note that the predicate under consideration is for permutation walking; the permutation itself

is done by full or partial permutations. We can use any of the permutation generation

predicates previously mentioned.

Predicate gn_permwalk walks a nested list structure generating permutations of parts of the

structure as follows:

 NONLISTS (ATOMS, STRUCTURES, NUMBERS,..) are not affected

 LISTS are handled according to their first atom, which is a code

- LISTS beginning with '$pm_y' are permuted at top level and walked at lower

levels

- LISTS not beginning with '$pm_y' are not permuted at the current level, but are

walked at lower levels looking for lower level permutations

The reason for the symbol '$pm_y' beginning with a $ (and so needing quoting in Prolog)

is that is should not be met with by accident in the list structure. If user variables are not be

allowed to begin with a $, then clashes can be prevented.

Identified '$pm_y' atoms are replaced by '$pm_d' (but these are removed on flattening

- see below).

Module gnz_pm.pl contains some demonstrations.

A call to

gn_permwalk_find(X,Y,gn_permute_1)

with

X=['$pm_y',a,[b,c],['$pm_y',d,[e1,e2]],f]

generates 48 permutations. The outer permutable list has 4 user-elements; the inner

permutable list has 2 elements, giving a total of 4! x 2! =48. The first and last two

permutations are:

Y1= [$pm_d,a,[b,c],[$pm_d,d,[e1,e2]],f]

Y2= [$pm_d,a,[b,c],[$pm_d,[e1,e2],d],f]

Y47=[$pm_d,f,[$pm_d,d,[e1,e2]],[b,c],a]

Y48=[$pm_d,f,[$pm_d,[e1,e2],d],[b,c],a]

call the permutation on head

gn_permwalk

gn_permwalkx on the tail

gn_permwalkx

gn_permwalk on the head

gn_permwalkx on the tail

84 © Graham G. Thomason 2003-2004

The solutions can be flattened separately using gn_permflat, or they can be flattened

intrinsically by using gn_permwalk_flat_find. A call to

gn_permwalk_flat_find(X,Y,gn_permute_1)

with

X=['$pm_y',a,[b,c],['$pm_y',d,[e1,e2]],f],

gives 48 solutions again, the first and last two being

Y1= [a,[b,c],d,[e1,e2],f]

Y2= [a,[b,c],[e1,e2],d,f]

Y47=[f,d,[e1,e2],[b,c],a]

Y48=[f,[e1,e2],d,[b,c],a]

Sometimes the user must supply '$pm_d's to obtain the right final structure (inserting a

'$pm_d' in every high-level list that has been wrapped for the purpose of defining what is

macro-manipulated). The following is derived from the set-transit example:

gnz_pmw20a:-

 gnz_pm_data(20,X),

 gn_permwalk_flat_find(X,Y,gn_permute_1),

 io_wlist_nl(Y),nl.

gnz_pm_data(20,X):-

 X=[ba,['$pm_y',BAA,BAB]],

 BAA=['$pm_d',baa,['$pm_y',BAAA,BAAB]],

 BAB=['$pm_d',bab,['$pm_y',BABA,BABB]],

 BAAA=['$pm_d',baaa,['$pm_y',baaaa,baaab]],

 BAAB=['$pm_d',baab,['$pm_y',baaba,baabb]],

 BABA=['$pm_d',baba,['$pm_y',babaa,babab]],

 BABB=['$pm_d',babb,['$pm_y',babba,babbb]].

128 permutations:
 [ba,baa,baaa,baaaa,baaab,baab,baaba,baabb,bab,baba,babaa,babab,babb,babba,babbb]

 [ba,baa,baaa,baaaa,baaab,baab,baaba,baabb,bab,baba,babaa,babab,babb,babbb,babba]

 ...

 [ba,bab,babb,babbb,babba,baba,babab,babaa,baa,baab,baabb,baaba,baaa,baaaa,baaab]

 [ba,bab,babb,babbb,babba,baba,babab,babaa,baa,baab,baabb,baaba,baaa,baaab,baaaa]

Note that this permutation-walk would work even if the 'leaves' were lists (providing they did

not contain '$pm_y's or '$pm_d's).

© Graham G. Thomason 2003-2004 85

12.6 Each/One tree walking

We can walk a tree stating that for some sublists we wish to take one element at a time per

solution. The predicates are gn_eo_walk and gn_eo_walk_find. The tag to request one

element of a sublist is '$from_one'; in solutions it is replaced by '$eo_d' (standing for

(each/one walker done).

Module gnz_eo.pl contains some demonstrations:

A simple example:

gnz_eo1.

RAW-linear=[a,[$from_one,p,q],z]

Walked= [a,[$eo_d,p],z]

Flattened= [a,p,z]

Walked= [a,[$eo_d,q],z]

Flattened= [a,q,z]

The following example is from a transition selection example, for hierarchical

nondeterminism in the case of race and fork nondeterminism. The data involves user

'$eo_d's.

The data:
gnz_eo_data(2,X):-

 FROM_EACH='$eo_d',

 X= [FROM_EACH,

 ['$from_one',

 ['$from_one',a5,a7],

 ['$from_one',a9]],

 ['$from_one',

 ['$from_one',a10,a11],

 [FROM_EACH,

 ['$from_one',a12],

 ['$from_one',a13]]]].

The output, walked and flattened
| ?- gnz_eo2.

RAW-linear=

[$eo_d,[$from_one,[$from_one,a5,a7],[$from_one,a9]],[$from_one,

 [$from_one,a10,a11],[$eo_d,[$from_one,a12],[$from_one,a13]]]]

Walked= [$eo_d,[$eo_d,[$eo_d,a5]],[$eo_d,[$eo_d,a10]]]

Flattened=[a5,a10]

Walked= [$eo_d,[$eo_d,[$eo_d,a5]],[$eo_d,[$eo_d,a11]]]

Flattened=[a5,a11]

Walked= [$eo_d,[$eo_d,[$eo_d,a5]],[$eo_d,[$eo_d,[$eo_d,a12],[$eo_d,a13]]]]

Flattened=[a5,a12,a13]

86 © Graham G. Thomason 2003-2004

Walked= [$eo_d,[$eo_d,[$eo_d,a7]],[$eo_d,[$eo_d,a10]]]

Flattened=[a7,a10]

Walked= [$eo_d,[$eo_d,[$eo_d,a7]],[$eo_d,[$eo_d,a11]]]

Flattened=[a7,a11]

Walked= [$eo_d,[$eo_d,[$eo_d,a7]],[$eo_d,[$eo_d,[$eo_d,a12],[$eo_d,a13]]]]

Flattened=[a7,a12,a13]

Walked= [$eo_d,[$eo_d,[$eo_d,a9]],[$eo_d,[$eo_d,a10]]]

Flattened=[a9,a10]

Walked= [$eo_d,[$eo_d,[$eo_d,a9]],[$eo_d,[$eo_d,a11]]]

Flattened=[a9,a11]

Walked= [$eo_d,[$eo_d,[$eo_d,a9]],[$eo_d,[$eo_d,[$eo_d,a12],[$eo_d,a13]]]]

Flattened=[a9,a12,a13]

© Graham G. Thomason 2003-2004 87

13. Regular expressions

Regular expression processing is offered as a general utility; it is not required for parsing. It is

useful in testing, as it allows a flexible pattern match of one text string against another.

13.1 Basic usage

re_regexp(REGEXP,PARSE,INPUT,REST)

REGEXP (input) a nested list structure defining the regular expression

PARSE (output) the resulting parse, representing the input as divided up by

the regular expression

INPUT (input) a list of ascii character codes, e.g. as obtained by

 name('abc',INPUT), giving INPUT=[97,98,99]

REST (output) unused input characters in the parse

Example (from the zz_re.pl file)

| ?- rezdem(10).

ATINPUT=abcdcdcdgys

REGEXP= [ab,[zeroormoren,cd],[or,e,f,g],[not,x]]

PARSE= [ab,[p_zeroormoren,[cd,cd,cd],3],[p_or,g,2],[p_not,y]]

REST= [115]

The regexp can be read as: characters "ab", followed by zero or more occurrences of "cd",

followed by an e,f, or g, followed by a character that is not "x".

The parse and remainder can be read as a match comprising in sequence:

 A literal term match consisting of the characters "ab"

 A zero-or-more term match consisting of 3 occurrences of "cd"

 An or term match, consisting of a "g", which is the 3rd matching option (first=0,

second=1, third=2,...).

 A not term match, consisting of a "y".

 The remainder of the string consists of an "s" (in an ASCII list as [115]).

88 © Graham G. Thomason 2003-2004

Repertoire of regular expression terms

In the description that follows,

ATOM,A1,A2 atomic representation of characters of any length e.g. '' (i.e. null), abc

AC an atomic representation of 1 character, e.g. a

T additional range segments in the tail of the list

N for repeating terms: repeat count for 'or' clauses: the Nth alternative (0,1,2,...)

REGEXP [ITEM,ITEM,ITEM,..]

PARSE [P_ITEM,P_ITEM,P_ITEM,..] or [].

Some P_ITEMs may be nested lists.

ITEM matched

P_ITEM in parse MATCH

TERMINALS

[endlist] [p_endlist]

ATOM ATOM 1+ chars: 'x' or longer

[not,AC] [p_not,AC] 1 char

[anychar] [p_anychar,AC] 1 char

[anycharsn] [p_anycharsn,ATOM] 0+ chars NONGREEDY: '' or more

[anycharsg] [p_anycharsg,ATOM] 0+ chars GREEDY : '' or more

[range,AC1,AC2|T] [p_range,AC] 1 char

[notrange,AC1,AC2|T] [p_notrange,ATCH] 1 char

NONTERMINALS

[zeroormoreg,ITEM] [p_zeroormoreg,P_ITEMLIST,N] GREEDY N items

[zeroormoren,ITEM] [p_zeroormoren,P_ITEMLIST,N] NONGREEDY N items

[oneormoreg,ITEM] [p_oneormoreg, P_ITEMLIST,N] GREEDY N items

[oneormoren,ITEM] [p_oneormoren, P_ITEMLIST,N] NONGREEDY N items

[or,ITEM,ITEM,...] [p_or,P_ITEM,N] Nth (0,1,2..) alternative

[checkis,ITEM]

 no consumption of input

nothing contributed to parse ITEM must succeed

[checknot,ITEM]

 no consumption of input

nothing contributed to parse ITEM must fail

Table 12. Regular expression items and parses

Pattern Matching Strategy

See [Expect], p. 108, p.113, p.137 - but we do not conform to that here.

Issues:

 1. Match earliest starting position

 2. Match left-most branch

 3. Matched longest string

 4. Subexpressions from left to right

© Graham G. Thomason 2003-2004 89

Greediness

 GREEDY: repeating items absorb as much as they can but backtracking if subsequent

terms fail will cause SHORTENING.

 NONGREEDY: repeating items absorb as little as they can, but backtracking if

subsequent terms fail will cause LENGTHENING.

Our strategy

1. Left-most branch taken if it matches at all is taken

2. Match earliest starting position

3. We provide GREEDY and NONGREEDY strategies

Note: There is no term or parse for the start of a list. It would serve no purpose here. If it were

implemented, it would be e.g.

ITEM= [startlist] (terminal) start of list

no: P_ITEM= [startlist] matched [startlist]

Note that we do have [endlist], which may force backtracking on nongreedy terms.

Advanced examples from the test suite

Showing nongreediness
tcre([anycharsn,5],re_regexp(REGEXP,PARSE,INPUT,REST),

(PARSE=EXPECT,REST=[])):-

 name('philosophic',INPUT),

 REGEXP=[[anycharsn], hi, [anycharsn], [endlist]],

 EXPECT=[[p_anycharsn,p], hi, [p_anycharsn,losophic], [p_endlist]].

Showing greediness
tcre([anycharsg,6],re_regexp(REGEXP,PARSE,INPUT,REST),

(PARSE=EXPECT,REST=[])):-

 name('philosophic',INPUT),

 REGEXP=[[anycharsg], hi, [anycharsg], [endlist]],

 EXPECT=[[p_anycharsg,philosop], hi, [p_anycharsg,c], [p_endlist]].

Showing NESTED REGEXP terms and greediness
tcre([zeroormoreg,5],re_regexp(REGEXP,PARSE,INPUT,REST), PARSE=EXPECT):-

 name('abAAAAAde',INPUT),

 REGEXP=[ab,[zeroormoreg,[range,'A','Z']],'AAde'] ,

 EXPECT=

 [ab,

 [p_zeroormoreg,[[p_range,'A'],[p_range,'A'],[p_range,'A']],3],

 'AAde'].

90 © Graham G. Thomason 2003-2004

13.2 Greedy and nongreedy algorithms

We compare greedy and nongreedy algorithms with analogous syntax diagrams. In the

diagrams below, the vertical order of railroad lines is significant, being equivalent to the

order in which PROLOG tries to satisfy a predicate.

Figure 35. Zero or more (greedy)

Figure 36. Zero or more (nongreedy)

Figure 37. One or more (greedy)

Figure 38. One or more (nongreedy)

kangas

kanga kangas

combine into a list

roos

roo roos

combine into a list

woms

wom woms

combine

 into a list

The kangas construction could be used

bats

bat bats

combine

 into a list

The roos construction could be used

© Graham G. Thomason 2003-2004 91

The greedy algorithm is implemented as follows:

gn_append_greedy

/*---*/

/* gn_append_greedy */

/* ================ */

/* Description: */

/* ALL parameters are lists */

/* Appends lists, but order of solutions is opposite to gn_append */

/* */

/* We use a grammar rule for a repeating item, */

/* and provide a wrapper to adjust parameter calling order */

/* */

/* Works fine to split a list, long L1 first */

/* */

/* Does not NATURALLY work with L1 and L3 uninstantiated, e.g. */

/* gn_append_greedy(L1,[c,d],L3]) */

/* so we handle exceptionally in this case */

/*---*/

gn_append_greedy(L1,L2,L3):-

 var(L1),var(L3), /* handle exceptionally */

 gn_append(L1,L2,L3).

gn_append_greedy(L1,L2,L3):-

 gn_app_elems(L1,L3,L2).

gn_app_elems([EL|ELS]) -->

 gn_app_elem(EL),

 gn_app_elems(ELS).

gn_app_elems([]) -->

 [].

gn_app_elem(EL) -->

 [EL].

Example call

| ?- gn_append_greedy(L1,L2,[a,b,c]).

L1 = [a,b,c] ,

L2 = [] ;

L1 = [a,b] ,

L2 = [c] ;

L1 = [a] ,

L2 = [b,c] ;

L1 = [] ,

L2 = [a,b,c]

92 © Graham G. Thomason 2003-2004

13.3 Module "tf" (Test Framework)

13.3.1 Introduction

The test framework produces a test report in the presentation style of DejaGnu [DejaGnu], but

the scripting is specifically geared to PROLOG predicate testing, (not standard-I/O-

executable testing as in the case of DejaGnu). The framework enables automatic execution of

tests, where each test defines its own pass/fail criterion and a log is produced of all tests with

their PASS/FAIL status. Ideally, stub control, driven by the script, is also possible. For the

GP4 Prolog applications there has been no need to test with stubs - this may be due to the

intrinsic local scope of Prolog variables and the bottom-up way of development. However,

one way to provide for control over stubs is at assert predicates for them before a SUT

(System Under Test) call with the "asserta" predicate, and retract them after the test. To

prevent access to the real function stubbed, the last of such asserted stub predicates would

include a catch-all and cut-fail combination.

The following figure shows how automated test execution works.

Figure 39. Automatic test execution

In the case of Prolog, the "script" takes the form of a predicate, tc, that is repeatedly

instantiated by the test harness.

System

Under

Test

Script

Test Report

Test

Harness

Stub Stub

© Graham G. Thomason 2003-2004 93

13.3.2 Description of test case definition predicate tc

The test case definition predicate is

tc(TESTNAME,DESCRIPTION,PREDICATE,CONDITION)

TESTNAME is the test name in list format, e.g. [gp4, re, or, 3]. This might

represent

 gp4 = Package (General Prolog Parsing and Prototyping Package)

 re = Predicate under test = re_regexp = regular expressions

 or = "inclusive or" processing

 3 = test number 3 of the above functionality

DESCRIPTION is the test description as atomic (single-quoted) text.

PREDICATE is the predicate to be called for the test. It can consist of a conjunction, which

is standard Prolog, e.g. (dothis(A,Y),dothat(Y,Z)).

CONDITION is a predicate call that must evaluate to true for the test to pass. If the test

simply tests for a successful call of PREDICATE, then CONDITION should be set to true.

CONDITION can also be a conjunction, which is standard Prolog, e.g.

(X>Y,happywith(Y)).

Notes:

 If a single tc predicate can be instantiated many times, then it defines several tests.

 If the PREDICATE in a call can be instantiated several times, then it defines several

tests.

 If the PREDICATE in a call can produce several solutions from an instantiation, only the

first solution is taken and the predicate defines one test. However, it is possible for the

whole PREDICATE to be considered as succeeding when the core of it has been made to

backtrack over n solutions (see section 13.3.3).

Feature 1: CONDITION can be set to dontrun so as not to run the test, nor count it in the

log summary.

Feature 2: CONDITION can be set to the atom negate. This is interpreted as meaning that

the PREDICATE must fail. It saves having to write gn_not((...)) around the SUT

predicate.

Feature 3: CONDITION can be set to the atom negate_msg. This is as with being set to

negate, but in the test log, the message

 **This test provokes an error message (but not a fail!) - please ignore

will be output. This is to warn the reader of the test report that an error message has been

provoked as part of the test. It applies negation to the PREDICATE, as it is intended for test

94 © Graham G. Thomason 2003-2004

predicate calls that fail, (in the Prolog sense), but produce a diagnostic message. It does not

mean that the test should produce a FAIL status! A test script using negate and

negate_msg should run with every test producing PASS (if the SUT works correctly).

13.3.3 Support predicates for the n
th

 backtracking result.

It is sometimes desirable to obtain the result of a second, third, or in general n
th

 call to a

predicate on backtracking. To support this, the PREDICATE should be a conjunction of

tf_failNtimes_init, sut_call(...), tf_failNtimes(N)

The predicate tf_failNtimes(N)will fail N times and then succeed, and any variables

instantiated by sut_call(..) in that last backtracked call will be available for examination in

SCONDITION.

The predicate tf_failNtimes_init should be initialised in every test using

tf_failNtimes(N).

13.3.4 Running tests: runtest

To run all tests, the goal

runtest.

or

runtest(SELECTOR).

is given. This

 runs all or a subset of the tests

 logs results

The SELECTOR parameter

This is a selector for group/name of test(s) to run. If SELECTOR is omitted, all tests are run.

A test will be run if it is compatible with the selector parameter of runtest - the selector

must be equal or shortened in the tail (or=[]). For example, if

TESTNAME = [gp4,re,or,3]

and

SELECTOR =[gp4,re]

then the test will be run.

An extra option to define tests to be run as one batch is to nest alternative selector elements in

the list, e.g.

runtest([gp4,tf,[callfail,badtest,condfail,negfail]]).

© Graham G. Thomason 2003-2004 95

This runs the same tests as

runtest([gp4,tf,callfail]).

runtest([gp4,tf,badtest]).

runtest([gp4,tf,condfail]).

runtest([gp4,tf,negfail]).

A non-ground guard

When checking a return value in an equality condition, e.g.

(ACTUAL=EXPECTED)

we guard against condition checking on uninstantiated parameters, which can easily happen,

typically when a parameter is misspelled. For this reason, a check is made on conditions of

the type

X=Y

but not

X\=Y, X>Y, X<Y, X>=Y, X=<Y

The check made is that X and Y are instantiated.

The check also applies to such terms in composite conditions, e.g.

(A=B, C>D, dothis(P,Q), E=F)

If the check fails, the test fails.

Workarounds if this is not convenient: Use

VEXP is 1.4E2

rather than

VEXP=1.42

or

put VEXP =1.42 in the right hand side (i.e. after the ":-")

or

put VEXP =1.42 in conjunction with the SUT call rather than in the condition

Additional CONDITION options

 If CONDITION = dontrun, the case will be rejected (not a test fail!)

 If CONDITION = negate, the test will be run with gn_not(P4)

 If CONDITION = negate_msg, the test will be run with gn_not(P4) and produce a

message indicating that error messages have been provoked

Caution

In many situations, there is no need to have a body to the test case clause. But sometimes it is

convenient to instantiate an expected result there, e.g.

 tc(....(ACTUAL=EXPECTED)):-EXPECTED=...

Take care with what done is in such a body, as

 it is picked up by the test harness and executed even if the particular test is not selected

 it is executed by showtest (see below).

96 © Graham G. Thomason 2003-2004

A good rule is never to do anything more than instantiating complex expected values.

Listing and counting tests: showtest

Call as

showtest

or

showtest(SELECTOR)

Counting placeholders

Placeholders have a PREDICATE of true and a CONDITION of true. They are useful to keep

the number of tests to round numbers, which is useful in keeping count of the number of tests

so as to ensure all are run. In order to see the number of real tests, the number placeholders

can be counted by

tf_count_placeholders

© Graham G. Thomason 2003-2004 97

13.3.5 Examples and test reports

Test cases (passing)

/*--*/

/* Test for gn_bag2set Group name: gn_bag2set */

/* */

/* Version1: sorts alphabetically */

/* Version2: Maintains the right-to-left order in the bag */

/*--*/

tc([gp4,gn,bag2set,1],

 'Test of Bag to Set (Algorithm 1)',

 gn_bag2set1([d,b,q,c,b,b,c,a],SET),

 SET=[a,b,c,d,q]

).

tc([gp4,gn,bag2set,2],

 'Test of Bag to Set (Algorithm 2)',

 gn_bag2set2([d,b,q,c,b,b,c,a],SET),

 SET=[d,b,q,c,a]

).

Running the tests

?- runtest([gp4,gn,bag2set,[1,2]]).

Start of Tests. Test selector = [gp4, gn, bag2set, [1, 2]]

PASS [gp4, gn, bag2set, 1]

 Seq. number: 1

 Description: Test of Bag to Set (Algorithm 1)

 Predicate: gn_bag2set1([d, b, q, c, b, b, c, a], _G334)

 Condition: = [a, b, c, d, q]

 [a, b, c, d, q]

 Comment: Pass

PASS [gp4, gn, bag2set, 2]

 Seq. number: 2

 Description: Test of Bag to Set (Algorithm 2)

 Predicate: gn_bag2set2([d, b, q, c, b, b, c, a], _G334)

 Condition: = [d, b, q, c, a]

 [d, b, q, c, a]

 Comment: Pass

Number of passes=2

Number of fails= 0

End of Tests

DATE OF TESTS: 19 Oct 2003 20:46:16/110

DURATION OF TESTS: 00h 00m 01s 260ms

Yes

?-

98 © Graham G. Thomason 2003-2004

Example with fails

Here we have seeded two errors. One is in the PASSCONDITION, and one in the SUT call

itself to make it fail.

Test cases (failing)

tc([gp4,gn,bag2set_err,1],

 'Test of Bag to Set (Algorithm 1)',

 gn_bag2set1([d,b,q,c,b,b,c,a],SET),

 SET=[a,b,c,d,qq] /* seeded here */

).

tc([gp4,gn,bag2set_err,2],

 'Test_gn_bag2set2_1',

 gn_bag2set2(not_a_list,SET), /* seeded here */

 SET=[d,b,q,c,a]

).

Running the tests
?- runtest([gp4,gn,bag2set_err]).

Start of Tests. Test selector = [gp4, gn, bag2set_err]

FAIL [gp4, gn, bag2set_err, 1]

 Seq. number: 1

 Description: Test of Bag to Set (Algorithm 1)

 Predicate: gn_bag2set1([d, b, q, c, b, b, c, a], _G307)

 Condition: = [a, b, c, d, q]

 [a, b, c, d, qq]

 Comment: Condition failed

FAIL [gp4, gn, bag2set_err, 2]

 Seq. number: 2

 Description: Test_gn_bag2set2_1

 Predicate: gn_bag2set2(not_a_list, _G283)

 Condition: = _G221

 [d, b, q, c, a]

 Comment: Call failed

Number of passes=0

Number of fails= 2

End of Tests

DATE OF TESTS: 19 Oct 2003 20:57:28/840

DURATION OF TESTS: 00h 00m 00s 720ms

Yes

?-

© Graham G. Thomason 2003-2004 99

14. Extent of implemented features

A few less common operators have not been implemented in version 1.0. They are listed

below.

14.1 Grammar productions

The following parsing features have not been implemented in Version 1.0, as they are not

required for the initial applications envisaged. They could easily be added as required.

 Monadic operators of type [f,x].

 Monadic operators of type [x,f].

 Dyadic prefix operators of the type (castfunction)argument

 Dyadic prefix operators of the type [operand1]operand2

 Dyadic operators of type [x,f,x].

These are less common operators: all the common operators have been implemented, e.g.

monadic operators of type [f,y] have been implemented. Of the above, the only one "C"

uses is (castfunction)argument.

14.2 Operator definition for parsing

All the operators defined in section 4.4 have been implemented for parsing.

For efficiency reasons, the maximum number of tokens an operator may use (at the time of

writing) is 6, and the maximum number of tokens of an overloaded operator is 4. The module

imposing these restrictions is op_aa.pl.

14.3 Operator evaluation

Only the operators listed in section 10.3 have been implemented for evaluation .

14.4 Function call evaluation

The functions listed in section 11.2 have been implemented for evaluation.

100 © Graham G. Thomason 2003-2004

15. References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

© Graham G. Thomason 2003-2004 101

References

[Aho] Alfred V. Aho, Jeffrey D. Ullman

 Principles of Compiler Design

 Addison-Wesley Publishing Company, 1977. ISBN 0-201-10073-8

 (This book is well-known as The Dragon Book).

[Baker 95] M.L. Baker and D.C. Yule

 Automation of Software Testing:

 A Case Study on a Real-Time Embedded System”

 Philips PRL Technical Note 3373, September 1995

[Bennet] J.P. Bennet

 Introduction to Compiling Techniques

 McGraw Hill

[C] Peter A. Darnell and Philip E. Margolis

 C - A Software Engineering Approach

 Springer-Verlag, 2
nd

 edition, 1990.

 ISBN 0-387-79389-3 & 3-540-97389-3.

[CHSM] Paul J. Lucas

 An Object-Oriented System for Implementing Concurrent, Hierarchical,

 Finite State Machines.

 MSc. Thesis, University of Illinois at urbana-Champaign, 1993

[Clocksin] W.F. Clocksin & C.S. Mellish

 Programming in Prolog, 2nd Edition

 Springer Verlag, 1984

[DejaGnu] R. Savoye

 The DejaGnu Testing Framework

 The Free Software Foundation, 1993

[Dexios] G.G. Thomason & P. van Loon

 DEXIOS User and Reference Manual

 Philips CFT/Automation Report UDR-ITD-X88-GT193-gt, 1989

102 © Graham G. Thomason 2003-2004

[Expect] Don Libes

 Exploring Expect

 O'Reilly, November 1996. ISBN 1-56592-090-2

[WinPro] WinProlog, Logic Programming Associates Ltd

 http://www.lpa.co.uk

[Yule 97] D.C. Yule

 Automatic State-Based Testing

Philips PRL Technical Note TN 3611, 1997 / DVD Document V19 C4

S41

