
STATECRUNCHER Test Models

Graham G. Thomason

Report Relating to the Thesis “The Design and Construction of a State Machine System that Handles Nondeterminism”

[image: image1.png]UnNiS

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

STATECRUNCHER Test Models

This document provides diagrams of STATECRUNCHER test models for testing STATECRUNCHER itself, (not for testing an “Implementation Under Test” of some other system). For most test models it will be clear what is being demonstrated or tested. To explain each model in detail, and to show its output, would multiply the size of this report by a considerable factor. That is not necessary, for two reasons: (1) the italicised annotations to the models are intended to clarify subtleties and (2) there is a manual/tutorial that discusses many of the models, often in a simpler form, as part of the training material. Most of the models are exercised in detail under program control in the test suite. The test suite provides an extra resource should it be necessary to see how the model is driven there.

Contents

11.
Introduction

1.1
Categories of Models
1
1.2
Notation
2
2.
Testing the Compiler
3
2.2
The Compiler Test Models
3
3.
Testing the Validator
5
3.1
Validator Coverage Aspects
5
3.2
Catalogue of Validator Error Messages as Written
6
3.3
The Validator Test Models
8
4.
Illustrative Examples
11
5.
Testing the Machine Engine: Small Test/Demonstration Models
18
5.1
Small Deterministic Models
18
5.2
Small Nondeterministic Models
32
6.
Systematic Test Models
51
1.1
State Hierarchy and Initial Machine Entry
52
6.2
Specifying States in Transitions
55
6.3
Deep Nesting
57
6.4
Transition Selection
62
6.5
Orbits
64
6.6
Common Tree Removal
66
6.7
Scope of Enter/Exit Trees
67
6.8
Transition Course
68
6.9
Exercising Nondeterminism
76
6.10
Finding Active Events
79
6.11
Upon Exit/Upon Enter
80
6.12
Exercising History
80
7.
Stress Testing
81
7.1
Axes of Stress Testing
81
7.2
Model Generation.
81
7.3
Combinatorial Explosion and Limited Permutation
82
8.
Conventions
98
9.
STATECRUNCHER References
99

1. Introduction

This document provides diagrams of STATECRUNCHER test models for testing STATECRUNCHER itself, (not for testing an “Implementation Under Test” of some other system). In addition to these test models, the STATECRUNCHER test suite contains many thousands of tests that do not require any model to be loaded. In fact such lower-level tests form the bulk of the tests for the internal logic and API (Application Programmer Interface). But from the point of view of demonstrating the system, interaction with complete models is most attractive, and a diagram of the model is by far the most expressive way to communicate the functionality being exercised.

The following diagram shows the processes applied to a model as it is compiled, validated and deployed in a testing tool chain such as TorX [http://fmt.cs.utwente.nl/CdR].

Figure 1. Compilation, Validation and Application to a Testing Tool Chain

More details of the parsing process are given in [StCrParsing]. Details of STATECRUNCHER as a whole are given in [StCrMain].

STATECRUNCHER is currently implemented in PROLOG. STATECRUNCHER's own syntax is independent of PROLOG, but occasionally a remark reflects the implementation language. The PROLOG-based test harness used to self-test STATECRUNCHER is described in [StCrGP4].

For most test models it will be clear what is being demonstrated or tested. To explain each model in detail, and to show its output, would multiply the size of this report by a considerable factor. The italicised annotations to the models are intended to clarify subtleties. Most of the models are exercised in detail under program control in the test suite. The test suite provides an extra resource should it be necessary to see how the model is driven there.

1.1 Categories of Models

The models fall into various categories, in order to satisfy testing requirements per phase during development:

· Models designed to test the compiler, but ignoring validator and run-time (machine engine) considerations

· Models designed to test the validator, but not aimed at machine-engine execution. The validator is a kind of back-end to the compiler; it generates a symbol table, cross reference table, and initial data predicates (settings).

· Miscellaneous example models (e.g. as used in demonstrations and reports), but not attempting any systematic coverage of functionality

· Models designed to demonstrate the run-time machine engine - (1), a feature-by-feature approach, in an illustrative or didactic way, but without attempting to cover every detail.

· Models designed to systematically test the run-time machine engine - (2), where a more structured testing approach has been taken.

Model numbering

Models are numbered by an index such as t4120 or c2117. In the ci_sc_1.pl module, a link is set between model number and filename (including path). An example of such a link, using relative path addressing with respect to a ‘root’ path defined in the boot file, is

 ci_file(t5110,'..\StCr3ModelsTest\t5000me\t5110_HelloWorld\HelloWorld').

Any one file can be made active for compiling, validating and exercising by setting ci_current(model-index) in the ci_sc_1.pl file.

File ci_sc_1.pl and indices of the kind tnnnn are reserved for test-suite models and are part of the formal STATECRUNCHER release. The user can define more files, e.g. in ci_sc_2.pl, using an index such as the cnnnn range. The default ci_current(model-index) setting should only be defined once and is defined in file ci_sc_1.pl.

The numbering is as follows

· t2000 series: compiler tests

· t3000 series: validator tests

· t4000 series: miscellaneous examples

· t5000 series: machine engine demonstrations

· t6000 series: machine engine systematic tests

· t7000 series: stress tests

1.2 Notation

UML now (v1.5) describes a detailed notation for diagrams, but this report differs in respect of certain features:

· on entry to a state (UML “entry/”) is a solid triangle pointing in to the state, e.g.

· on exit from a state (UML “exit/”) is a solid triangle pointing out of the state, e.g.

· events declared in a part of the hierarchy are denoted by the symbol (, e.g.
· variables are declared in a part of the hierarchy by the symbol(, e.g.

· PCOs (Points of Control and Observation) are declared by the symbol (, e.g.
2. Testing the Compiler

2.1.1 Compiler coverage aspects

The compiler is mainly concerned with syntax rather than issues of legality of use, such as whether an item has been declared, which are checked by the validator. An exception is that the compiler is concerned about a proper hierarchical structure of the statechart, and it will produce an error message (and stop compiling) if there are inconsistencies in the hierarchical structure.

Most situations of erroneous STATECRUNCHER syntax result in a parse where the error is tagged in the parse tree. These situations are extensively tested in lower level tests without using a model. Such tests are not described here. The models are a system test on the compiler, covering its ability to report the main kinds of error and to proceed appropriately.

The compiler recognises three levels of correctness/error

· statement with no errors

· statement with local errors tagged in the parse tree

· failed statement - the statement could not be parsed at all

Test areas

· Brackets errors

· States and the statechart hierarchy: clusters, sets, leafstates

· Declaration statements (PCOs, events, tags, variables)

· I/O stress: multiple line statements, long files.

2.2 The Compiler Test Models

Here we consider the test aims and error circumstances.

Table 1. Compiler test models

	Model (directory) name
	Test aim

	t2110_braces_er
	Error reported on mismatched braces

	t2120_round_brack_er
	Error reported on mismatched round brackets

	t2130_square_brack_er
	Error reported on mismatched square brackets

	t2210_state_ok
	Correct handling of a simple state statement

	t2211_state2_ok
	Correct handling of a more state statements

	t2215_state_er
	Detection of errors in state statements

	t2220_cluster_ok
	Correct handling of a cluster statements

	t2225_cluster_er
	Detection of errors in cluster statements

	t2230_set_ok
	Correct handling of a set statements

	t2235_set_er
	Detection of errors in set statements

	t2240_struct_ok
	Correct handling of a hierarchical statechart structure

	t2251_struct_er1
	Error in hierarchy structure (1)

	t2252_struct_er2
	Error in hierarchy structure (2)

	t2253_struct_er3
	Error in hierarchy structure (3)

	t2254_struct_er4
	Error in hierarchy structure (4)

	t2255_struct_er5
	Error in hierarchy structure (5)

	t2310_decl_ok
	Correct handling of declarations

	t2315_decl_er
	Detection of errors in declarations

	t2320_split_stmt
	Handling of a statement split over several lines

	t2330_medium
	A general medium complexity model

	t2340_complex
	A general complex model

	t2350_longfile
	Stress test on a long file

	t2360_longstmt
	Stress test on a long statement

These models are not put through the validator. The validator is tested independently.

3. Testing the Validator

3.1 Validator Coverage Aspects

The purpose of the validator is to generate certain tables and in so doing to detect certain errors. It generates a symbol table and a cross-reference table, and also a data table (containing variable values). For more information on these tables, see [StCrParsing]. Validator coverage is considered from the viewpoint of producing the error messages, and from source code error circumstances. This test approach largely verifies the correctness of the tables. Further testing of the correctness of the tables is done with machine engine tests (described in subsequent sections). The individual tests divide into tests for errors that are detected by symbol table construction and by cross-reference table construction.

Some symbol table coverage aspects

· states

· inbuilt-constants (true, false)

· tags

· variables

· PCOs

· events

· scoped use of the above

· double definition of the above

Some cross-reference table coverage aspects
· variable references in initialization of other variables

· variable references in actions

· upon enter action

· upon exit action

· transition assignment action

· variable references in conditions
· variable references as terms of expression operators

· variable references in library function parameters (e.g. maximum)

· event references by transition
· event references by fired event

· state references by orbit
· state references by target
· state references by the in() function
· state references by the clear() function
· state references by the deep_clear() function
· state references as terms of state-expression operators: :: $. %% /\
· PCO references by event declaration

3.2 Catalogue of Validator Error Messages as Written

The errors fall into the following categories

· warnings

· general errors: version incompatibility, compiler error detection

· type checking

· detection of non-implemented functions

· internal errors (diagnostic error – the program logic should preclude these)

Table 2. Validator error messages

	write('** Error (VA-E-001) ** Code is in testing mode: va_testing(yes)')

	write('** Error (VA-E-002) ** There are compilation errors')

	write('** Warning (VA-W-003) ** Multiple files loaded')

	write('** Error (VA-E-004) ** No "object" files loaded')

	write('** Error (VA-E-005) ** Version incompatibility')

	write('** Error (VA-E-006) ** Double definition of '),

 write(SYMB),write(':'),write(MPATH),

	write('** Error (VA-E-007) ** Uninitialized term(s) in initialization of '),

 write(SYMBOL),write(':'),write(MPATH),

	write('** Error (VA-E-008) ** Boolean value error initializing '),

 va_err_nltab,

 write(SYMBOL),write(':'),write(MPATH),write('.'),

 tab(1),

 write(VALUE),write(' not in '),write([0,1]),

	write('** Error (VA-E-009) ** String value error initializing '),

 va_err_nltab,

 write(SYMBOL),write(':'),write(MPATH),write('.'),

 tab(1),

 write(VALUE),write(' is not a string'),

	write('** Error (VA-E-010) ** Range error initializing '),

 va_err_nltab,

 write(SYMBOL),write(':'),write(MPATH),write('.'),

 tab(1),

 write(VALUE),write(' not in '),write([LOW,HIGH]),

	write('** Error (VA-E-011) ** Enum value error initializing '),

 va_err_nltab,

 write(SYMBOL),write(':'),write(MPATH),write('.'),

 tab(1),

 write(VALUE),write(' not in '),write(SET),

	write('** Error (VA-E-012) ** Undefined symbol '),

 va_err_nltab,

 write(DSYMBOL),write(':'),write(EPATH),

 va_err_nltab,

 write('in statement '),write(UTYPE),tab(1),

 write(USYMBOL),write(':'),write(UPATH),

	write('** Error (VA-E-013) ** Undefined symbol of required type'),

 va_err_nltab,

 write(SYMBOL),write(':'),write(EPATH),

 tab(1),

 write('of type '),write(STYPE),

 va_err_nltab,

 write('in statement '),write(UTYPE),tab(1),

 write(USYM),write(':'),write(UPATH),

	write('** Error (VA-E-014) ** Polyvalent symbol (in overlapping scopes) '),

 write(SYMBOL),

 write(' is used of types '),write(SYMBOLTYPE),

 write(' and '),write(SYMBOLTYPE2),

 va_err_sep,

	write('** Warning (VA-W-015) ** Polyvalent symbol (but scopes are distinct) '),

 write(SYMBOL),

 write(' is used of types '),write(SYMBOLTYPE),

 write(' and '),write(SYMBOLTYPE2),

	write('** Warning (VA-W-016) ** Unreferenced symbol'),

 tab(1),

 write(DSYMBOL),write(':'),write(DPATH),

 va_wrn_nltab,

 write('of type '),write(DTYPE),

	write('** Error (VA-E-017) ** Type mismatch in assignment '),

 va_err_nltab,tab(4),write('LHS-TYPE '),write(LHS),

 va_err_nltab,write('<assigned>'),

 va_err_nltab,tab(4),

 ((

 RHS=[typerr,OP,T1,T2],

 write('RHS-TYPE '),write(typerr),

 va_err_nltab,tab(12),write(T1),

 va_err_nltab,tab(8),write(OP),

 va_err_nltab,tab(12),write(T2)

);(

 write('RHS-TYPE '),write(RHS)

)),

 va_err_nltab,

 write('in statement '),write(UTYPE),tab(1),

 write(USYM),write(':'),write(UPATH),

	write('** Error (VA-E-018) ** Type mismatch in expression: '),

 va_err_nltab,

 ((

 DETAIL=[typerr,OP,T1,T2],

 tab(4),write(T1),

 va_err_nltab,write(OP),

 va_err_nltab,tab(4),write(T2)

);(

 write(DETAIL)

)),

 va_err_nltab,

 write('in statement '),write(UTYPE),tab(1),

 write(USYM),write(':'),write(UPATH),

	write('** Error (VA-E-019) ** Non-implemented function: '),

 write(FUN),

	write('*** Internal Error (VA-I-500) *** va_write_pred '),

 write(PRED),

A “polyvalent” symbol is one that is used for two or more different kinds (e.g. an integer and an event). This is tolerated with a warning if the scopes are distinct. If the scopes overlap, then an error is given, since symbol-table look-up (based on symbol and current scope) is ambiguous – more than one entry could be returned as being in scope. This is a separate issue to that of allowing a symbol to be used for two or more different scopes. This is a legal situation which occurs where a symbol has several definitions, usually in of the same kind, but which are distinguished by their scope. Symbol-table look-up is unambiguous, since only the symbol with the innermost scope is taken.

The following are no longer in use: VA-E-001 (testing mode is no longer needed) and VA-E-012 (superseded by VA-E-013). The program logic should prevent VA-I-500 from ever appearing. The remaining error messages are covered in the tests.

3.3 The Validator Test Models

Here we consider the test aims and error circumstances.

Table 3. Validator test models

	Model (directory) name
	Test aim

	t3020_cp_er
	Validator error if compiler gave an error

	t3031_mult_file1
	Validator warning if multiple compiled files loaded

	t3032_mult_file2
	(used to produce a second file for above)

	t3040_no_obj
	Validator error if no object file loaded

	t3050_vers_incompat
	Validator error if file was compiled under an earlier version

	t3110_tag_ok
	Tag names: normal correct usage, no errors

	t3115_tag_er
	Tag names: error situations

	t3120_var_bool_ok
	Boolean variables: normal correct usage, no errors

	t3125_var_bool_er
	Boolean variables: error situations

	t3130_var_string_ok
	String variables: normal correct usage, no errors

	t3135_var_string_er
	String variables: error situations

	t3140_var_tagrange_ok
	Tag-ranged variables: normal correct usage, no errors

	t3141_var_tagrange_med
	Tag-ranged variables: additional medium model

	t3145_var_tagrange_er
	Tag-ranged variables: error situations

	t3150_var_tagenum_ok
	Tag-enumerated variables: normal correct usage, no errors

	t3151_var_tagenum_med
	Tag-enumerated variables: additional medium model

	t3155_var_tagenum_er
	Tag-enumerated variables: error situations

	t3210_pco_ok
	PCOs: normal correct usage, no errors

	t3215_pco_er
	PCOs: error situations

	t3220_evt_ok
	Events: normal correct usage, no errors

	t3225_evt_er
	Events: error situations

	t3230_sta_ok
	States: normal correct usage, no errors

	t3231_sta_basic
	States: additional model

	t3235_sta_er
	States: error situations

	t3240_fun_ok
	Functions: normal correct usage, no errors

	t3245_fun_er
	Functions: error situations

	t3340_doubdef
	Extra double definition tests

	t3360_polyvalent
	Polyvalent (overloaded) symbol warning/errors

	t3370_BasTypChk
	Basic Type checking

	t3371_AdvTypChk
	Advanced type checking

	t3910_stxr_ok
	A detailed model illustrating scoping issues

Figure 2 following shows a model that tests that items (tags, variables, events, states and PCOs) are correctly addressed where it is necessary to search from the given scope outwards in the state hierarchy (the outbound search). It especially tests variables and their declarations, and the declaration of their type. A worst-case scenario is as follows. A variable is used in an expression which is to be evaluated in a certain scope. The variable is operated on by scoping operators, giving a new evaluated scope of that variable. But the variable is not found in exactly that scope. However, it is found in a more global scope by the “outbound search”. This is the declared scope of the variable, although the declaration may have been made in a part of the hierarchy that has yet another scope, but using scoping operators so as to effectively declare as if in the part of the hierarchy that is the declared scope.

When a variable is declared, it has a type defined by the tagname, defining the enumerators or range. The tagname in a variable declaration is itself subject to an evaluated scope and declared scope analogously to the variable declaration.

State scopes can only be defined by means of the place of the state definition in the state hierarchy, but there can be several states of the same name. When a state is referenced, as with variables and tagnames, the effectively referenced state depends on any explicit scoping operations and then the outbound search.

Figure 2. Symbol/cross-reference table: To test tags/variables/events/states/PCOs.

[Model t3910_stxr_ok] (stxr_ok=symbol table and cross-reference table ok)
Note: The exclamation marks draw attention to names are not part of any syntax.

4. Illustrative Examples

These models include examples that have been used in various reports.

· The Obj_example model that illustrates object code structure, as exhibited in the STATECRUNCHER maintenance handbook (no diagram).

· The Tie example of [StCrParsing], (no diagram).

· The Tuner-Hop example of a Philips report on component binding
, p.30 (diagram follows, Figure 3), modelled by Tim trew.

· The Traces example in the Transfer Report (diagram follows, Figure 4). The transfer report is a deliverable of the author's PhD registration at the University of Surrey.

· A Program Installation model by Tim Trew, for determining the station ID during TV program installation. In this case, the generation of teletext packets is not directly under control of the test harness, and the result of the sequences that might be received is predicted through the genPckts state, which exhibits iterative fork nondeterminism on the next_pkt event (diagram follows, Figure 5).

Figure 3. Tuner-Hop (modelled by Tim Trew) [model t4130]

Note colour coding per local event in a component, for Tuner and Hop.

Figure 4. Traces example in transfer report [Model t4140]

Figure 5. Program Installation (modelled by Tim Trew) [model t4150]

The model produces sequences of packets by fork nondeterminism.

Output from this model

The model is driven by turning set-transit nondeterminism off and processing event tv_system_found. This can be done interactively, or in a Prolog predicate as follows, where an output file is written in the same directory as the model.

This produces an output file ProgInst.out.txt. To reduce the output to the essentials (occupied leafstates and key variables), a grep command was executed on it as follows:

The output (with minor editorial refinements) is as follows

With set transit nondeterminism switched on, the following additional output is obtained (due to the action on genPkts being executed prior to the action on waitingForPkt.

Figure 6. Notification example [model t4152]

This model is discussed in [StCrMain].

5. Testing the Machine Engine: Small Test/Demonstration Models

Ideally, each model would be accompanied by a full explanation, and by the test scripts with expected output. However, space does not permit. The title of each model indicates what is being demonstrated or tested. The test scripts are part of the STATECRUNCHER delivery (see directory am_sc). The diagrams give the general reader an overview of STATECRUNCHER functionality and the extent of testing. But the main purpose of the diagrams is as a reference document, serving a certain tutorial function, for discussions amongst STATECRUNCHER users.

Variables and events will always be declared in the diagram if their scope is significant, otherwise their declaration will not necessarily be shown. See Section 1.2 for the notation.

The following models may contain more events and transitions than are marked, to provide direct access to all required states. We call these omega transitions – see Section 8.1.1
5.1 Small Deterministic Models

Figure 7. The hello world of state models [model t5110]

Figure 8. Parameterized, with conditions [models t5120, t5121, t5122, t5123]

Figure 9. Simple cluster transitions plus history [model t5130]

This model also illustrates internal and external self transitions on leaf states and nonleaf states.

Figure 10. Set, but deterministic [model t5140]

Figure 11. Fired event, but deterministic [model t5150]

Model t5150 explored

Figure 12. Fired event in series [model t5152]

Figure 13. Assignment on transition with overloaded variable names [model t5160]

Figure 14. Simple assignment on transition [model t5161]

Figure 15. Simple on-enter/ on-exit actions [model t5170]

Notes

· Variable v tracks a transition from p to q.

· Variable u tracks a transition from q to p.

· The fired event ζ1 is only executed in a transition exiting p2 or entering q2.

Figure 16. Simple meta event (state entry/exit) [model t5180]

Figure 17. Conditional actions and in() function [model t5190]

Figure 18. History, Deep History and Clear Functions [model t5200]

Arithmetic (with scoping) [model t5210]

Figure 19. Strings and String Functions [model t5220]

Figure 20. Traces (deterministic) [model t5230]

Figure 21. Cycling [model t5240]

Figure 22. Inexact state scoping - [model t5250]

5.2 Small Nondeterministic Models

Figure 23. Set transit nondeterminism only [model t5410]

Figure 24. Set Action Nondeterminism [model t5412]

When, say, events α_j, α_n, and α_s are given, then ω is given, the actions that take place are treated in the same way as set-transit actions on member states.

Notes

· α, α gives rise to race nondeterminism on a 5 way race, giving Permrace(5) worlds, i.e. 10 worlds under the med_set_tran option. (See Figure 41 and the description following for more explanation about this). This option produces 2n of the n! permutations. This is still quite fast.

· α, ω gives rise to set-action nondeterminism, causing permutations on (exit-j and exit-l and exit-n) and on (exit-q and exit-s), and between them, as if set-transit nondeterminism were involved, giving Permset-tran(2).Permset-tran(3).Permset-tran(2) =24 worlds. This is slow.

· α, ω_race gives rise to mixed race and set-action nondeterminism, giving Permset-tran(2).Permset-tran(3).Permset-race(2) =24 worlds. The speed is medium.
Note on speed

· By medium, we mean, typically, a matter of minutes on a 300 MHz machine

· By slow, we mean, typically, a matter of 30 mins-2 hours on a 300 MHz machine

· Speeds vary according to

· the Prolog System

· whether we run the model under the GP4 test harness or stand-alone

· what has been run before (under the top-level Prolog prompt), since memory fragmentation (presumably) can degrade performance by one or more orders of magnitude.
Figure 25. Set meta-event nondeterminism [model t5414]

Illustrative sequence: α_j α_n α_s ω_x, showing permutations of exit meta-events.

· Analogous comments regarding race nondeterminism versus set-meta-event nondeterminism apply to those of model t5412, under med_set_tran permutations:

· α,α a 4-way race, Permrace(4)=8 worlds, fast.

· α,ω_x set-meta-event nondeterminism, Permset-tran(1).Permset-tran(3).Permset-tran(2) =12 worlds, slow.

· α,ω_race rise to mixed race and set-meta-event nondeterminism, giving Permset-tran(1).Permset-tran(3).Permset-race(2) =12 worlds, medium speed.

Figure 26. Fork nondeterminism only [model t5420]

Figure 27. Fork Nondeterminism differentiated by history [model t5422]

To effectuate the nondeterminism, execute events as follows

· event γ brings the machine to state p2
· event γ brings the machine back to a1, with history of cluster p recorded

· event α forks on existence of the record of history

· event β of worlds causes reconvergence of worlds by clearing all record of history of cluster p

Figure 28. Race nondeterminism only; winner detected by meta-event [model t5430]

Figure 29. Race nondeterminism only - winner detected by fired event [model t5440]

Figure 30. Race nondeterminism only - winner detected by variable value [model t5450]

Figure 31. Race nondeterminism - winner detected by history [model t5460]

· For a simpler illustration of history in nondeterminism, as a case of fork nondeterminism, see model t5422.

· To run the race, process events gamma, gamma, alpha. In one arm of the race, the history of cluster p is cleared, in the other it is not cleared (because b1 is vacant and the conditional action to clear history does not take place).

· Alternatively, events gamma, alpha are processed. A similar race takes place. In this case history is set on one of the transitions involved in the race, (as opposed to the previous case where history was set up before the race).

Figure 32. Race nondeterminism - winner detected by trace [model t5470]

Figure 33. Race to a single target [model t5472]

Figure 34. Race to start (mutually exclusive transitions) [model t5474]

Figure 35. Compact multiple nondeterminism (4 kinds) [model t5480]

This model can be used with event β to illustrate set-transit, fork, and race-condition nondeterminism, or with event α to illustrate broadcast-event nondeterminism.
Figure 36. Illustration of all kinds of STATECRUNCHER output [model t5490]

Notes

· This model is basically a race on event α between fired events γ and δ, with the winner established by the order of processing fired events γ and δ in member z and by trace data deposited in members a and b.

· Scoped events ζ and $ζ
· Scoped variables v and $v
· Scoped PCOs pco1 and $pco1
· Note how a nondefault cluster member (q) can be entered using event ε the first time and event α from state a1 using history the second time.
· Note that internally generated events, in our example, exit(::a.a2.p) are not offered as user suppliable.
This model is used an example to illustrate output that would be used in communication with a primer. (A primer is a program that decides what tests to perform, i.e. what events to process, whereas STATECRUNCHER gives the oracle to these tests).

Figure 37. Transition Prioritization [model t5500]

Figure 38. Scoped events illustrated by fork nondeterminism [model t5510]

Figure 39. Limited permutation race nondeterminism [model t5520]

Explanation of the permutation limitations

· no_race: Only one permutation will be generated. The transition in the first set member will be executed first, then the one in the second set member etc. The permutation using set member names is abcd.

· low_race: Only two permutations will be generated. One is as above, and the other is the reverse of that order. The permutations are abcd and dcba.

· med_race: The number of permutations generated is 2n. These permutations are all the cyclic and anticyclic rotation operations on the no-race permutation. The permutations are (cyclic) abcd, bcda, cdab, dabc, (and anticyclic) dcba, cbad, badc, adcb.

· high_race: All n! permutations are generated, i.e. 4! = 24 permutations in this case.

These options can be set at a PROLOG prompt by the predicates me_no_race, me_low_race, me_med_race and me_high_race. The default is me_med_race.

Figure 40. Limited permutation set-transit nondeterminism [model t5530]

Explanation of the permutation limitations

· no_set_tran: Only one permutation will be generated. The transition in the first set member will be executed first, then the one in the second set member etc. The permutation using set member names is pqrs.

· low_set_tran: Only two permutations will be generated. One is as above, and the other is the reverse of that order. The permutations are pqrs and srqp.

· med_set_tran: The number of permutations generated is 2n. These permutations are all the cyclic and anticyclic rotation operations on the no-set_tran permutation. The permutations are (cyclic) pqrs, qrsp, rspq, spqr, (and anticyclic) srqp, rqps, qpsr, psrq.

· high_set_tran: All n! permutations are generated, i.e. 4! = 24 permutations in this case.

These options can be set at a PROLOG prompt by the predicates me_no_set_tran, me_low_set_tran, me_med_set_tran and me_high_set_tran. The default is me_med_set_tran.

Figure 41. Different transitionable events after nondeterminism [model t5540]

Pruning of traces - fork - non-self transitions [model t5550]

Figure 42. Pruning of traces - fork - self transitions [model t5555]

Pruning of traces - race - non-self transitions [model t5560]

Figure 43. Pruning of traces - race - self transitions[model t5565]

Figure 44. Arrays with fork nondeterminism [model t5580]

As at Release 1.04

· Array base (i.e. without index), and all array elements must be declared

· Undeclared array elements may work as regards internal logic, but will not be shown in output, nor be accepted as command input (as from primer).

Test sequence

· events δ,β,γ,α. Event δ increments local k1, and so some indices, marked by a +.
Figure 45. Simple scoped array [model t5581]

get_nworlds: Get number of worlds (1) [model t5600]

Parameter P1 to get_nworlds: P1=1 (default) for command-time number-of-worlds

Illustrative event sequence: φ,β,α
Figure 46. get_nworlds: Get number of worlds (2) [model t5602]

Parameter P1 to get_nworlds P1=2 for execution-time number-of-worlds

This number may be higher than expected due to internal world generation on any action.

Illustrative event sequence: β,α
6. Systematic Test Models

Diagrams with their model numbers follow.

6.1 State Hierarchy and Initial Machine Entry

Figure 47. Hierarchy for initial/directed state entry [model t6200 & derivatives]

Note:
Model t6200 contains all the above (8 sets in full exit from initial state). Other models contain just part of the full model as indicated, e.g. t6201 contains just outer set ab from this model. (5 sets in all).

Figure 48. t6200 structure

Counting any non-first member as a second member, the above hierarchy contains routes from the top

Set to set/cluster/leafstate

· S1-S1
S1-S2
S2-S1
S2-S2

· S1-C1
S1-C2
S2-C1
S2-C2

· S1-L1
S1-L2
S2-L1
S2-L2

Cluster to set/cluster/leafstate

· C1-C1
C1-C2
C2-S1
C2-S2

· C1-C1
C1-C2
C2-C1
C2-C2

· C1-L1
C1-L2
C2-L1
C2-L2

Occupied/Vacant combinations

· Setocc-Cluster

· Setvac-Cluster

· Setocc-Set

· Setvac-Set

· Clusterocc-Cluster

· Clustervac-Cluster

· Clusterocc-Set

· Clustervac-Set

The following sequences are also covered

· Set Cluster Set

· Cluster Set Cluster

These are the primary aspects being tested, in respect of “entering initial state”.

6.2 Specifying States in Transitions

Figure 49. Specifying States (model t6220)

Figure 50. Specifying States - continued

6.3 Deep Nesting

6.3.1 Deep Cluster nesting [model t6222]

Figure 51. Deep Cluster Nesting

Notes on event notation (showing destination relation) follow.

Figure 52. Terminology for relationships (with event naming convention)

Figure 53. Nonleaf-Nonleaf relationships

Table 4. Matrix of event names

	
	
	
	
	one removed
	
	two removed

	to(from(
	
	leaf
	lp
	lgp
	lggp
	
	leaf
	lp
	lgp
	lggp
	
	leaf
	lp
	lgp
	lggp

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	leaf
	
	α1
	π1
	gπ1
	ggπ
	
	κ1
	υ1
	gυ1
	
	
	dκ1
	dυ1
	
	

	
	
	sibling
	parent
	gr-par
	gr-gr-p
	
	cousin
	uncle
	gr-un
	
	
	2cousin
	2uncle
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	lp
	
	τ1
	α2
	π2
	gπ1
	
	ν1
	κ2
	υ2
	gυ2
	
	dν1
	dκ2
	dυ2
	

	
	
	child
	sibling
	parent
	gr-par
	
	nephew
	cousin
	uncle
	gr-un
	
	2neph
	2cousin
	2uncle
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	lgp
	
	gτ1
	τ2
	α3
	π3
	
	gν1
	ν2
	κ3
	υ3
	
	
	dν2
	dκ3
	dυ3

	
	
	gr-ch
	child
	sibling
	parent
	
	gr-neph
	nephew
	cousin
	uncle
	
	
	2neph
	2cousin
	2uncle

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	lggp
	
	ggτ
	gτ2
	τ3
	α4
	
	
	gν2
	ν3
	κ4
	
	
	
	dν3
	dκ4

	
	
	gr-gr-c
	gr-ch
	child
	sibling
	
	
	gr-neph
	nephew
	cousin
	
	
	
	2neph
	2cousin

Legend:

lp=leaf-parent; lgp=leaf-grand-parent; lggp=leaf-great-grand-parent; shaded=not tested

Predicate gn_relname(FROM,TO,RELATION) will produce relation names, given machine paths to be read from right to left, e.g.

gn_relname(

 [u1,u2,u3,u4,u5,u6,u7,u8,u9,c],

 [p1,p2,p3,p4,p5, c],R).

R=[5,[great,great,great,uncle]]).
i.e. TO is a fifth great,great,great,uncle of FROM.

6.3.2 Deep set nesting (model t6224)

Figure 54. Deep set nesting

With sets, any direct transition crossing a set member separator () is in principle illegal. Such an apparent transition can be re-interpreted as legal transition by introducing an orbit:

Orbital transitions provide a legal way of transitioning to a set member, as long as any exited set is re-entered.

The elements of a set are normally sets or clusters, so we chiefly use clusters as the innermost set members, with one leaf-state set member for completeness.

The above figure allows for exercising of non-orbital direct-ancestor/direct descendant transitions.

6.4 Transition Selection

Figure 55. Simple Enter-Exit Transition Selection [model t6230]

Note: This model is not suitable for user-level driving and is used at an API level.

Figure 56. Transition Selection Basics - [model t6240]

Notes: This model is a ‘legacy’ model, used in some low-level tests, but is not particularly suitable as a transition demonstration model due to the diversity of features. There ere two events α, with superscripts added as a means of identifying transitions on them.

6.5 Orbits

Figure 57. Orbits [model t6260]

Notes:

· Variables x and n are reset by ω transitions (specific set-to-state transitions), not shown in the diagram.

· If an orbital transition arc cuts through n member-state boundaries, the orbital state can be addressed using n+1 $-signs.

Figure 58. Orbits - Legalisation of doubtful orbits [model t6264]

6.6 Common Tree Removal

Figure 59. Common tree removal in sets [model t6270]

Used without transitions, generating explicit enter/exit trees, in demonstration programs.

6.7 Scope of Enter/Exit Trees

Figure 60. Scope of enter/exit trees [model t6280]

The algorithm tested here is described in [StCrMain] in the section on the transition course.

This model is used for low-level API testing and is not suitable as a high-level demonstration, since the exit and entry tree scopes are not visible at a high level.

This model is also exhibited in the main STATECRUNCHER report [StCrMain], in the section on the transition algorithm, showing the scopes involved.

6.8 Transition Course

Figure 61. Entry tree logic for clusters (1) - [model t6291]

Notes

· The algorithm tested here is described in [StCrMain] in the section on the transition course. The terminology is taken from there (case numbers, guided/unguided entry, dho=deep history obligation).

· Notation such as (12eff, with a dotted transition arc, refers to the effective transition of the one on event (12.
· upon enter and upon exit assignments are made throughout the model:
(vn= upon enter assignment on entry into state above the symbol
(vx= upon exit assignment on exit of state abovethe symbol
(vn=vn*10+1 at leaf level; vn=vn*10+2 at parent; vn=vn*10+3 at grandparent

(vx=vx*10+1 at leaf level; vx=vx*10+2 at parent; vx=vx*10+3 at grandparent

· This model is used at API level as well as high level, and should not be changed lightly
Figure 62. Entry tree logic for clusters (2) -[model t6292]

Figure 63. Entry tree logic for clusters (3) - [model t6293]

Figure 64. Entry tree logic for clusters (4) - [model t6294]

Figure 65. Entry tree logic for clusters (5) - [model t6295]

Figure 66. Entry tree logic for clusters (6) - [model t6296]

Figure 67. Entry tree logic for clusters (7) - [model t6297]

Figure 68. Entry tree logic for sets [model t6305]

Note that the target states may be in direct hierarchical (i.e. ancestral) relationship, though in such cases the higher member is redundant in the target specification. This applies to the target x2 above.

6.9 Exercising Nondeterminism

The 5000-series of models exercises nondeterminism quite extensively. In this section we add a few heavy-duty examples.

6.9.1 Set Transit Nondeterminism

Figure 69. Set Transit Nondeterminism [models t6310, t6311]

Model t6310 is shown (9 sets to exit). Model t6311 contains just member b (7 sets to exit).

Note: event β1, (and more so σ and β2), is likely to cause combinatorial explosion.
Figure 70. Race and fork nondeterminism in separate sets [models t6350, t6351]

The full model t6350 is as shown with all transitions in place, including the ones struck out.
We restrict this in t6351 by excluding some transitions as shown by strike-out.

Under the restricted race condition permutation mode

med_set_tran

which gives 2n permutations of n elements (see comments following Figure 41), we have the following data on event φ.

Table 5. World generation in model t6350
	
	NF

nr. of forks
	NR

nr. in race
	nr of worlds

2NF.2.NR

	Full Model t6350
	5
	5
	25.2.5 = 320

	Restricted Model t6351
	3
	4
	24.2.4 = 64

6.10 Finding Active Events

Figure 71. Finding active events [model t6410]

Note that on-transition events and variables are evaluated in source-state scope, states in state parent scope. So $α references the local event α in the examples in cluster a above; $$α is needed to reference the global α.

6.11 Upon Exit/Upon Enter

These actions are adequately exercised in model t5170.

We reserved model number t6420 for additional tests if needed.

Figure 72. Upon Enter / Upon Exit [model t6420]

6.12 Exercising History

History is adequately tested in model t5220.

We reserved model number t6430 for additional tests if needed.

Figure 73. Model to exercise history [model t6430]
7. Stress Testing

7.1 Axes of Stress Testing

The main axes along which stress tests can be constructed are

· size

· broad but shallow (cluster/set)

· deep (cluster/set)

· execution speed

· deterministic situations

· nondeterministic situations

Some performance statistics are given, but timings may vary with the exact loading on the computer, in terms of core and mass memory, and any additional cpu loading (though the tests were run without any deliberate extra loading).

Notation: In the performance tables that follow, if an event is denoted as “,β” or “then β” this refers to processing event β after some previous event(s) – the context should make it obvious which events. The timing data will apply to the time to process β excluding the time taken by previous events.
7.2 Model Generation.

The models in this section are generated by generation programs.

Some common code for this is located in the mk_sc directory alongside the rest of STATECRUNCHER. The model generation modules themselves are located in the test model directory, alongside the place where the model itself is created, e.g. in directory

 ..StCr\StCr3ModelsTest\t7000st\t7110_stress_broad_clusters

The generation modules are normally loaded with STATECRUNCHER. A typical predicate to generate a module is

 mk_t7110(10,12). // k=10, n=12
The test suite regenerates the models with the parameters as set in the test scripts.

7.3 Combinatorial Explosion and Limited Permutation

Note that a major cause of slow performance is combinatorial explosion, due to the generation of permutations. The permutation options are denoted by FLAGs as follows

Table 6. Flags for permutation control

	1 permutation
	1 permutation

backwards
	2 permutations

forwards and backwards
	2n permutations

all cyclic and anticyclic
	All n! permutations

	f_k1b
	f_k1b
	f_k2
	f_k3a
	f_1

The race (transition selection) permutation flag is stored in

 me_permute_trnsel_flag(FLAG).

The set-transit permutation flag is stored in

 me_permute_settrnd_flag(FLAG).

The flags can be set by

 me_set_permute_trnsel_flag(FLAG). (FLAG can be f_k1b, f_k2, f_k3a, f_1)
 me_set_permute_settrnd_flag(FLAG). (FLAG can be f_k1a, f_k2, f_k3a, f_1)
These forms of nondeterminism can also be switched by

 me_no_race.
// equivalent to me_set_permute_trnsel_flag(f_k1b).
 me_low_race.
// equivalent to me_set_permute_trnsel_flag(f_k2).
 me_med_race.
// equivalent to me_set_permute_trnsel_flag(f_k3a).
 me_high_race.
// equivalent to me_set_permute_trnsel_flag(f_1).
 me_no_set_tran. // equivalent to me_set_permute_settrnd_flag(f_k1a).

 me_low_set_tran. // equivalent to me_set_permute_settrnd_flag(f_k2).
 me_med_set_tran. // equivalent to me_set_permute_settrnd_flag(f_k3a).
 me_high_set_tran. // equivalent to me_set_permute_settrnd_flag(f_1).
See also the descriptions after Figure 40 and Figure 41.

Figure 74. Broad clusters [model t7110]

To generate this model: mk_t7110(20,25). // k=20, n=25

Table 7. Performance statistics of model t7110
	Model params
	Event
	PROLOG
	Op.

System
	Processor

speed
	Perm

Pmset-tran
	Perm

Pmrace
	Time

	(20,25)
	α
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	1s

	(20,25)
	then β
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	2s

Figure 75. Broad sets [model t7120]

Note that this model can perform a massive set of transitions on α (but without exiting any sets), or any individual transition on αxy

To generate this model: mk_t7120(3,4).

Table 8. Performance statistics of model t7120
	Model params
	Event
	PROLOG
	Op.

System
	Processor

speed
	Perm

Pmset-tran
	Perm

Pmrace
	Time

	(3,4)
	α
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	6s

	..
	then ω
	..
	 ..
	 ..
	f_k3a
	f_k3a
	2m 26s

	..
	α
	..
	..
	..
	none
	f_k3a
	6s

	..
	then ω
	..
	..
	..
	none
	f_k3a
	0.2s

	..
	α
	..
	..
	..
	f_k3a
	none
	0.3s

	..
	then ω
	..
	..
	..
	f_k3a
	none
	2m 26s

Detailed note

On event ω, permutations of exited leafstates are generated, e.g. a DXLIST (definitive exit list) generated by me_sc_6a.pl: me_process_task_in_world is

[[xt_leaf, [q, c1, x1, sy, sc]],

 [xt_leaf, [q, c3, x1, sy, sc]],

 [xt_leaf, [q, c2, x1, sy, sc]],

 [xt_leaf, [q, c1, x3, sy, sc]],

 [xt_leaf, [q, c3, x3, sy, sc]],

 [xt_leaf, [q, c2, x3, sy, sc]],

 [xt_leaf, [q, c1, x2, sy, sc]],

 [xt_leaf, [q, c3, x2, sy, sc]],

 [xt_leaf, [q, c2, x2, sy, sc]]]

There are many other permutations of this list.

This list is the basis of generating upon-exit actions and exit meta-events.

Figure 76. Deep clusters - to level 5 [model t7130]

To generate this model: mk_t7130(5).

To generate a large model: mk_t7130(10). // source file 1500 lines

Table 9. Performance statistics for model t7130
	Model params
	Event
	PROLOG
	Op.

System
	Processor

speed
	Perm

Pmset-tran
	Perm

Pmrace
	Time

	(5)
	α2
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	0.06s

	..
	, ω
	..
	..
	..
	..
	..
	0.06s

	..
	α5
	..
	..
	..
	..
	..
	0.06s

	..
	, ω
	..
	..
	..
	..
	..
	0.06s

	(10)
	α2
	..
	..
	..
	..
	..
	20s

	..
	, ω
	..
	..
	..
	..
	..
	20s

	..
	α4
	..
	..
	..
	..
	..
	16s

	..
	, ω
	..
	..
	..
	..
	..
	16s

	..
	α10
	..
	..
	..
	..
	..
	4 s

	..
	,ω
	..
	..
	..
	..
	..
	4s

Figure 77. Deep Sets - to level 5 [model t7140]

To generate this model: mk_7140(5).

Table 10. Performance statistics for model t7140:

	Model params
	Event
	PROLOG
	Op.

System
	Processor

speed
	Perm

Pmset-tran
	Perm

Pmrace
	Time

or problem

	(5)
	α
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	2m 55s

	..
	,ω_x1
	..
	..
	..
	..
	..
	global stack

	..
	,ω_xx2
	..
	..
	..
	..
	..
	1m 9s

	..
	α_xxxx
	..
	..
	..
	..
	..
	0.7s

	..
	,ω_x1
	..
	..
	..
	..
	..
	2m 21s

	..
	α
	..
	..
	..
	none
	none
	4.3 s

	..
	,ω_x1
	..
	..
	..
	..
	..
	1.6s

	..
	,ω_xx2
	..
	..
	..
	..
	..
	1.2s

	..
	α_xxxx
	..
	..
	..
	..
	..
	0.7s

	..
	,ω_x1
	..
	..
	..
	..
	..
	1.3s

Figure 78. Alternating sets and clusters [model t7150]

Initial states shaded for clarity.

To generate this model: mk_t7150(5). (It is best to use an odd number).

Table 11. Performance statistics for model t7150
	Model params
	Event
	PROLOG
	Op.

System
	Processor

speed
	Perm

Pmset-tran
	Perm

Pmrace
	Time

or problem

	(5)
	α
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	2.5s

	..
	,ω_x1
	..
	..
	..
	..
	..
	0.9s

	..
	α_xx2
	..
	..
	..
	..
	..
	2.5s

	..
	,ω_x1
	..
	..
	..
	..
	..
	2.5s

Figure 79. Intensive fork and race non-determinism [model t7160]

To generate this model: mk_t7160(4,5). //k=4, n=5
Table 12. Number of worlds for model t7160
For k(3

For k=(2

· Under f_1 (full) permutations
= nk . f_1(k)
= nk.(k!)
= nk.(k!)

· Under f_k3a race-permutations
= nk. f_k3a(k)
= nk.(2k)
= nk.(k!)

· Under f_k2 race-permutations
= nk. f_2(k)
= nk.(2)

= nk.(k!)

	(k,n)
	nk
	f_1

	f_k3a

	f_2

	full

perm
	
	f_k3a

perm
	
	f_k2

perm
	

	(1,1)
	11=1
	1!=1
	1
	1
	1.1 =
	1
	1.1 =
	1
	1.1 =
	1

	(1,2)
	21=2
	1!=1
	1
	1
	2.1 =
	2
	2.1 =
	2
	2.1 =
	2

	(1,3)
	31=3
	1!=1
	1
	1
	3.1 =
	3
	3.1 =
	3
	3.1 =
	3

	(1,4)
	41=4
	1!=1
	1
	1
	4.1 =
	4
	4.1 =
	4
	4.1 =
	4

	(1,5)
	51=5
	1!=1
	1
	1
	5.1 =
	5
	5.1 =
	5
	5.1 =
	5

	(2,1)
	12=1
	2!=2
	2
	2
	1.2 =
	2
	1.2 =
	2
	1.2 =
	2

	(2,2)
	22=4
	2!=2
	2
	2
	4.2 =
	8
	4.2 =
	8
	4.2 =
	8

	(2,3)
	32=9
	2!=2
	2
	2
	9.2 =
	18
	9.2 =
	18
	9.2 =
	18

	(2,4)
	42=16
	2!=2
	2
	2
	16.2 =
	32
	16.2 =
	32
	16.2 =
	32

	(2,5)
	52=25
	2!=2
	2
	2
	25.2 =
	50
	25.2 =
	50
	25.2 =
	50

	(3,1)
	13=1
	3!=6
	6
	2
	1.6 =
	6
	1.6 =
	6
	1.2 =
	2

	(3,2)
	23=8
	3!=6
	6
	2
	8.6 =
	48
	8.6 =
	48
	8.2 =
	16

	(3,3)
	33=27
	3!=6
	6
	2
	27.6 =
	162
	27.6 =
	162
	27.2 =
	54

	(3,4)
	43=64
	3!=6
	6
	2
	64.6 =
	384
	64.6 =
	384
	64.2 =
	128

	(3,5)
	53=125
	3!=6
	6
	2
	125.6 =
	750
	125.6 =
	750
	125.2
	250

	(4,1)
	14=1
	4!=24
	8
	2
	1.24 =
	24
	1.8 =
	8
	1.2 =
	2

	(4,2)
	24=16
	4!=24
	8
	2
	16.24 =
	384
	16.8 =
	128
	16.2 =
	32

	(4,3)
	34=81
	4!=24
	8
	2
	81.24 =
	1944
	81.8 =
	648
	81.2 =
	162

	(4,4)
	44=256
	4!=24
	8
	2
	256.24 =
	6144
	256.8 =
	512
	256.2 =
	512

	(4,5)
	54=625
	4!=24
	8
	2
	625.24 =
	15000
	625.8 =
	5000
	625.2 =
	1250

	(5,1)
	15=1
	5!=120
	10
	2
	1.120 =
	120
	1.10 =
	10
	1.2 =
	2

	(5,2)
	25=32
	5!=120
	10
	2
	32.120 =
	3840
	32.10 =
	320
	32.2 =
	64

	(5,3)
	35=243
	5!=120
	10
	2
	243.120 =
	29160
	243.10 =
	2430
	243.2 =
	486

	(5,4)
	45=1024
	5!=120
	10
	2
	1024.120=
	122880
	1024.10=
	10240
	1024.2=
	2048

	(5,5)
	55=3125
	5!=120
	10
	2
	3125.120=
	375000
	3125.10=
	31250
	3125.2=
	6250

Note that event ω does not clear variable data, and so does not reduce to one world. The actual number of worlds is Perm(k), using the selected restricted-permutation generator.

Table 13. Performance statistics for model t7160
[SWI-Prolog 5.0.3 / Windows98]:
	Model params
	Event
	Nr of

Worlds
	Processor

speed
	Perm

Pmset-tran
	Perm

Pmrace
	Time

or problem

	
	
	
	
	
	
	

	(2,3)
	α
	1(18
	300MHz
	f_k3a
	f_k3a
	1.3s

	(2,3)
	,ω
	18(2
	..
	..
	..
	0.8s

	(2,4)
	α
	1(32
	..
	..
	..
	3.7s

	(2,4)
	,ω
	32(2
	..
	..
	..
	1.8s

	
	
	
	
	
	
	

	(3,2)
	α
	1(48
	..
	..
	..
	10.6s

	(3,2)
	,ω
	48(6
	..
	..
	..
	10.0s

	(3,3)
	α
	1(162
	..
	..
	..
	1m 53s

	(3,3)
	,ω
	162(6
	..
	..
	..
	3m 15s

	(3,4)
	α
	1(384
	..
	..
	..
	18m 3s

	(3,4)
	,ω
	384(6
	..
	..
	..
	11m 0s

	
	
	
	
	
	
	

	(4,2)
	α
	1(128
	..
	..
	..
	1m 59s

	(4,2)
	,ω
	128(8
	..
	..
	..
	4m 02

	(4,3)
	α
	1(648
	..
	..
	..
	>1hr 30m

	(4,3)
	,ω
	648(8
	..
	..
	..
	untested

[WinProlog 4.010 / Win98]:

	(3,4)
	α
	1(384
	..
	..
	..
	>1hr

	(3,4)
	,ω
	384(6
	..
	..
	..
	untested

It was noted that uncompleted event processing, under SWI- and Win- Prolog, involved intense disk activity - it could be that with more core memory the events will complete in much less time.

Figure 80. Stressing transition prioritization [model t7170]

To generate this model : mk_t7170(5).

Table 14. Performance statistics for model t7170 [SWI-Prolog 5.0.3 / Win98]:

	Model params
	Event
	Worlds
	Processor

speed
	Perm

Pmset-tran
	Perm

Pmrace
	Time

	(20)
	α
	1(2
	300MHz
	f_k3a
	f_k3a
	0.3s

	..
	β
	2(1
	..
	..
	..
	0.3s

Figure 81. Long-chain broadcast-event non-determinism [model t7180]

To generate model to b(20): mk_t7180(20).

Table 15. Performance statistics for model t7180(20)
	Model params
	Event
	PROLOG
	Op.

System
	Processor

speed
	Perm

Pmset-tran
	Perm

Pmrace
	Time

	(20)
	β1
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	1.0s

	(20)
	,ω
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	16s

Figure 82. Broad broadcast-event nondeterminism [model t7190]

To generate this model: mk_t7190(20).

Table 16. Performance statistics for model t7190(20)
	Model params
	Event

	PROLOG
	Op.

System
	Processor

speed
	Perm

Pmset-tran
	Perm

Pmrace
	Time

	(20)
	β
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	1m50s

	(20)
	,ω
	SWI 5.0.3
	Win98
	300MHz
	f_k3a
	f_k3a
	23s

8. Conventions

8.1.1 Omega Transitions

Statecharts to exercise the state machine engine may contain implicit additional control transitions (named omega...) for the purpose of putting the statechart in a specific state (in particular leafstates) prior to a test.

Figure 83. Omega transitions

Notes

· When priming a model, omega transitions to leaf-states are all that is required. Omega transitions to non-leaf-states are only needed in testing entry to the correct default state. The above diagram shows just one omega-transition (ω_a) to a non-leaf-state.

· In order to be unique, the naming of an omega transition may have to incorporate the machine path (not necessary in the above model).

· The event ω_vreset is used to reset variables, and ω_hreset to clear history, triggering an internal transition at a high level in the hierarchy

9. STATECRUNCHER References

STATECRUNCHER documentation and papers by the present author

	Main Thesis
	[StCrMain]
	The Design and Construction of a State Machine System that Handles Nondeterminism

	
	
	

	Appendices
	
	

	
	
	

	Appendix 1
	[StCrContext]
	Software Testing in Context

	
	
	

	Appendix 2
	[StCrSemComp]
	A Semantic Comparison of STATECRUNCHER and Process Algebras

	
	
	

	Appendix 3
	[StCrOutput]
	A Quick Reference of STATECRUNCHER's Output Format

	
	
	

	Appendix 4
	[StCrDistArb]
	Distributed Arbiter Modelling in CCS and STATECRUNCHER - A Comparison

	
	
	

	Appendix 5
	[StCrNim]
	The Game of Nim in Z and STATECRUNCHER

	
	
	

	Appendix 6
	[StCrBiblRef]
	Bibliography and References

	
	
	

	Related reports
	
	

	
	
	

	Related report 1
	[StCrPrimer]
	STATECRUNCHER-to-Primer Protocol

	
	
	

	Related report 2
	[StCrManual]
	STATECRUNCHER User Manual

	
	
	

	Related report 3
	[StCrGP4]
	GP4 - The Generic Prolog Parsing and Prototyping Package (underlies the STATECRUNCHER compiler)

	
	
	

	Related report 4
	[StCrParsing]
	STATECRUNCHER Parsing

	
	
	

	Related report 5
	[StCrTest]
	STATECRUNCHER Test Models

	
	
	

	Related report 6
	[StCrFunMod]
	State-based Modelling of Functions and Pump Engines

(v=v*10+1

(v=v*10+3

(v=v*10+2

(v=v*10+5

(v=v*10+4

(v=v*10+6

(v=v*10+7

enter($c.c3)

z3

z2

z1

enter($b.b2.p.p1)

p1

p2

q1

q2

q

p

b2

α5

β

b2

k

c

statechart sc

α1

(t1,$t2)

[B1]

statechart sc

NB: exit($s) refers to same state as exit(s) above

NB note which α

exit($s)[B15]

enter($b.bb)[B14]

 d

ω_da

db

da

 bb

NB: exit(s) actually gives a useless transition but it illustrates the outbound search mechanism in transition selection.

bcba

NB identical unscoped name bb

 bb

(α (transitions α3 α4 α5 α7 α8 α9)

b14

enter($b.bb)[B14]

exit(s)[B13]

α12,enter($b.bb.bb)[B12]

 c

ω_a5a

ω_ca

cb

ca

ω_ba

τ,φ

 various self transitions used for control of (condition) variables

z

α9[B9]

α8[B8]

α4[B4]

α7[B7]

β,α5[B5]

$$α6/*[B6]*/

α3[B3]

α2(P1)

[B2&&P1]

α0(P1,P2)[B0&&P2]

α11[B11]

α10[B10]

bb

ba

s

 b

a3

a2

ω_a5b

b2

a5b

a5a

a4

a1

bcbb

za

zb

statechart sc

z

ζ1

ζ2

s

gυ1

α31

aa

y

κ2

gπ3

ggτ1

υ1

ν1

gτ3

π2

τ2

α21

α22

bba

bb

α12

α12

α11

gτ1

gπ1

τ1

α11

π1

dν11

dυ12

gν1

dκ1

dκ1

υ21

ν21

κ2

ν22

υ22

dυ11

b

ab

baa

a

aab

aaa

abb

aba

κ1

bab

bbb

dκ1

gπ2

κ1

υ1

ν1

gτ2

π2

τ2

α2

α2

α1

α1

α1

α1

α1

α1

α1

gτ1

gπ1

τ1

α1

π1

dκ1

ι1

α(b)[!b]

ac

γ(v1,v2)[v1>v2]

α(b)[b]

δ {v=v*10+2}

d3

β

ab

a

α

β(bvp1,bvp2)[bvp1&&(!bvp2)]

b

statechart sc

b2

s

(v=v*10+1

(v=v*10+3

(v=v*10+2

(v=v*10+5

(v=v*10+4

γ

β

ε

δ

β

γ

γ

τ

τ

r

x

g

b

f

ρ

za

β6

α6

x5

q

tδ2

π

tγ2

γ2->c->c orbit=[c,b,a,y,x,sc]

γ1->$b->c orbit=[b,a,y,x,sc]

L

p

L

y4

β4

α4

H

β6

α6

y5

q

p

β5

α5

β6

α6

x5

q

p

y

x4

y3

β2

α2

β6

β6

α6

y5

q

ω

j

p

cn

c3

tγ1

zc

b1

i

a

s

q

t

tβ1

β1->$y->a.b.c orbit=[y,x,sc]

δ2->$$c->$$c orbit=[c,b,a,y,x,sc]

δ1->$$$b->$$c orbit=[b,a,y,x,sc]

tδ1

tβ2

β2->a->a.b.c orbit=[a,y,x,sc]

e

tα2

α2->::x.y.a->::x.y.a.b.c orbit=[y,x,sc]

tα3

tδ3

tβ3

L

L

L

statechart sc

$$$δ

α $β $$γ

 $$$$ε $$$$ζ

$$γ

t.η

upon exit

upon enter

split operator

y1

z3

Note: t1 t2 t4 t5 all refer to the same name 't'.

another local set of variables etc here

t5 (!)

referring to here

addit-ional usage

here

cannot declare a foreign-scoped state

t4 (!)

v

event-d

PCO

event-c

state-cd

PCO

event-r

state-r

PCO

another valns

another range

tag-d

tag-c

tag-r

valns-d

valns-c

valns-r

tag-d

tag-c

tag-r

range-d

range-c

range-r

another PCO

another event

another bool

enum-valns

enum-range

bool-d

bool-c

bool-r

bool-u

event-u

state-u

PCO

another tag

but referring to

here

variable usage

here

but defined for this scope

but tag defined here

variable

actually declared

here

but defined for this scope

tagname refers

to here

t2 (!)

q

t1

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

S2

Legend

 S = Set	1 = First member

 C = Cluster 	2 = Subsequent member

 L = Leafstate

X

X

 aac

 abd

 abc

L

L

S2

 abb

 aba

L

L

S1

L

S1

C2

S2

C2

C1

 ab

S1

S2

C1

 aab

 S2

 aad

L

 aaa

C1

C2

S2

initial state =occupied

	initial state = vacant

s

p

z2

r

z1

bcaa

bcab

bcca

bccb

bcd

bcc

bca

bcda

bcdb

bc

bcb

i

χ5

case 11: at s, entering p

σ1: Unguided, no history, target=vacant, orbital, history available

σ2: Unguided, no history, target=vacant, non-orbital, history available

σ1eff

D

historical state

r2

σ2eff

σ2

grandparent gπ1

grandchild gτ1

σ1

historical state

historical state

s9

q

w

occupied state

(3eff, (13eff

(2

occupied state

p

historical state

N

s

cases 1,2: at a, choosing p

case1: (1: Guided, (D), target=occ, no orbit

case1: (2: Guided, (D), target=occ, super-orbital

case2: (3: Guided, (D), target=occ, at-orbital

case2: (4: Guided, (D), target=occ, sub-orbital

ω_hreset{deep_clear(main);}

case 3: at u, entering q

υ1: Guided, (D), target=vac, no orbit

υ2: Guided, (D), target=vac, at-orbital

υ3: Guided, (D), target=vac, super-orbital

υ4: Guided, (D), target=vac, orbit cancelled

υ5: Guided, (D), target=vac, sub-orbital

υ6: Guided, (D), target=vac, sub-orbital

same as k above with events μ1- μ14

so μ4eff μ14eff target p2

q1

historical state

q2

p1

p3

p2

s

t

statechart sc

l

d1

t

historical cluster

ε5

(3

xl

u

d

Note: β1 does not give rise to fork nondeterminism

β2->$b ok

b1

Available for parallel activity

ζ2

ζ1

z

z1

z2

Note: same name as parent

a1

occupied

state

q

p

(vn=vn*10+4

(vx=vx*10+4

(vn=vn*10+2

(vx=vx*10+2

xq

p

(vn=vn*10+2

(vx=vx*10+2

N

(1eff

(9eff

(11eff

(1

historical state

D

a

q1

q2

p1

p2

main

sy

(9

α->a

(inexact specification, which is acceptable, the exact specification being α->$a)

a

γ21

 γ22

 γ23

 γ24

a2

β1->b

γ2

γx2eff

Note that the (H) marker on cluster ‘h’ never has any effect on the choice of target-child of cluster ‘q’.

γ3

k

xk

same as k above with events λ1- λ14

but all target p1

p

cf case 6: at h or t, entering p

χ1,τ1: Guided, (H/N), target=vac, no orbit

χ2,τ2: Guided, (H/N), target=vac, super-orb.

χ3,τ3: Guided, (H/N), target=vac, at-orbital

χ4,τ4: Guided, (H/N), target=vac, sub-orbital

χ5,τ5: Guided, (H/N), target=vac, sub-orbital

 (for χ1 χ2 χ3 χ4 dho is false on entering e)

tγ3

tα1

H

κ14

D

xh

χ1

χ2

q1

abb

ab

q2

cn

p1

κ4

Note that the current cluster always acts as a more recent equivalent to history than the formal historical cluster.

χ4

effective transition target states shown thus:

z

occupied state

D

q

p

χ3

histor-

ical

state

h

q1

q2

p1

p2

c2

c1

xq

same as above with events τ1-5

q

b

a

r

sibling α1

s

d3

d2

υ3

D

xm

m

H

υ2

κx2eff

p2

υ1

υ4

υ6 4

occupied state

q

κx3eff

κ2

κ9

κ1eff

κ2eff

κ1

p

κ3

υ5

l

historical state

D

cases 7/8: at k, l or m, entering p

case 7: κ1,λ1,μ1: 	Unguided, (D/H/dho), target=occ, no orbit

case 7: κ2,λ2,μ2: 	Unguided, (D/H/dho), target=occ, super-orb

case 8: κ3,λ3,μ3: 	Unguided, (D/H/dho), target=occ, at-orbital

case 8: κ4,λ4,μ4: 	Unguided, (D/H/dho), target=occ, sub-orbital

occupied state

q

p

u

historical state

D

k

q1

q2

p1

p2

N

statechart sc

main

sy

D

xt

γ4eff, γ14eff, γ24eff

N

t

α,αk3

c3

ζ available for various control functions

z

(2eff,(12eff

β1

β2

β4 4

δ3->$$c

β3->a.b.c

γ3->c

s

r

q

p

d

c

b

f

y

α1->::x->::x.y.a.b.c orbit=[x,sc]

α3->$$a.b.c

a

x

statechart sc

α4->::s->aab

orbit=[s,sc]

(n=n*10+5

(x=x*10+5

(n=n*10+4

(x=x*10+4

(n=0 (x=0

δ2

ε1->a->a.aa.aaa

δ4->$$a->aaa

γ1->$ab

γ2->aa.aab

β4->a.aa

γ3->$$$y->$ab

ζ2

ζ1

z

zb

za

(n=n*10+2

(x=x*10+2

(n=n*10+3

(x=x*10+3

uncle υ1

nephew ν1

cousin κ1

second cousin δκ1

second uncle dυ1

second nephew dν1

baa

aab

aaa

(x=x*10+4

ζ available for various control functions

ξ1->x.x1.((x2/\x2.x3.y4.q5)/\y2.q2)

which, in scope sc.sy.main evaluates to

[[x2,x1,x,main,sy,sc],

 [q5,y4,x3,x2,x1,x,main,sy,sc],

 [q2,y2,main,sy,sc]]

q1

p1

q3

p3

q2

p2

y3

y2

y1

y5

x5

y4

x4

x3

x2

x1

q5

p5

great uncle gυ1

great nephew gν1

parent π1

child τ1

ba

aa

γ4->$$y->aa.aab

β3->

$a

β2->$y

->a.aa

β1->$$y

->$a

z

a

α5->::$sc->aab orbit=[sc]

α3->$$$y->aab

b

x

ab

α2->$$a->aab

α1->aab

aab

aaa

aa

statechart sc

y

s

 ac

statechart sc

main

sy

 aa

 a

C1

 S1

 C2

L

S

 C1

 statechart

aabb(set)

aabba

aabbb

aabac

aabc

aabab

aabaa

aaba(cluster)

aab(set)

t6206

t6204

t6200

t6205

t6203

t6202

t6201

aacbc

aacac

aaccc

aaacb

aaabc

aaaaac

abbab

abbaa

abba(set)

abaab

abaaa

a

abaa(set)

abc(set)

abca

abcb

aba(set)

abab

abd

abb(cluster)

abbb

ab(set)

aaacc

aaaca

aaac(set)

 aaaa(cluster)

 aaaaa(cluster)

aaaaab

aaaaaa

aaaab

aaccb

aacca

 aad

aacc(set)

aacb(cluster)

aaca(cluster)

aacbb

aacba

 ac

aacab

aacaa

aac(cluster)

aaaba

aaabb

aaab(cluster)

 aa(cluster)

aaa(set)

 a(set)

statechart sc

dν1

dυ1

gν1

gυ1

ν2

υ2

κ2

κ2

α3

bb

aa

b

ab

ba

a

aab

aaa

abb

aba

bab

baa

bbb

bba

α3

y

ζ2

ζ1

z

statechart sc

zb

za

s

π

α

α

b2

a

b

u

b1

ρ

a2

a1

t

b3

q

p

s

r

y

ζ

ζ

z

statechart sc

zb

β8

β7

β6

β5

β4

β3

γ2

γ1

β2

β1

δ4

δ3

γ3

γ4

s

a1

δ8

α

α

α

α

θ

a

η

b

η

H

α,γ

β

a2

a1

b2

b1

ζ

a

ab

aa

ζ

ε

ε

x

δ7

δ6

δ5

statechart sc

δ2

δ1

statechart sc

θ

Note that here

$$$s1 references sc.p.s1

$$s1 references sc.p.q.s1

β1eff etc. shown as dotted extensions to the transition arc.

H

occupied state

κ11

ζ various control functions

z

xq

p

β3

p

case 6: at e or f, entering p

ε1,φ1: Guided, (H/N), target=vac, no orbit

ε2,φ2: Guided, (H/N), target=vac, super-orb

ε3,φ3: Guided, (H/N), target=vac, at-orbital

ε4,φ4: Guided, (H/N), target=vac, sub-orbital

 (for ε1 ε2 ε3 ε4 dho is false on entering e)

κ12

same as above with events φ1-4

D

xf

κ13

f

H

D

xe

ε1

ε2

ε4

occupied state

q

p

ε3

histor-

ical

state

e

q1

q2

p1

p2

same as above with events δ1-δ24

D

xd

N

d

historical state

κx4eff

α1

cases 4,5: at c or d, choosing p

case 4: γ1,δ1: Guided, (H/N), target=occ, no orbit

case 4: γ9,δ9: Guided, (H/N), target=occ, super-orbital

case 5: γ2,δ2: Guided, (H/N), target=occ, at-orbital

case 5: γ3,δ3: Guided, (H/N), target=occ, sub-orbital

case 5: γ14,δ14: Guided, (H/N), target=occ, sub-orbital

z

b

q1

q2

p1

p2

case 3: at xq, choosing q

β1: Guided, (D), target=vac, no orbit

β2: Guided, (D), target=vac, super-orbital

β3: Guided, (D), target=vac, at-orbital

β4: Guided, (D), target=vac, sub-orbital

z1

(x=x*10+3

(n=n*10+4

q

ζ various control functions

z

γ4

γx3eff

r9

(n=n*10+3

main

sy

statechart sc

(x=x*10+1

(n=n*10+1

(n=n*10+8

(x=x*10+8

(n=n*10+8

cases 9/10: at n, the outer cluster p, or r, entering the outer cluster p

case 9: 	ν1:		Unguided, (D/H/dho), targ=vac, orbital, history available

case 9:	ν2:		Unguided, (D/H/dho), targ=vac, non-orb, history available

case 10:	ν1history cleared:	Unguided, (D/H/dho), targ=vac, orbital, history not available

case 10:	ν2 history cleared:	Unguided, (D/H/dho), targ=vac, non-orb, history not available

Similarly π1,ρ1 etc

ρ2

ρ1

ω_vreset{vx=0;vn=0;}

occupied state

π1eff

π2eff

π1eff π2eff

(history cleared)

π1

π2

historical state

historical state

p9

q

p

historical state

(n=n*10+8

(x=x*10+8

(x=x*10+8

β2

β3

D

xc

γ3

β6

γ1eff γ9eff

γ11eff

γ21eff

γ9

γ2

occupied state

q

p

γ1

historical state

H

c

q1

q2

p1

p2

(n=n*10+9

(x=x*10+9

(11

 (12

 (13

(n=n*10+2

β1

(x=x*10+2

γ1

β5

D

b2

δ1

historical state

γ6

f

(vn=vn*10+1

(vx=vx*10+1

(vn=vn*10+1

(vx=vx*10+1

(vn=vn*10+1

(vx=vx*10+1

y

γ11

 γ12

 γ13

 γ14

γ5

occupied state

γ4

g

r2

q1

statechart sc

r1

(vn=vn*10+1

(vx=vx*10+1

c2

c1

b2

statechart sc

main

sy

b

ω_a_p2

ω_a_q2

δ3->$aa->aaa

δ1

δ2->aaa

γ7

(n=n*10+1

(x=x*10+1

(n=n*10+1

(x=x*10+1

ζ9->::$sc->$z.zb

applies to cluster y

α31

α14

α14

ggπ1

Reserved

β3

β6

α6

y5

q

p

β5

κ1

σ1

σ3

σ4

σ2

α13

α13

q

p

ba

σ1

sibling α2

abb

ab

b

a

κ1

uncle υ2

nephew ν2

cousin κ2

σ3

σ4

baa

aab

aaa

σ2

parent π2

child τ2

ba

aa

 fuller orbital

 functionality

 demonstrated elsewhere

sets v

S1=::x.z.za

A1=v=1;

A2=v=3;

the ν2 target expression in

scope [n,y,s,st] evaluates to

[[u,n23,n2,n,y,s,st],

 [r,n22,n2,n,y,s,st],

 [q1,q,n21,n2,n,y,s,st],

 [p2,p,n21,n2,n,y,s,st]]

ν2 as ν1, (details above) but specified in reverse order

ν1->n2.((n21.(p.p2/\q.q1)) /\ n22.r /\ n23.u)

event

string

boolean

(bool1=true

enumerated

range

(str1="abc"

π2(::v)->p

ν81->q2

ν82->s

etc. for many states

ω_d->y.d

ω_b->y.b

ω_a->y.a

(col1=blue

μ4->$ma

μ1->$$m

μ7->$m

α3

β6

α6

y5

q

p

β5

α5

β6

α6

x5

q

p

y4

β4

α4

β6

α6

y5

q

p

β5

α5

β6

α6

x5

q

p

x4

y3

β6

α6

y5

q

p

β5

α5

β6

α6

x5

q

p

y4

β4

α4

β6

α6

y5

q

p

β5

α5

β6

α6

β4

p

j

a3

a2

a1

i

α,α_m

α,α_n

α,α_k

α,α_l

α,α_i

α,α_j

sy

(v=v*10+5

m

n

a

(v=v*10+6

k

l

j

i

α,α_p

sy

x1

x5

q

p

x4

x3

y2

u

b

(v=v*10+4

α,αkn

r

s

e2c

φ4{v=v+"4";}

φ3{v=v+"3";}

e2b

e2a

e2

e1c

φ2{v=v+"2";}

φ1{v=v+"1";}

e1b

e1a

e1

t

 e

f2c

φ8{v=v+"8";}

φ7{v=v+"7";}

f2b

f2a

f2

f1c

φ6{v=v+"6";}

φ5{v=v+"5";}

f1b

f1a

f1

φ10{v=v+"0";}

q

za

 f

zb

c2

z

statechart sc

c1

α,αkn

y

sy

φ9{v=v+"9";}

commented out for performance reasons

exit(x.b.b1.u{v=v*10+6;})

exit(x.b.b1.s) {v=v*10+5;}

exit(x.b.b1.q) {v=v*10+4;}

exit(x.a.a1.n) {v=v*10+3;}

exit(x.a.a1.l) {v=v*10+2;}

exit(x.a.a1.j) {v=v*10+1;}

ω_neutral

x

ω_x

exq

z

exu

exs

neutral

exj

exn

exl

ω_race, ω2

ω_race, ω1

ω

b3

b2

b1

α,α_t

α,α_u

α,α_r

α,α_s

ω

α,α_q

t

u

b

r

s

q

p

c3

a

a1

α,α_m

α,α_n

α,α_k

α,α_l

α,α_i

α,α_j

m

n

a

k

l

(v=v*10+2

b3

b2

b1

(v=v*10+3

(v=v*10+1

α,α_t

α,α_u

α,α_r

α,α_s

α,α_p

α,α_q

ω_race, ω2

ω_race, ω1

q

p

α,

α_xyyy

β,

β_xyyy

β,

β_xyyx

α,

α_xyyx

q

p

y5

x5

y4

q

p

α,

α_xyxy

β,

β_xyxy

β,

β_xyxx

α,

α_xyxx

q

p

y5

x5

x4

q

p

y3

α,

α_yxyy

β,

β_yxyy

β,

β_yxyx

α,

α_yxyx

q

p

y5

x5

y4

q

p

α,

α_yxxy

β,

β_yxxy

β,

β_yxxx

α,

α_yxxx

q

p

y5

x5

α,

α_xxyy

β,

β_xxyy

β,

β_xxyx

α,

α_xxyx

q

ω_xxy3

ω_xxx3

ω_xxy3

ω_xyyy4

ω_xyxy4

y4

ω_xyyx4

ω_xyxx4

ω_xxyy4

ω_xxxy4

y4

ω_xxyx4

ω_xxxx4

ω_xxx3

ω_xx2

ω_x1

α,

α_yyyy

β,

β_yyyy

β,

β_yyyx

α,

α_yyyx

q

p

y5

x5

y4

q

p

α,

α_yyxy

β,

β_yyxy

β,

β_yyxx

α,

α_yyxx

q

p

y5

x5

x4

q

p

α,

α_yxyy

β,

β_yxyy

β,

β_yxyx

α,

α_yxyx

q

p

y5

x5

y4

q

p

α,

α_yxxy

β,

β_yxxy

β,

β_yxxx

α,

α_yxxx

q

p

y5

x5

x4

q

p

α,

α_xyyy

β,

β_xyyy

ω_xy2

ω_xxy3

ω_xxx3

ω_xxy3

ω_xyyy4

ω_xyxy4

y4

ω_xyyx4

ω_xyxx4

ω_xxyy4

ω_xxxy4

y4

ω_xxyx4

ω_xxxx4

ω_xxx3

ω_xx2

ω_x1

α,

α_yyyy

β,

β_yyyy

β,

β_yyyx

α,

α_yyyx

q

p

y5

x5

y4

q

p

α,

α_yyxy

β,

β_yyxy

β,

β_yyxx

α,

α_yyxx

(n=n+" babbb"

(x=x+" babbb"

tt

β9

β9

β2

β1

bc

bb

q3

q3b

q3a

(n=n+"3"

(x=x+"3"

(n=n+"a"

(x=x+"a"

(n=n+"b"

(x=x+"b"

q1

q1b

q1a

q

(n=n+"b"

(x=x+"b"

(n=n+"a"

(x=x+"a"

(n=n+"3"

(x=x+"3"

p3

p3b

p3a

(n=n+"b"

(x=x+"b"

(n=n+"a"

(x=x+"a"

(n=n+"2"

(x=x+"2"

p2

(n=n+"a"

(x=x+"a"

α

t

babbb

babb

(n=n+" babb"

(x=x+" babb"

sy

y1

y4

x1

y2

y3

y5

yn

...

y1

y4

x2

y2

y3

y5

yn

...

y1

y4

xk

ky2

y3

y5

yn

...

...

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

β

β

β

p

q

q

p

...

x1

q

p

q

p

α,α11

α,α11

α,α12

α,α12

α,α13

α,α13

α,α1n

α,α1n

α,α2n

α,α2n

α,α23

α,α23

α,α22

α,α22

α,α21

α,α21

α,αk2

α,αk2

α,αk1

α,αk1

p

q

p

q

...

p

q

p

q

x2

...

p

q

q

p

xk

...

p

q

q

p

cn

c3

c2

c1

sy

α,αk3

α4

β3

α6

α3

y5

q

p

p

p

q

x2

x3

x4

x5

α6

β6

α5

β5

α5

β6

α6

β5

x5

q

p

y4

x5

x1

p

q

x2

α,

α_xxxy

β,

β_xxxy

x3

x4

x5

y5

p

q

α,

α_xxxx

β,

β_xxxx

y2

y5

p

x4

q

p

y3

p

y5

x5

y4

x4

q

p

x3

ω _a1

s

a

b1

a1

α{v=v*10+1;}

b2

b3

b4

bn

...

α{v=v*10+1;}

α{v=v*10+1;}

α{v=v*10+1;}

α{v=v*10+1;}

a

b1

a2

α{v=v*10+2;}

b2

b3

b4

bn

...

α{v=v*10+2;}

α{v=v*10+2;}

α{v=v2*10+2;}

α{v=v*10+2;}

a

b1

a3

α{v=v*10+3;}

b2

b3

b4

bn

...

α{v=v*10+3;}

α{v=v*10+3;}

α{v=v*10+3;}

α{v=v*10)+3;}

a

b1

ak

α{v=v*10+n;}

b2

b3

b4

bn

...

α{v=v*10+n;}

α{v=v*10+n;}

α{v=v*10+n;}

α{v=v*10+n;}

...

ω

x0

z1

x1

z2

z3

z4

z5

x6

z6

x2

x3

x4

x5

α[bz6]

β

α[bz5]

α[bz4]

α[bz3]

α[bz2]

α[bz1]

β

β

β

β

β

y1

y2

y3

y4

y5

α[by5]

α[by4]

α[by3]

α[by2]

α[by1]

β

β

β

β

β

y6

β

α[by6]

abb

a

s

aab

aaa

bn

bnb

bna

b

ab

ba

βn->bnb;

β1->b1b{fire β2;}

b1a

b1b

β2->b2b{fire β3;}

b2a

b2b

b1

b2

β3->b3b{fire β4;}

b3a

b3b

b3

β4->b4b{fire β5;}

b4a

b4b

b4

βn-1->bn-1b{fire βn;}

bn-1a

bn-1b

bn-1

...

bba

y

z

statechart sc

zb

za

s

ω_vreset{x="";}

ω_med_set_tran{med_set_tran();}

ω_high_set_tran{high_set_tran();}

ω_v_reset{v=0;}

ω_med_race{med_race();}

ω_high_race{high_race();}

ω_low_race{low_race();}

ω_no_race{no_race();}

ω

bn

bnb

bna

γ ->bnb;

ω

...

bn-1

bn-1b

aba

bn-1a

γ ->bn-1b

b4

b4b

bab

b4a

γ ->b4b

b3

b3b

baa

b3a

γ ->b3b

b2

b1

bbb

b2b

b2a

γ ->b2b

b1b

b1a

β->b1b{fire γ;}

s

baba

babaa

bab

babab

baab

(n=n+" baab"

(x=x+" baab"

baaba

baabb

(n=n+" baaa"

(x=x+" baaa"

baaaa

baaab

ba

NB B6 commented out

(P1,P2

etc.

β9

β2

s

 b

a

α

γ

α6[v6] {v=1;}

a4

a9

α2[v2] {v=1;}

b12

Reserved

b10

δ

α12[v12] {v=2;}

α11[v11] {v=2;}

α10[v10] {v=2;}

α15[v15] {v=2;}

α14[v14] {v=2;}

α13[v13] {v=2;}

γ

statechart sc

b13

a7

b17

α18[v18] {v=2;}

α17[v17] {v=2;}

α5[v5] {v=1;}

statechart sc

α {trace(2);}

ca

a8

cb

q

etc.

t

β

(v=v*10+4

(v=v*10+5

(u=u*10+4

(u=u*10+1

i1

i2

j1

j2

j

i

c

(u=u*10+3

(u=u*10+2

q2

q

p

b

(u=u*10+5

(u=u*10+4

p1

p2

q1

statechart sc

β{clear(p);}

α

a

(u=u*10+5

c3

b

a2

a1

α->a2 {fire β}

c2

c1

β

z

c

s

b1

β

a

ω{v=0;}

(κ1,κ2

(κ1,κ2

(4

(5

ι2->::x.y.i.ia

ι1->y%%i.ib

γ2->ga

γ1->g

φ3->

$g

φ2->$g.ga

φ1->g.ga

ε3->e

ε2->$e

ε4->e.e

ε1->e

δ2->b

δ1->$b

(2->d

(1->b.d

(3->$a

(2->ab

(1->a.aa

ib

ia

i

internal self transitions

to-child transition

to-sibling transition

to-parent transition

ab

aa

a

external self-transitions

to-parent transition

to-child transition

e->e disambiguation

to-uncle transition

to-sibling transition

da->b disambiguation

to-child transition

to-sibling transition

b->d disambiguation

fb

fa

f

gb

ga

g

d!

ba

b

eb

e!

e

b!

da

d

y

μ8->$mc

mca

mbb

mc

μ3->mab

μ6->$ma.mab

μ5->$mb.mbb

μ2->$mb

Notes:

Transitions between set members are potentially illegal, but they could be legalized by introducing an “orbit”.

ma, mb are clusters, denoted in alternative notations

mb

ma

mbb

mbb

mba

mab

maa

m

$$κ1->ka

κ1->kb

kb

ka

k

scoped event

Note: more local κ1 found by outbound search;

 $$ needed to reference the outer κ1

ζ2->za

ζ1->zb

z

self transition of son

self transition of parent

complex expression

 to denote destination

to-cousin transition

to-nephew transition

to-uncle transition

zb

za

x

Notes: The notation shown does not include all delimitation (e.g. semicolons)

Exclamation marks on names are attention-drawing, not syntactical

Transitions are shown with explicit target state expressions

Default states are not shown in this diagram

statechart sc

ε5->eb

q

p2

aa

u

n1

q1

t

a2

a1

(v=v*10+1

b1

a

a

δ

ρ->$$y->rb

δ

(v=v*10+4

α

n23

p1

n2

n

model t5120 statechart sc

d2

the ν1 target expression in

scope [n,y,s,st] evaluates to

[[p2,p,n21,n2,n,y,s,st],

 [q1,q,n21,n2,n,y,s,st],

 [r,n22,n2,n,y,s,st],

 [u,n23,n2,n,y,s,st]]

actions refer to states

meta-events

orbital route

s

π1->pb

{if(!in(S1)){A1}

else {A2} }

π1[v==2]

parameterized event

conditional transition

conditional action

statechart sc

a

α {v=0;}

d4

p

r

q2

pb

pa

p

n22

ν2->n2.(n23.r /\ n22.u /\ (n21.(q.q1/\p.p2)))

n21

(u=0 v=0 w=0

z

z

exit

($$z.za)->sa

enter

($$z.za)->sb

τ2->ta

{deep_clear($r)}

m

τ1->tb

{clear($r)}

rb

ra

r

tb

ta

t

γ

statechart sc

s

statechart sc

a1

α{fire β(bv1,bv2)}

β{fire α }

a2

sb

sa

s

y

x

statechart sc

note that β resets as a 3-way race, but with same result in each case

β

β

ydead

ι2(v)

ι1(v)

θ

ι1

α1

α

$α($v) =α(v)

α($$v)

$$α(v)

(α

α2

ι2

β

γ2

z

θ

α

γ1

b2

b1

q

p

β2

β1

(v=6

$$α($$v)

α(v,$$v)

$$α(v,$$v,v,col1,str1,bool1)

α(bool1)

ζ2

(v=6

zdead

γ1(v)

δ1(v)

s

r

a2

b

a

a3

a1

(α

α, β1, ζ1

statechart sc

z2

z1

y

s

θ

θ

γ

γ

γ

γ

c3

c2

c1

β

β

b2

b1

δ {v=v*10+3}

δ {v=v*10+3}

δ {v=v*10+2}

The parameter destinations are at the scope of the cluster. Parameters to events on transitions from leafstates address their destinations using the parent operator, $.

ι4

ι3

ι2

note that β resets as a 3-way race, but with same result in each case

β

β

β

b2

b1

α

enter($b.b2)

z3

z2

z1

enter($a.a2)

b

statechart sc

as on previous sheet

α {fire δ}

b2

b1

b

δ

z3

z2

z1

γ

a2

a1

α {fire γ}

z

s

a

γ(param){$v=param;}

α{$v+=3; $$v=$v+6;)}

inexact scoping of local v

a1

a2

ι1{i+=1}

exact scoping of local v

a

γ(param){v=param;}

β{v+=3; $$v=v+6;)}

statechart sc

a3

(v=2

(v=1 i=0

a

s

v reveals local order

α {v=v*10+1;}

a1

a2

ζ1

z2

z1

z

(u=u*10+3

(v=v*10+2

b

b1

b2

α {v=v*10+2;}

β {v=0;}

β

exit $a.a1

(u=u*10+4

(v=v*10+1

(fire ζ1

statechart sc

b

statechart sc

j1

s

α

ζ2 {u=0;v=0;w=0;}

γ

β

(v=v*10+4

(v=v*10+5

(u=u*10+1

α

α

δ

p

γ

a

p2

p1

(v=v*10+3

(u=u*10+2

(v=v*10+4

(fire ζ1

(u=u*10+1

s

α

α

q

statechart sc

q2

q1

(u=u*10+4

(v=v*10+1

(w=w*10+1 (w=w*10+2

a

b1

a2

a1

γ

α

α

p1

p2

q1

j

exit $a.p

enter $a.r

enter $a.s

exit $a.q

p

q

q2

q1a

q1b

q2b

q2a

ι2{i+=10}

α

α

j2

j3

j6

j4

j5

enter $a.a1

α

conditionl action with else action

γ if (v%2==1){w=w*10+2; w=w*10+3;}

 else {w=w*10+4; w=w*10+5;}

r2a

r2b

r1b

r1a

r2

r

r1

ι3{i+=100}

s

s2

s1

N

ζ2

ε if (v%2==1){fire ζ2;}

conditional transition

α [in($z.z2)&&v==0]

δ if (v%2==1) {AC1} else {AC2}

where

AC1= if (v==3) {w=w*10+1;} else {w=w*10+2;}

AC2= if (v==4) {w=w*10+3;} else {w=w*10+4;}

z1

a

a2

z

statechart sc

z2

s

α[in($b.b1)]

a1

unconditional transition, conditional action

β if (in($z.z2)&&v==0){w=w*10+1;}

ζ1

setu(param) {u=param;}

setv(param) {v=param;}

setw(param) {w=param;}

t

(

if v>5

 u=u*10+1

else

 u=u*10+2

reset for next demo-transition

η {u=0;v=0;w=0;}

ρ

 j

ρ

ρ

j2

 d1

τ9d {deep_clear c.d.fgh.g}

τ11d {deep_clear c.d.uvw.v}

τ9 {clear c.d.fgh.g}

τ8d {deep_clear c.d.fgh}

β

α

 c

ρ

q2

τ8 {clear c.d.fgh}

τ7d {deep_clear c.d.xyz.y}

τ6d {deep_clear c.d.xyz}

π

π

π

q1

r

D

 y

N

ω

ρ

ρ

y2

τ2d {deep_clear c.d.ijk}

κ

κ

π

π

τ5d {deep_clear c.d.pqr.q}

τ4d {deep_clear c.d.pqr}

τ3d {deep_clear c.d.ijk.j}

π

π

π

j1

k

N

 ijk

i

q

N

D

d

statechart sc

 e

 pqr

p

π

y1

z

H

 xyz

x

 s

commented out for performance reasons

τ1d {deep_clear c.d)

τ1 {clear c.d)

τ2 {clear c.d.ijk}

τ3 {clear c.d.ijk.j}

τ4 {clear c.d.pqr}

τ5 {clear c.d.pqr.q}

τ7 {clear $.d.xyz.y}

τ6 {clear c.d.xyz}

h

D

π3

π3

h2

g

H

π2

h1

π2

g2

 fgh

D

g1

f

N

π1

π1

f2

f1

γ

u

N

π1

π1

u2

u1

v

H

π2

π2

v2

v1

N

w

D

π3

π3

w2

w1

uvw

γ

δ

ε

τ11 {clear c.d.uvw.v}

τ10d {deep_clear c.d.uvw}

τ10 {clear c.d.uvw}

statechart sc

β

β

α

b2

b1

b

a2

a1

α if (in($b.b1)) {clear (p);}

s

a

p1

p2

p

H

α if (in($b.b1)) {clear(p);}

γ

γ

δ{clear(p);}

global ζ

local PCO

local ζ; global & local v

global PCO

s

γ {trace(v);}

e

statechart sc

a

 p

γ1 {s1=upper_case(s1+"aA");}

γ2 {s1=lower_case(s1+"zZ");}

γ3 {v=length(s1);}

γ4 {s1=format(v,0)}

γ5 {s1=format(v,3)}

γ6 {s1=format(v,-3)}

(s2

α(param} {v=param;}

α0 {v=0;}

α1 {v++;}

α2 {w=v++;}

α3 {++v;}

α4 {w=++v;}

etc.

α7 {s1="";}

α8 // reserved

α9

etc.

β5 {w=$$v++ + +10;}

β6 {$$v+=20;}

a

(v=6

β(param} {$$v=param;}

β0 {$$v=0;}

β1 {$$v++;}

β2 {w=$$v++;}

β3 {++$$v;}

β4 {w=++$$v;}

(v=3

(s1="aA"

α5 {w=v++ + +10;}

α6 {v+=20;}

β(vparam} {v=vparam;}

β0 {$$s1=s1+"xy";}

β1 {$$s1=$$s1+s1;}

β2 //reserved

s

Note that set members are leafstates, not clusters(so this is tested here)

q

c

a

β (trace(true);}

ζ

α {trace(2);}

ω1

ω2{trace_clear();}

ω3{trace_clear("clr");}

ω1

c

α

α(sparam,vparam) [(sparam=="xy")&&(vparam==1)]

etc.

a2

statechart sc

 p

c

etc.

b

etc.

α0($$s1,$$$s1,$$$s2) //direct parameter placement

α1 {s1="abcdef";}

α2 {s2="cd";}

α3 {s1=s1+s2;}

α4 {s1=s1-s2;}

α5 {s1=s1*v;}

α6 {s1=s1/3;} //illegal

etc.

a1

(s1="zZ"

(ζ

(pco1

(v=0,p1,p2,p3,p4,p5

(pco1

(α β γ δ ε ζ

(v=0, w=0, col1=blue, bool1=true, str1="a"

exit(::s.a.a2.p){w++;}

θ2@$pco1{w--;}

θ1@pco1{w++;}

β

$ζ[w>3]{str=str+"a";}

ζ(p1,p2,p3,p4,p5)

{v=p1; $v=p2; col1=p3;

 bool1=p4; str=p5;}

γ1 {w=0;}

γ2 {w=maximum(++v,++$$v);}

γ3 {w=minimum(v++,$$v++);}

b

q

H

a

β

β

ε

α {fire δ;

trace("xy");}

b2

b1

b

δ

z3

z2

z1

γ

p

a1

α {fire γ; trace(5,7);}

z

s

a2

statechart sc

γ(p) {v=p};

a1

α1[v>0] {trace(v+10,"a"); fire β1; trace(v,"w");}

α2 {trace(v+10,"c"); fire β2; trace(v,"y");}

a2

b

b1

β1 {trace(v+10,"b"); fire α2; trace(v,"x");}

β2 {v--; trace(v+10,"d"); fire α1; trace(v,"z");}

b2

s

a

b

statechart sc

ε trace("cd",5,-7);}

statechart sc

β{trace(36);}

β{trace(25);}

α {trace("cd");}

b2

d

f

(w=0

 p

b1

b

a2

a1

α {trace("ab");}

(trace("ab",6)

γ

g

a

δ {trace(v+1);}

(θ1 θ1

β

β

β

β

β

β

β

β

β

β

β

β

γ

γ

γ

γ

DropAck

Processing1

ReturnDropRequestAccepted [AUTO_TUNER] /

fire CallRestore

CallDropRequest [AUTO_HOP] /

fire ReturnDropRequestAccepted

CallDropAcknowledge[AUTO_TUNER]/

fire CallRestore,

 fire ReturnDropAcknowledge

CallRestore /

fire ReturnRestore

ReturnDropAcknowledge

ReturnDropAcknowledge

CallRestore/

fire ReturnRestore

EnvAck/

fire CallDropAcknowledge

CallDropRequest [MANUAL_HOP] /

fire ReturnDropRequestPending

DropAck

Processing2

Red

Orange

Green

ReturnRestore

Hop

ReturnDropRequestPending

CallDropAcknowledge

[MANUAL_TUNER] /

 fire ReturnDropAcknowledge

ReturnDropRequestAccepted [MANUAL_TUNER]

EnvChange

EnvRestore/

fire CallRestore

EnvChange

EnvChange /

fire CallDropRequest

Restore

Processing

Orange

Red

DropRequestProcessing

Green

Tuner

Composition

setmt / AUTO_ TUNER=false; MANUAL_ TUNER=false;

setat / AUTO_ TUNER=true; MANUAL_ TUNER=false;

control

setah / AUTO_ HOP=true; MANUAL_ HOP=false;

setmh / AUTO_HOP=false; MANUAL_ HOP=true;

β

{trace(8)}

γ

α

{trace(3)}

β{trace(7)}

β

{trace(8)}

β{trace(8)}

α

α

{trace(2)}

sys

c

b

q

p

y

x

j

i

a

(α (transitions α0 α1 α2 α6 α10 α11 α12)

c

H

p

p2

γ(bv2)

(bv1=true; bv2=false

ψ {u=0; v=0;}

b15

exit($s)[B15]

α16[v16] {v=2;}

b16

b18

a6

bb

τ sets all vnn variables true

τnn sets specific variable true

φ sets all vnn variables false

φnn sets specific variable false

z

α9[v9] {v=1;}

α8[v8] {v=1;}

a3

α7[v7] {v=1;}

ω3 {v=0;}

d

bb

db

s

da

a5

α4[v4] {v=1;}

a1

γ

bb

ALPHA,enter($b.bb.bb)[B12]

exit($s)[B13]

b

α3[v3] {v=1;}

b11

bp

bq

bbb

s

b

aa

α1[v1] {v=1;}

etc.

a2

ap

aq

aaa

a

p1

statechart sc

statechart sc

b

b2

b1

a

α {trace(1);}

c

a1

α{clear(p);}

a1

a

sys

s

a2

δ {trace_clear();)

β

γ

statechart sc

a2

α{fire β}

β

a1

a2

α [in($a.a1)]

a

b2

b1

statechart sc

b

a3

β

β

s

a

ω2{deep_clear($s);}

r

same as above by alternative notation

 fork-1

$α

q

Note that here

$$s1 references sc.p.s1

(unlike the situation above, the difference being that this set member is a leafstate, not wrapped in a cluster).

(v=3

ω_b2

{deep_clear(x);}

ω_b1

{deep_clear(x);}

ω_a2

{deep_clear(x);}

the ω transitions act as a reset or set-state

ω_a1

{deep_clear(x);}

(name_source=

"none"

s

go_t4150:-

 me_no_set_tran, /* turn set-transit ND off */

 ci_file(t4150,LOCAL_FILE_NO_EXTN), /* get model file name */

 gn_append_atoms(LOCAL_FILE_NO_EXTN,

 '.out.txt',LOCAL_FILE_W_EXTN), /* add an extension to file name */

 boot_root(sc,BOOT_ROOT), /* get boot directory */

 gn_append_atoms(BOOT_ROOT,

 LOCAL_FILE_W_EXTN,FULL_FILE), /* make full file name */

 io_tell(FULL_FILE), /* set output to go to this file */

 cs_go(t4150), /* load and enter machine */

 ut_wm,nl, /* write machine */

 EVENT=[tv_system_found,[sc]], /* this is the event to process */

 CALPRARAMS=[], /* no parameters to this event */

 write('About to process '),write(EVENT),nl,nl,

 TASK=[tk_event,[EVENT,CALPARAMS]], /* wrap the event as a "task" */

 db_worldbag(INWORLDS), /* get the current worlds */

 me_process_task_in_worlds(TASK,INWORLDS,OUTWORLDS), /* process task */

 da_kill_old_worlds, /* kill intermediate worlds */

 ut_wm, /* write machine again */

 io_told. /* close the file */

a2

(fire

next_pkt

low

high

gotNI

830

waiting

For

Pkt

next_pkt

 {fire timeout; pkt_cnt++;}

next_pkt[pkt_cnt< maxPkts]

{fire cni_vps; pkt_cnt++;}

next_pkt[pkt_cnt< maxPkts]

 {fire cni830; pkt_cnt++;}

next_pkt[pkt_cnt<maxPkts]

{fire ni830; pkt_cnt++;}

gen

Pkts

γ{trace_clear();}

gotCNI

830

158 leafstate searching [tvSys, sc] [s_occ, []] **

158 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none

158 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 4]

159 leafstate searching [tvSys, sc] [s_occ, []] **

159 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none

159 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3]

160 leafstate searching [tvSys, sc] [s_occ, []] **

160 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none

160 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2]

SET TRANSIT NONDETERMINISM SWITCHED OFF

9 leafstate searching [tvSys, sc] [s_occ, []] **

9 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none

9 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 1]

14 leafstate searching [tvSys, sc] [s_occ, []] **

14 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni_vps

14 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 1]

22 leafstate searching [tvSys, sc] [s_occ, []] **

22 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni830

22 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2]

27 leafstate searching [tvSys, sc] [s_occ, []] **

27 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni_vps

27 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2]

33 leafstate searching [tvSys, sc] [s_occ, []] **

33 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni830

33 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3]

38 leafstate searching [tvSys, sc] [s_occ, []] **

38 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni_vps

38 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3]

44 leafstate searching [tvSys, sc] [s_occ, []] **

44 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni830

44 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 4]

81 leafstate searching [tvSys, sc] [s_occ, []] **

81 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 105 etc]] =ni830

81 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2]

117 leafstate searching [tvSys, sc] [s_occ, []] **

117 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 105 etc]] =ni830

117 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3]

136 leafstate searching [tvSys, sc] [s_occ, []] **

136 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 105 etc]] =ni830

136 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 4]

grep -E "(leafstate.*s_occ|name_source|pkt_cnt|^$)" ProgInst.out.txt > grep_out.txt

(pkt_cnt=0;

(deep_clear(acquiringTXT);

station_found

cni_vps

{name_source

="cni_vps";}

timeout

tv_system

_found

tvSys

searching

tvSystem

DetectWait

cni830{name_source="cni830";}

ni830{name_source="ni830";}

acquiringTXT

 fork-2

references ::x.a.α

α

b

d2

a1

references ::x.a.α

no α here

references ::x.a.α

::x.a.b.c.d.α

::x.a.b.c.α

::x.a.α

::x.a.b.α

::x.α

α

ρ

c2

(v=v*10+3

d

c

v

u

no α here

(α

(α

(α

(α

d

c

::α

s

b1

α

a

β

a

e

t

s

r

p

b

x

statechart sc

ρ

ρ

(x=x+"8"

(x=x+"9"

s1

α

ρ

d1

(v=v*10+2

b2

c1

(v=v*10+1

s2

ρ

ρ

(x=x+"6"

(x=x+"7"

statechart sc

r1

r2

(v=v*10+4

ω_low_set_tran{low_set_tran();}

ω1

ρ

β

a

r2

ρ

ρ

(x=x+"1"

(x=x+"4"

ω_no_set_tran{no_set_tran();}

(x=x+"f"

(x=x+"g"

r1

sy

r

s

b

p

q

q2

q1

p2

p1

ρ

ρ

(x=x+"h"

(x=x+"i"

s1

s2

ρ

(x=x+"c"

(x=x+"e"

(x=x+"b"

(x=x+"d"

(x=x+"a"

statechart sc

ρ

ρ

ρ

ρ

ω1

(x=x+"2"

(x=x+"5"

(x=x+"3"

p1

p2

q1

q2

q

p

c

here, we generate more notifications

δ

ε

ζ

α

γ

ω2

ω1 {v=0;}

β4

applies to cluster y

(x=x*10+5

(n=n*10+5

α2

statechart sc

main

sy

q1

q2

effective transition in most cases

p1

(x=x*10+6

(n=n*10+6

p2

D

y

xr

r

same as n above with events ρ1-2

N

b

occupied state

ν1eff

ν2eff

ν1eff ν2eff

(history cleared)

ν1

ν2

historical state

historical state

n9

q

p

historical state

D

n

q1

q2

p1

p2

(zn=zn*10+2

(zx=zx*10+2

(zn=zn*10+1

(zx=zx*10+1

available for variable control

statechart sc

main

sy

sy

j

b1

q2

p

a

sy

statechart sc

main

sy

δ->y->$$d.d1.q/\d2/\$$d.d3.u

(inexact orbit and inexact state in multiple target specification)

(n=n*10+3

(x=x*10+3

(n=n*10+1

(x=x*10+1

(n=n*10+5

(x=x*10+5

(n=n*10+2

(x=x*10+2

(n=n*10+1

(x=x*10+1

(n=n*10+4

(x=x*10+4

statechart sc

β1->b masked - not addressable this way

ε1

e

ε8

{deep_clear(sy);}

ε9 {clear(y);}

H

(inexact specifications)

ε2

(n=n+"1"

(x=x+"1"

statechart sc

p2b

(n=n+"s"

(x=x+"s"

n and x are string variables

(n=n+" q"

(x=x+" q"

(n=n+"b"

(x=x+"b"

(n=n+"b"

(x=x+"b"

(n=n+"a"

(x=x+"a"

(n=n+"2"

(x=x+"2"

q2

q2b

q2a

p2a

(n=n+"b"

(x=x+"b"

(n=n+"a"

(x=x+"a"

(n=n+"1"

(x=x+"1"

p1

p1b

p1a

(n=n+" p"

(x=x+" p"

p

(n=n+" ba"

(x=x+" ba"

babba

(n=n+" T"

(x=x+" T"

(n=n+" B"

(x=x+" B"

(n=n+" baba"

(x=x+" baba"

(n=n+" bab"

(x=x+" bab"

(n=n+" baa"

(x=x+" baa"

σ

baaa

baa

applies to cluster b.

(n=n+" A"

(x=x+" A"

applies to cluster a.

ω_xy2

bd

Note fork nondeterminism on β2

β,

β_xyyx

α,

α_xyyx

q

p

y5

x5

y4

q

p

α,

α_xyxy

β,

β_xyxy

β,

β_xyxx

α,

α_xyxx

q

p

y5

x5

x4

q

p

α,

α_xxyy

β,

β_xxyy

β,

β_xxyx

α,

α_xxyx

q

p

y5

x5

y4

q

p

α,

α_xxxy

β,

β_xxxy

β,

β_xxxx

α,

α_xxxx

q

p

y5

x5

x4

q

p

y3

x3

y2

y3

x3

x2

α_xx2

x1

β_xy2

β_xxyy4

α_xxyx4

α_xxxx4

β_xxxy4

α_xyxx4

β_xyxy4

α_xyyx4

β_xyyy4

ω

ω _a2

ω _a3

ω _ak

ω

aa

bb

ω_zb

ω_za

ω_aaa

...

ω_abb

ω_a

Model

Compiler

Validator

TorX

Machine Engine

(v=6

(v=6

(ζ1

(pco1

(v=6

(v v1 v2 v3 etc.

Note: There is only one event α.

The superscripts provide a way to identify transitions on α.

(many separate transitions)

(B12 B13 B14 B15 (boolean variables)

(B1 B2 etc.

γx2eff

stands for

 γ2eff

 γ12eff

 γ22eff

γx3eff

stands for

 γ3eff

 γ13eff

 γ23eff

β

(b,v1,v2

α($b)[!$b]

ac

γ($v1,$v2)[$v1>$v2]

α($b)[$b]

β

ab

aa

a

model t5122 statechart sc

model t5123 statechart sc

(b,v1,v2

α(b)[!b]

ac

γ(v1,v2)[v1>v2]

α(b)[b]

β

ab

aa

a

The parameter destinations are local, at leafstate scope. Leafstate scope has to be declared at cluster level with a descend operator (e.g., in a, declare ac.v1), since there is no place in the syntax to declare at leafstate scope directly.

(b

(v1,v2

The parameter destinations are local - but the destinations are not declared. From release 1.05, the outbound search technique will find the nearest-scoped variables. This arrangement can now be recommended.

model t5121 statechart sc

(v1,v2

(b

α(b)[!b]

ac

γ(v1,v2)[v1>v2]

α(b)[b]

β

ab

aa

a

Variables are declared at cluster and leafstate scope.

From release 1.05, the outbound search technique will find the nearest-scoped variables.

In earlier releases, if the variable was not declared at the specified scope, a hidden variable was created.

� EMBED CorelPhotoPaint.Image.7 ���

here, we stop generating notifications

fork nondeterminism

gen_notifs

notif /

trace(notif_msg)

station_found

tuning

gen_notifs /

 fire notif; n--; if (n>0) {fire gen_notifs;}

tuned

(n=4

start_tuning/

fire gen_notifs

idle

prog_inst

α{i=i*10+3;}

α{i=i*10+2;}

ι{i=0;}

a2

β

a3

(i=0

α{i=i*10+1;}

a1

a

statechart sc

γ($p1,$p2)

c1

β

β

δ

γ($p1,$p2,$p3)

γ($p1)

c3

c2

c4

b2

b1

b3

β

(p1=0, p2=0, p3=0

α {p1=0; p2=0;

 p3=0;}

a1

m

statechart sc

ρ1 {trace_clear; trace("pq");}

d

α {trace("ab");}

α3 {trace("cd"); trace("ef"); }

c

α {trace("ab");fire α3;}

α2 {trace("yz");}

b

α {trace("ab");fire α2;}

α1 {trace("cd");}

ρ {trace_clear}

statechart sc

a

α {trace("ab");fire α1;}

s

q

p

r

q

p

r

q

p

β{trace(1);}

α {trace("ab");fire α1;}

α2 {trace("yz");}

β3{trace(6);}

β {trace(1);fire β3}

α {trace("ab");fire α3;}

β2{trace(4);}

α3 {trace("cd");trace("ef");}

β {trace(1);fire β2}

α {trace("ab");fire α2;}

β1{trace(2);}

α1 {trace("cd");}

ρ {trace_clear}

ρ1 {trace_clear; trace("pq");}

d

r

c

statechart sc

β {trace(1);fire β1}

b

q

p

α {trace("ab");fire α1;}

s

a

α {trace("yz");}

α {trace("ab"); trace("yz");}

α {trace("ab"); trace("cd");} trace("ef");}}

α {trace("ab");}

α {trace("ab"); trace("cd");}

a

ρ1 {trace_clear; trace("pq");}

ρ {trace_clear}

p

statechart sc

α {trace("yz");}

u

α {trace("ab"); trace("yz");}

α {trace("ab"); trace("cd");} trace("ef");}}

t

s

ρ1 {trace_clear; trace("pq");}

r

α {trace("ab");}

ρ {trace_clear}

statechart sc

q

p

α {trace("ab"); trace("cd");}

a

β - in 3 steps

α

α - in 3 steps

β

INACCESSIBLE

α

β - in 2 steps

α

α{fire β}

β{fire α }

a1

a2

b1

a

β

b

b2

s

α

α{fire β}

β{fire α }

a1

a2

b1

a

β

b

b2

s

α

α{fire β}

β{fire α }

a1

a2

b1

a

β

b

b2

s

α

α{fire β}

β{fire α }

a1

a2

b1

a

β

b

b2

s

γ/::a[3]=200

a1

α/a[3]=20

β/v=a[3]

δ/v=::a[3]

ω/

::a[3]=100;

a[3]=10;

v=0;

(a[3]=10, v=0

m

(a[3]=100

fork nondeterminism

conditional transition

note the two scopes of ia[4], ia[5]

c7

c6

c5

c3

c2

c1

c4

(sv="x",

(bv=0

(sa[5]="x",

(sa[4]="x",

(ba[5]=0

(ba[4]=0

(ia[5]=0, ia[9]=0, ia[6][3]=0; ia[8,2,4]=0

(ia[4]=0, ia[8]=0, ia[5][2]=0; ia[7,2,4]=0

δ/k1++

γ/bv=!ba[k1+1];

boolean =[4+]

β/ba[k1+1]=1;

b7

b6

b5

b3

b2

b1

b4

γ/sv=sa[k1+1]+"X";

string =[4+]

β/sa[k1+1]="abc";

(iv=0, k1=1, ia[4]=0, ia[5]=0

γ/iv=ia[k1+4][2][4]+1;

γ/iv=ia[k1+2][k1-1]+1;

γ/iv=ia[k1+k2]+1;

γ/::iv=::ia[::k1+k1]+1;

γ[ia[4]==(k1+2)]

/iv=ia[4]+1;

constant index [4]

expression index =[8+]

3 dimensions =[7+][2][4]

β/ia[k1+4][2][4]=12;

2 dimensions =[5+][2+]

RVALUE TESTING

LVALUE TESTING

scoping =[4+]

β/ia[k1+2][k1-1]=7;

β/ia[k1+k2]=8+1;

β/::ia[::k1+k1]=-1;

β/ia[4]=5;

(iv=0, k1=3, k2=5

α/

all variables to initial values

a1

m

a fork

φ

φ/v+=1;

β /

nw=get_nworlds(2);

if (nw<=6)fire γ3;

β /

nw=get_nworlds(2);

if (nw<=6)fire γ2;

γ3

c1

γ2

γ1

c2

c3

b2

b1

b3

β /

nw=get_nworlds(2);

if (nw<=6)fire γ1;

(nw=0,v=0

α {nw=0;

v=0}

a1

m

a fork

φ

φ/v+=1;

β /

nw=get_nworlds(1);

if (nw<=3)fire γ3;

β /

nw=get_nworlds(1);

if (nw<=2)fire γ2;

γ3

c1

γ2

γ1

c2

c3

b2

b1

b3

β /

nw=get_nworlds();

if (nw<=1)fire γ1;

(nw=0,v=0

α {nw=0;

v=0}

a1

m

�G G Thomason

Component Binding in Composite Models for State-based Testing

PRL Technical Note TN 4102, August, 2001

ii

© Graham G. Thomason 2003-2004

© Graham G. Thomason 2003-2004

iii

_1126097877.bin

