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STATECRUNCHER Test Models 
 

This document provides diagrams of STATECRUNCHER test models for testing 

STATECRUNCHER itself, (not for testing an “Implementation Under Test” of some other 

system). For most test models it will be clear what is being demonstrated or tested. To explain 

each model in detail, and to show its output, would multiply the size of this report by a 

considerable factor.  That is not necessary, for two reasons: (1) the italicised annotations to 

the models are intended to clarify subtleties and (2) there is a manual/tutorial that discusses 

many of the models, often in a simpler form, as part of the training material. Most of the 

models are exercised in detail under program control in the test suite. The test suite provides 

an extra resource should it be necessary to see how the model is driven there. 
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1. Introduction  

This document provides diagrams of STATECRUNCHER test models for testing 

STATECRUNCHER itself, (not for testing an “Implementation Under Test” of some other 

system). In addition to these test models, the STATECRUNCHER test suite contains many 

thousands of tests that do not require any model to be loaded. In fact such lower-level tests 

form the bulk of the tests for the internal logic and API (Application Programmer Interface). 

But from the point of view of demonstrating the system, interaction with complete models is 

most attractive, and a diagram of the model is by far the most expressive way to communicate 

the functionality being exercised. 

 

The following diagram shows the processes applied to a model as it is compiled, validated 

and deployed in a testing tool chain such as TorX [http://fmt.cs.utwente.nl/CdR]. 

 

Figure 1. Compilation, Validation and Application to a Testing Tool Chain 

 

 

 

 

 

More details of the parsing process are given in [StCrParsing]. Details of STATECRUNCHER as 

a whole are given in [StCrMain]. 

 

STATECRUNCHER is currently implemented in PROLOG. STATECRUNCHER's own syntax is 

independent of PROLOG, but occasionally a remark reflects the implementation language. 

The PROLOG-based test harness used to self-test STATECRUNCHER is described in 

[StCrGP4]. 

 

For most test models it will be clear what is being demonstrated or tested. To explain each 

model in detail, and to show its output, would multiply the size of this report by a 

considerable factor. The italicised annotations to the models are intended to clarify subtleties. 

Most of the models are exercised in detail under program control in the test suite. The test 

suite provides an extra resource should it be necessary to see how the model is driven there. 

 

1.1 Categories of Models 

The models fall into various categories, in order to satisfy testing requirements per phase 

during development: 

 Models designed to test the compiler, but ignoring validator and run-time (machine 

engine) considerations 

 Model Compiler Validator TorX Machine 

Engine 
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 Models designed to test the validator, but not aimed at machine-engine execution. The 

validator is a kind of back-end to the compiler; it generates a symbol table, cross 

reference table, and initial data predicates (settings). 

 Miscellaneous example models (e.g. as used in demonstrations and reports), but not 

attempting any systematic coverage of functionality 

 Models designed to demonstrate the run-time machine engine - (1), a feature-by-feature 

approach, in an illustrative or didactic way, but without attempting to cover every detail. 

 Models designed to systematically test the run-time machine engine - (2), where a more 

structured testing approach has been taken. 

 

Model numbering 

Models are numbered by an index such as t4120 or c2117. In the ci_sc_1.pl module, a 

link is set between model number and filename (including path).  An example of such a link, 

using relative path addressing with respect to a ‘root’ path defined in the boot file, is 
 

  ci_file(t5110,'..\StCr3ModelsTest\t5000me\t5110_HelloWorld\HelloWorld'). 

 

Any one file can be made active for compiling, validating and exercising by setting 

ci_current(model-index) in the ci_sc_1.pl file.  

 

File ci_sc_1.pl and indices of the kind tnnnn are reserved for test-suite models and are 

part of the formal STATECRUNCHER release.  The user can define more files, e.g. in 

ci_sc_2.pl, using an index such as the cnnnn range. The default 

ci_current(model-index) setting should only be defined once and is defined in file 

ci_sc_1.pl. 

 

The numbering is as follows 

 t2000 series: compiler tests 

 t3000 series: validator tests  

 t4000 series: miscellaneous examples 

 t5000 series: machine engine demonstrations 

 t6000 series: machine engine systematic tests 

 t7000 series: stress tests 

1.2 Notation 

UML now (v1.5) describes a detailed notation for diagrams, but this report differs in respect 

of certain features: 

 on entry to a state (UML “entry/”) is a solid triangle pointing in to the state, e.g. 

 on exit from a state (UML “exit/”) is a solid triangle pointing out of the state, e.g. 

 events declared in a part of the hierarchy are denoted by the symbol , e.g. 

 variables are declared in a part of the hierarchy by the symbol, e.g. 

 PCOs (Points of Control and Observation) are declared by the symbol , e.g. 

v=6 

v=6 

ζ1 

pco1 

v=6 
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2. Testing the Compiler 

2.1.1 Compiler coverage aspects 

The compiler is mainly concerned with syntax rather than issues of legality of use, such as 

whether an item has been declared, which are checked by the validator. An exception is that 

the compiler is concerned about a proper hierarchical structure of the statechart, and it will 

produce an error message (and stop compiling) if there are inconsistencies in the hierarchical 

structure. 

 

Most situations of erroneous STATECRUNCHER syntax result in a parse where the error is 

tagged in the parse tree. These situations are extensively tested in lower level tests without 

using a model. Such tests are not described here. The models are a system test on the 

compiler, covering its ability to report the main kinds of error and to proceed appropriately. 

 

The compiler recognises three levels of correctness/error 

 statement with no errors 

 statement with local errors tagged in the parse tree 

 failed statement - the statement could not be parsed at all 

 

Test areas 

 Brackets errors 

 States and the statechart hierarchy: clusters, sets, leafstates 

 Declaration statements (PCOs, events, tags, variables) 

 I/O stress: multiple line statements, long files. 

 

2.2 The Compiler Test Models 

Here we consider the test aims and error circumstances. 

 

Table 1. Compiler test models 

Model (directory) name Test aim 

t2110_braces_er Error reported on mismatched braces 

t2120_round_brack_er Error reported on mismatched round brackets 

t2130_square_brack_er Error reported on mismatched square brackets 

t2210_state_ok Correct handling of a simple state statement 

t2211_state2_ok Correct handling of a more state statements 
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t2215_state_er Detection of errors in state statements 

t2220_cluster_ok Correct handling of a cluster statements 

t2225_cluster_er Detection of errors in cluster statements 

t2230_set_ok Correct handling of a set statements 

t2235_set_er Detection of errors in set statements 

t2240_struct_ok Correct handling of a hierarchical statechart structure 

t2251_struct_er1 Error in hierarchy structure (1) 

t2252_struct_er2 Error in hierarchy structure (2) 

t2253_struct_er3 Error in hierarchy structure (3) 

t2254_struct_er4 Error in hierarchy structure (4) 

t2255_struct_er5 Error in hierarchy structure (5) 

t2310_decl_ok Correct handling of declarations 

t2315_decl_er Detection of errors in declarations 

t2320_split_stmt Handling of a statement split over several lines 

t2330_medium A general medium complexity model 

t2340_complex A general complex model 

t2350_longfile Stress test on a long file 

t2360_longstmt Stress test on a long statement 

 

These models are not put through the validator. The validator is tested independently. 
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3. Testing the Validator 

3.1 Validator Coverage Aspects 

The purpose of the validator is to generate certain tables and in so doing to detect certain 

errors. It generates a symbol table and a cross-reference table, and also a data table 

(containing variable values). For more information on these tables, see [StCrParsing]. 

Validator coverage is considered from the viewpoint of producing the error messages, and 

from source code error circumstances. This test approach largely verifies the correctness of 

the tables. Further testing of the correctness of the tables is done with machine engine tests 

(described in subsequent sections). The individual tests divide into tests for errors that are 

detected by symbol table construction and by cross-reference table construction. 

 

Some symbol table coverage aspects 

 states 

 inbuilt-constants (true, false) 

 tags 

 variables 

 PCOs 

 events 

 scoped use of the above 

 double definition of the above 

 

Some cross-reference table coverage aspects 

 variable references in initialization of other variables 

 variable references in actions 

- upon enter action 

- upon exit action 

- transition assignment action 

 variable references in conditions 

 variable references as terms of expression operators 

 variable references in library function parameters (e.g. maximum) 

 event references by transition 

 event references by fired event 

 state references by orbit 

 state references by target 

 state references by the in() function 

 state references by the clear() function 
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 state references by the deep_clear() function 

 state references as terms of  state-expression operators:  :: $ . %% /\ 

 PCO references by event declaration 

3.2 Catalogue of Validator Error Messages as Written 

The errors fall into the following categories 

 warnings 

 general errors: version incompatibility, compiler error detection 

 type checking 

 detection of non-implemented functions 

 internal errors (diagnostic error – the program logic should preclude these) 
 

Table 2. Validator error messages 

write('** Error   (VA-E-001) **  Code is in testing mode: va_testing(yes)') 

write('** Error   (VA-E-002) **  There are compilation errors') 

write('** Warning (VA-W-003) **  Multiple files loaded') 

write('** Error   (VA-E-004) **  No "object" files loaded') 

write('** Error   (VA-E-005) **  Version incompatibility') 

write('** Error   (VA-E-006) **  Double definition of '), 

   write(SYMB),write(':'),write(MPATH), 

write('** Error   (VA-E-007) **  Uninitialized term(s) in initialization of '), 

   write(SYMBOL),write(':'),write(MPATH), 

write('** Error   (VA-E-008) **  Boolean value error initializing '), 

   va_err_nltab, 

   write(SYMBOL),write(':'),write(MPATH),write('.'), 

   tab(1), 

   write(VALUE),write(' not in '),write([0,1]), 

write('** Error   (VA-E-009) **  String value error initializing '), 

   va_err_nltab, 

   write(SYMBOL),write(':'),write(MPATH),write('.'), 

   tab(1), 

   write(VALUE),write(' is not a string'), 

write('** Error   (VA-E-010) **  Range error initializing '), 

   va_err_nltab, 

   write(SYMBOL),write(':'),write(MPATH),write('.'), 

   tab(1), 

   write(VALUE),write(' not in '),write([LOW,HIGH]), 

write('** Error   (VA-E-011) **  Enum value error initializing '), 

   va_err_nltab, 

   write(SYMBOL),write(':'),write(MPATH),write('.'), 

   tab(1), 

   write(VALUE),write(' not in '),write(SET), 
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write('** Error   (VA-E-012) **  Undefined symbol '), 

   va_err_nltab, 

   write(DSYMBOL),write(':'),write(EPATH), 

   va_err_nltab, 

   write('in statement '),write(UTYPE),tab(1), 

   write(USYMBOL),write(':'),write(UPATH), 

write('** Error   (VA-E-013) **  Undefined symbol of required type'), 

   va_err_nltab, 

   write(SYMBOL),write(':'),write(EPATH), 

   tab(1), 

   write('of type '),write(STYPE), 

   va_err_nltab, 

   write('in statement '),write(UTYPE),tab(1), 

   write(USYM),write(':'),write(UPATH), 

write('** Error   (VA-E-014) **  Polyvalent symbol (in overlapping scopes) '), 

   write(SYMBOL), 

   write(' is used of types '),write(SYMBOLTYPE), 

   write(' and '),write(SYMBOLTYPE2), 

   va_err_sep, 

write('** Warning (VA-W-015) **  Polyvalent symbol (but scopes are distinct) '), 

   write(SYMBOL), 

   write(' is used of types '),write(SYMBOLTYPE), 

   write(' and '),write(SYMBOLTYPE2), 

write('** Warning (VA-W-016) **  Unreferenced symbol'), 

   tab(1), 

   write(DSYMBOL),write(':'),write(DPATH), 

   va_wrn_nltab, 

   write('of type '),write(DTYPE), 

 

write('** Error   (VA-E-017) **  Type mismatch in assignment '), 

   va_err_nltab,tab(4),write('LHS-TYPE '),write(LHS), 

   va_err_nltab,write('<assigned>'), 

   va_err_nltab,tab(4), 

   ( ( 

        RHS=[typerr,OP,T1,T2], 

         write('RHS-TYPE '),write(typerr), 

        va_err_nltab,tab(12),write(T1), 

        va_err_nltab,tab(8),write(OP), 

        va_err_nltab,tab(12),write(T2) 

   );( 

        write('RHS-TYPE '),write(RHS) 

   ) ), 

   va_err_nltab, 

   write('in statement '),write(UTYPE),tab(1), 

   write(USYM),write(':'),write(UPATH), 
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write('** Error   (VA-E-018) **  Type mismatch in expression: '), 

   va_err_nltab, 

   ( ( 

        DETAIL=[typerr,OP,T1,T2], 

        tab(4),write(T1), 

        va_err_nltab,write(OP), 

        va_err_nltab,tab(4),write(T2) 

   );( 

        write(DETAIL) 

   ) ), 

   va_err_nltab, 

   write('in statement '),write(UTYPE),tab(1), 

   write(USYM),write(':'),write(UPATH), 

write('** Error   (VA-E-019) **  Non-implemented function: '), 

   write(FUN), 

write('*** Internal Error (VA-I-500) ***  va_write_pred '), 

   write(PRED), 

 

A “polyvalent” symbol is one that is used for two or more different kinds (e.g. an integer and 

an event). This is tolerated with a warning if the scopes are distinct. If the scopes overlap, 

then an error is given, since symbol-table look-up (based on symbol and current scope) is 

ambiguous – more than one entry could be returned as being in scope. This is a separate issue 

to that of allowing a symbol to be used for two or more different scopes.  This is a legal 

situation which occurs where a symbol has several definitions, usually in of the same kind, 

but which are distinguished by their scope. Symbol-table look-up is unambiguous, since only 

the symbol with the innermost scope is taken. 

 

The following are no longer in use: VA-E-001 (testing mode is no longer needed) and VA-E-

012 (superseded by VA-E-013). The program logic should prevent VA-I-500 from ever 

appearing. The remaining error messages are covered in the tests. 

 

3.3 The Validator Test Models 

Here we consider the test aims and error circumstances. 

 

Table 3. Validator test models 

Model (directory) name Test aim 

t3020_cp_er Validator error if compiler gave an error 

t3031_mult_file1 Validator warning if multiple compiled files loaded 

t3032_mult_file2 (used to produce a second file for above) 

t3040_no_obj Validator error if no object file loaded 

t3050_vers_incompat Validator error if file was compiled under an earlier version 

t3110_tag_ok Tag names: normal correct usage, no errors  

t3115_tag_er Tag names: error situations 

t3120_var_bool_ok Boolean variables: normal correct usage, no errors 



   

© Graham G. Thomason 2003-2004  9
 

t3125_var_bool_er Boolean variables: error situations 

t3130_var_string_ok String variables: normal correct usage, no errors 

t3135_var_string_er String variables: error situations 

t3140_var_tagrange_ok Tag-ranged variables: normal correct usage, no errors 

t3141_var_tagrange_med Tag-ranged variables: additional medium model 

t3145_var_tagrange_er Tag-ranged variables: error situations 

t3150_var_tagenum_ok Tag-enumerated variables: normal correct usage, no errors 

t3151_var_tagenum_med Tag-enumerated variables: additional medium model 

t3155_var_tagenum_er Tag-enumerated variables: error situations 

t3210_pco_ok PCOs: normal correct usage, no errors 

t3215_pco_er PCOs: error situations 

t3220_evt_ok Events: normal correct usage, no errors 

t3225_evt_er Events: error situations 

t3230_sta_ok States: normal correct usage, no errors 

t3231_sta_basic States: additional model 

t3235_sta_er States: error situations 

t3240_fun_ok Functions: normal correct usage, no errors 

t3245_fun_er Functions: error situations 

t3340_doubdef Extra double definition tests 

t3360_polyvalent Polyvalent (overloaded) symbol warning/errors 

t3370_BasTypChk Basic Type checking 

t3371_AdvTypChk Advanced type checking 

t3910_stxr_ok A detailed model illustrating scoping issues 

 

 

 Figure 2 following shows a model that tests that items (tags, variables, events, states and 

PCOs) are correctly addressed where it is necessary to search from the given scope outwards 

in the state hierarchy (the outbound search). It especially tests variables and their 

declarations, and the declaration of their type. A worst-case scenario is as follows. A variable 

is used in an expression which is to be evaluated in a certain scope. The variable is operated 

on by scoping operators, giving a new evaluated scope of that variable. But the variable is not 

found in exactly that scope. However, it is found in a more global scope by the “outbound 

search”.  This is the declared scope of the variable, although the declaration may have been 

made in a part of the hierarchy that has yet another scope, but using scoping operators so as to 

effectively declare as if in the part of the hierarchy that is the declared scope. 

 

When a variable is declared, it has a type defined by the tagname, defining the enumerators or 

range. The tagname in a variable declaration is itself subject to an evaluated scope and 

declared scope analogously to the variable declaration. 

 

State scopes can only be defined by means of the place of the state definition in the state 

hierarchy, but there can be several states of the same name. When a state is referenced, as 

with variables and tagnames, the effectively referenced state depends on any explicit scoping 

operations and then the outbound search. 
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Figure 2. Symbol/cross-reference table: To test tags/variables/events/states/PCOs. 

  [Model t3910_stxr_ok]   (stxr_ok=symbol table and cross-reference table ok) 

 

 

Note: The exclamation marks draw attention to names are not part of any syntax. 
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4. Illustrative Examples 

These models include examples that have been used in various reports. 
 

 The Obj_example model that illustrates object code structure, as exhibited in the 

STATECRUNCHER maintenance handbook (no diagram). 

 The Tie example of [StCrParsing], (no diagram). 

 The Tuner-Hop example of a Philips report on component binding
1
, p.30 (diagram 

follows,  Figure 3), modelled by Tim trew. 

 The Traces example in the Transfer Report (diagram follows,  Figure 4). The transfer 

report is a deliverable of the author's PhD registration at the University of Surrey. 

 A Program Installation model by Tim Trew, for determining the station ID during TV 

program installation. In this case, the generation of teletext packets is not directly under 

control of the test harness, and the result of the sequences that might be received is 

predicted through the genPckts state, which exhibits iterative fork nondeterminism on 

the next_pkt event (diagram follows,  Figure 5). 

 

 

 

                                                     
1
G G Thomason 

Component Binding in Composite Models for State-based Testing 

PRL Technical Note TN 4102, August, 2001 
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Figure 3. Tuner-Hop (modelled by Tim Trew) [model t4130] 
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Figure 4. Traces example in transfer report [Model t4140] 
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Figure 5. Program Installation (modelled by Tim Trew) [model t4150] 

 

The model produces sequences of packets by fork nondeterminism. 
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Output from this model 

 

The model is driven by turning set-transit nondeterminism off and processing event 

tv_system_found. This can be done interactively, or in a Prolog predicate as follows, 

where an output file is written in the same directory as the model. 

 

 

This produces an output file ProgInst.out.txt. To reduce the output to the essentials 

(occupied leafstates and key variables), a grep command was executed on it as follows: 

 

 

 

go_t4150:- 

  me_no_set_tran,                          /* turn set-transit ND off       */ 

  ci_file(t4150,LOCAL_FILE_NO_EXTN),       /* get model file name           */ 

  gn_append_atoms(LOCAL_FILE_NO_EXTN, 

     '.out.txt',LOCAL_FILE_W_EXTN),        /* add an extension to file name */ 

  boot_root(sc,BOOT_ROOT),                 /* get boot directory            */ 

  gn_append_atoms(BOOT_ROOT, 

     LOCAL_FILE_W_EXTN,FULL_FILE),         /* make full file name           */ 

  io_tell(FULL_FILE),                      /* set output to go to this file */ 

  cs_go(t4150),                            /* load and enter machine        */ 

  ut_wm,nl,                                /* write machine                 */ 

  EVENT=[tv_system_found,[sc]],            /* this is the event to process  */ 

  CALPRARAMS=[],                           /* no parameters to this event   */ 

  write('About to process '),write(EVENT),nl,nl, 

  TASK=[tk_event,[EVENT,CALPARAMS]],       /* wrap the event as a "task"    */ 

  db_worldbag(INWORLDS),                   /* get the current worlds        */ 

  me_process_task_in_worlds(TASK,INWORLDS,OUTWORLDS),  /* process task      */ 

  da_kill_old_worlds,                      /* kill intermediate worlds      */ 

  ut_wm,                                   /* write machine again           */ 

  io_told.                                 /* close the file                */ 

grep -E "(leafstate.*s_occ|name_source|pkt_cnt|^$)" ProgInst.out.txt > 

grep_out.txt 
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The output (with minor editorial refinements) is as follows 

 

With set transit nondeterminism switched on, the following additional output is obtained (due 

to the action on genPkts being executed prior to the action on waitingForPkt. 

 

SET TRANSIT NONDETERMINISM SWITCHED OFF 
 

9          leafstate searching [tvSys, sc] [s_occ, []]  ** 

9    VAR  name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none 

9    VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 1] 
 

14         leafstate searching [tvSys, sc] [s_occ, []]  ** 

14   VAR  name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni_vps 

14   VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 1] 
 

22         leafstate searching [tvSys, sc] [s_occ, []]  ** 

22   VAR  name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni830 

22   VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2] 
 

27         leafstate searching [tvSys, sc] [s_occ, []]  ** 

27   VAR  name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni_vps 

27   VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2] 
 

33         leafstate searching [tvSys, sc] [s_occ, []]  ** 

33   VAR  name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni830 

33   VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3] 
 

38         leafstate searching [tvSys, sc] [s_occ, []]  ** 

38   VAR  name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni_vps 

38   VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3] 
 

44         leafstate searching [tvSys, sc] [s_occ, []]  ** 

44   VAR  name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni830 

44   VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 4] 
 

81         leafstate searching [tvSys, sc] [s_occ, []]  ** 

81   VAR  name_source [sc] [vardecl, [string]] =[ex_str, [110, 105 etc]] =ni830 

81   VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2] 
 

117        leafstate searching [tvSys, sc] [s_occ, []]  ** 

117  VAR  name_source [sc] [vardecl, [string]] =[ex_str, [110, 105 etc]] =ni830 

117  VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3] 
 

136        leafstate searching [tvSys, sc] [s_occ, []]  ** 

136  VAR  name_source [sc] [vardecl, [string]] =[ex_str, [110, 105 etc]] =ni830 

136  VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 4] 

 

158        leafstate searching [tvSys, sc] [s_occ, []]  ** 

158  VAR  name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none 

158  VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 4] 
 

159        leafstate searching [tvSys, sc] [s_occ, []]  ** 

159  VAR  name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none 

159  VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3] 
 

160        leafstate searching [tvSys, sc] [s_occ, []]  ** 

160  VAR  name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none 

160  VAR  pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2] 
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Figure 6. Notification example [model t4152] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This model is discussed in [StCrMain]. 

 

 

 

prog_inst 

idle 

start_tuning/ 

fire 

gen_notifs  

n=4 

tuned 

gen_notifs / 

 fire notif; n--; if (n>0) {fire gen_notifs;} 

tuning 

station_found  

notif / 

trace(notif_msg) 

gen_notifs 

fork nondeterminism  

here, we stop 

generating notifications  

here, we generate more 

notifications  
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5. Testing the Machine Engine: Small 

Test/Demonstration Models 

Ideally, each model would be accompanied by a full explanation, and by the test scripts with  

expected output. However, space does not permit. The title of each model indicates what is 

being demonstrated or tested. The test scripts are part of the STATECRUNCHER delivery (see 

directory am_sc). The diagrams give the general reader an overview of STATECRUNCHER 

functionality and the extent of testing. But the main purpose of the diagrams is as a reference 

document, serving a certain tutorial function, for discussions amongst STATECRUNCHER 

users. 

 

Variables and events will always be declared in the diagram if their scope is significant, 

otherwise their declaration will not necessarily be shown. See Section  1.2 for the notation. 

 

The following models may contain more events and transitions than are marked, to provide 

direct access to all required states. We call these omega transitions – see Section  8.1.1 

 

5.1 Small Deterministic Models 
 

Figure 7.  The hello world of state models [model t5110] 
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Figure 8. Parameterized, with conditions [models t5120, t5121, t5122, t5123] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a 

aa 

ab 
β 

α($b)[$b] 

γ($v1,$v2)[$v1>$v2] 
ac 

α($b)[!$b] 

b,v1,v2 

model t5122  statechart sc 

The parameter destinations are at the scope 

of the cluster. Parameters to events on 

transitions from leafstates address their 

destinations using the parent operator, $. 

 a 

aa 

ab 
β 

α(b)[b] 

γ(v1,v2)[v1>v2] 
ac 

α(b)[!b] 

b,v1,v2 

model t5123   statechart sc 
The parameter destinations are local - but 

the destinations are not declared. From 

release 1.05, the outbound search technique 

will find the nearest-scoped variables. This 

arrangement can now be recommended. 

 

 

  

The parameter destinations are local, at 

leafstate scope. Leafstate scope has to be 

declared at cluster level with a descend 

operator (e.g., in a, declare ac.v1), since 

there is no place in the syntax to declare at 

leafstate scope directly. 

 

 

 a 

aa 

ab 
β 

α(b)[b] 

γ(v1,v2)[v1>v2] ac 

α(b)[!b] 
b 

v1,v2 

model t5121   statechart sc 

Variables are declared at cluster and 

leafstate scope.  
 

From release 1.05, the outbound search 

technique will find the nearest-scoped 

variables. 
 

In earlier releases, if the variable was not 

declared at the specified scope, a hidden 

variable was created. 

  

 a 

aa 

ab 
β 

α(b)[b] 

γ(v1,v2)[v1>v2] ac 

α(b)[!b] 

b 

v1,v2 

model t5120   statechart sc 
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Figure 9. Simple cluster transitions plus history [model t5130] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This model also illustrates internal and external self transitions on leaf states and nonleaf 

states. 
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ω_a2 
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Figure 10. Set, but deterministic [model t5140] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Fired event, but deterministic [model t5150] 
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π 
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 b2 

statechart sc 

b β(bvp1,bvp2)[bvp1&&(!bvp2)] 

a 

b1 

 a2 a1 

β{fire α } 

α{fire β(bv1,bv2)}  

α 

bv1=true; bv2=false 

γ(bv2) 
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Model t5150 explored 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Fired event in series [model t5152] 
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Figure 13. Assignment on transition with overloaded variable names [model t5160] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Simple assignment on transition [model t5161] 

 

 

 

 

statechart sc 

a 

a1 

α{$v+=3; $$v=$v+6;)}  

γ(param){$v=param;} 

v=1  i=0 

v=2 

a3 

β{v+=3; $$v=v+6;)}  

γ(param){v=param;} 

exact scoping of local v 

inexact scoping of local v 

ι1{i+=1}  

a2 
ι2{i+=10}  

ι3{i+=100}  

 

 

statechart sc 

a 

a1 

α{i=i*10+1;}  

i=0 

a3 

β  

a2 

ι{i=0;} 

α{i=i*10+2;}  

α{i=i*10+3;}  
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Figure 15. Simple on-enter/ on-exit actions [model t5170] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes 

 Variable v tracks a transition from p to q. 

 Variable u tracks a transition from q to p. 

 The fired event ζ1 is only executed in a transition exiting p2 or entering q2. 
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Figure 16. Simple meta event (state entry/exit) [model t5180] 
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Figure 17. Conditional actions and in() function [model t5190] 
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 t 

setu(param) {u=param;} 

setv(param) {v=param;} 

setw(param) {w=param;} 

conditionl action with else action 

γ if (v%2==1){w=w*10+2; w=w*10+3;} 

  else       {w=w*10+4; w=w*10+5;} 

 

δ if (v%2==1) {AC1} else {AC2} 

where 
AC1= if (v==3) {w=w*10+1;} else {w=w*10+2;} 

AC2= if (v==4) {w=w*10+3;} else {w=w*10+4;} 

 

ε if (v%2==1){fire ζ2;} 

   

a1 

conditional transition 

α [in($z.z2)&&v==0] 

unconditional transition, conditional action 

β if (in($z.z2)&&v==0){w=w*10+1;} 

 

reset for next demo-transition 

η {u=0;v=0;w=0;} 

a2 

 

if v>5 

 u=u*10+1 

else 

 u=u*10+2 

u=0 v=0 w=0 
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Figure 18. History, Deep History and Clear Functions [model t5200] 
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Figure 19. Arithmetic (with scoping) [model t5210] 

 

a 

etc. 

  p 

statechart sc 

Note that set members are leafstates, not clusters(so this is tested here) 

s 

v=3 

v=6 

α(param} {v=param;} 

α0 {v=0;} 

α1 {v++;} 

α2 {w=v++;} 

α3 {++v;} 

α4 {w=++v;} 

b 

etc. 

c 

etc. 

w=0 

α5 {w=v++ + +10;} 

α6 {v+=20;} 

β(param} {$$v=param;} 

β0 {$$v=0;} 

β1 {$$v++;} 

β2 {w=$$v++;} 

β3 {++$$v;} 

β4 {w=++$$v;} 

β5 {w=$$v++ + +10;} 

β6 {$$v+=20;} 

γ1 {w=0;} 

γ2 {w=maximum(++v,++$$v);} 

γ3 {w=minimum(v++,$$v++);} 
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Figure 20. Strings and String Functions [model t5220] 
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s1="aA" 

s1="zZ" 

a1 

etc. 

α0($$s1,$$$s1,$$$s2)   //direct parameter  placement 

α1 {s1="abcdef";} 

α2 {s2="cd";} 

α3 {s1=s1+s2;} 

α4 {s1=s1-s2;} 

α5 {s1=s1*v;} 

α6 {s1=s1/3;} //illegal 

b 

etc. 

c 

etc. 

 

α7 {s1="";} 

α8 // reserved 

α9  

β(vparam} {v=vparam;}  

β0 {$$s1=s1+"xy";} 

β1 {$$s1=$$s1+s1;} 

β2 //reserved 

 

 

γ1 {s1=upper_case(s1+"aA");} 

γ2 {s1=lower_case(s1+"zZ");} 

γ3 {v=length(s1);} 

 

γ4 {s1=format(v,0)} 

γ5 {s1=format(v,3)} 

γ6 {s1=format(v,-3)} 

a 

a2 
α(sparam,vparam) [(sparam=="xy")&&(vparam==1)] 

 

α 

 

s2 v=3 

Note that here 

$$s1 references  sc.p.s1  

(unlike the situation  above, the 

difference being that this set 

member is a leafstate, not 

wrapped in a cluster). 

Note that here 

$$$s1 references sc.p.s1  

$$s1  references sc.p.q.s1 
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Figure 21. Traces (deterministic) [model t5230] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Cycling [model t5240] 
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α {trace(2);} 

 

γ {trace(v);} 

 

δ {trace(v+1);} 
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β (trace(true);} 

 

a 

s 

b2 

β2 {v--; trace(v+10,"d");  fire α1;  trace(v,"z");} 

β1      {trace(v+10,"b");  fire α2;  trace(v,"x");} 

b1 

b 

a2 

α2      {trace(v+10,"c");  fire β2;  trace(v,"y");} 

α1[v>0] {trace(v+10,"a");  fire β1;  trace(v,"w");} 

a1 

γ(p) {v=p}; 



   

© Graham G. Thomason 2003-2004  31
 

Figure 23. Inexact state scoping - [model t5250] 
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5.2 Small Nondeterministic Models 

 

Figure 24. Set transit nondeterminism only [model t5410] 
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Figure 25. Set Action Nondeterminism [model t5412] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When, say, events α_j, α_n, and α_s are given, then ω is given, the actions that take 

place are treated in the same way as set-transit actions on member states. 

 

Notes 

 α, α gives rise to race nondeterminism on a 5 way race, giving Perm
race

(5) worlds, i.e. 

10 worlds under the med_set_tran option. (See  Figure 41 and the description 

following for more explanation about this). This option produces 2n of the n! 

permutations. This is still quite fast. 
 

 α, ω gives rise to set-action nondeterminism, causing permutations on (exit-j and exit-l 

and exit-n) and on (exit-q and exit-s), and between them, as if set-transit nondeterminism 

were involved, giving Perm
set-tran

(2).Perm
set-tran

(3).Perm
set-tran

(2) =24 worlds. This is slow. 
 

 α, ω_race gives rise to mixed race and set-action nondeterminism, giving Perm
set-

tran
(2).Perm

set-tran
(3).Perm

set-race
(2) =24 worlds. The speed is medium. 

 

Note on speed 

 By medium, we mean, typically, a matter of minutes on a 300 MHz machine 

 By slow, we mean, typically, a matter of 30 mins-2 hours on a 300 MHz machine 

 Speeds vary according to 

- the Prolog System 

- whether we run the model under the GP4 test harness or stand-alone 

- what has been run before (under the top-level Prolog prompt), since memory 

fragmentation (presumably) can degrade performance by one or more orders of 

magnitude. 

sy 

i 

 j l 

k 

a 

n 

m α,α_j 

 

α,α_i 

α,α_l 

α,α_k 

α,α_n 

α,α_m 

a1 a2 a3 

p 

 q s 

r 

b 

u 

t α,α_q 

 

α,α_p 

α,α_s 

α,α_r 

α,α_u 

α,α_t 

b1 b2 b3 

ω 

ω_race, ω1 

ω_race, ω2 

v=v*10

+1 

v=v*10

+3 

v=v*10

+2 

v=v*10

+4 

v=v*10

+6 

v=v*10

+5 

commented out for performance reasons 



   

34  © Graham G. Thomason 2003-2004 

Figure 26. Set meta-event nondeterminism [model t5414] 

 

Illustrative sequence: α_j α_n α_s ω_x, showing  permutations of exit meta-events. 

 

 Analogous comments regarding race nondeterminism versus set-meta-event 

nondeterminism apply to those of model t5412, under med_set_tran permutations: 

- α,α a 4-way race, Perm
race

(4)=8 worlds, fast. 

- α,ω_x set-meta-event nondeterminism, Perm
set-tran

(1).Perm
set-tran

(3).Perm
set-tran

(2) 

=12 worlds, slow. 

- α,ω_race rise to mixed race and set-meta-event nondeterminism, giving Perm
set-

tran
(1).Perm

set-tran
(3).Perm

set-race
(2) =12 worlds, medium speed. 

 

sy 
ω 

ω_race, ω1 

i 

 j l 

k 

a 

n 

m α,α_j 

 

α,α_i 

α,α_l 

α,α_k 

α,α_n 

α,α_m 

a1 a c3 

p 

 q s 

r 

b 

u 

t α,α_q 

 

α,α_p 

α,α_s 

α,α_r 

α,α_u 

α,α_t 

b1 b2 b3 

ω_race, ω2 

ω_x x 

z 

exl 

exn 

exj 

exs 

exu 

exq 

neutral 

ω_neutral 

exit(x.a.a1.j) {v=v*10+1;} 

exit(x.a.a1.l) {v=v*10+2;} 

exit(x.a.a1.n) {v=v*10+3;} 

exit(x.b.b1.q) {v=v*10+4;} 

exit(x.b.b1.s) {v=v*10+5;} 

exit(x.b.b1.u{v=v*10+6;}) 

commented out for performance reasons 
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Figure 27. Fork nondeterminism only [model t5420] 

 

 

Figure 28. Fork Nondeterminism differentiated by history [model t5422] 

 

 

 

 

 

 

 

 

 

 

 

 

 

To effectuate the nondeterminism, execute events as follows 

 event γ brings the machine to state p2 

 event γ brings the machine back to a1, with history of cluster p recorded 

 event α forks on existence of the record of history 

 event β of worlds causes reconvergence of worlds by clearing all record of history of 

cluster p 

 

 

 

 

m α {v=0;} 

a 

d2 

d3 

δ {v=v*10+2} 

 

v=v*10+1 

statechart sc 

d4 

v=v*10+4 

δ 

δ 

δ {v=v*10+2} 

 
δ {v=v*10+3} 

 
δ {v=v*10+3} 

 

b1 

b2 

β 

 

β 

 

c1 

c2 

c3 

γ 

 

γ 

 
γ 

 

γ 

 

a 

a1 

statechart sc 

p1 p2 

p H 

γ  γ  

α{clear(p);} 

α 

β{clear(p);} 
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Figure 29. Race nondeterminism only; winner detected by meta-event [model t5430] 

 

Figure 30. Race nondeterminism only - winner detected by fired event [model t5440] 

 

 

a 

s 

z 

α  

a1 a2 

enter($a.a2) 

z1 
z2 

z3 enter($b.b2) 

b 

b1 b2 

α 

β 

β 

β 

note that β resets as a 3-way race, but with same result in each case 

statechart sc 

 

a 

s 

z 

α {fire γ} 

a1 a2 

γ 

z1 
z2 

z3 

δ 

b 

b1 b2 

α {fire δ} 

β  

β 

β 

note that β resets as a 3-way race, but with same result in each case 

statechart sc 
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Figure 31. Race nondeterminism only - winner detected by variable value [model 

t5450] 

 

 

Figure 32. Race nondeterminism - winner detected by history [model t5460] 

 

 For a simpler illustration of history in nondeterminism, as a case of fork nondeterminism, 

see model t5422. 

 To run the race, process events gamma, gamma, alpha. In one arm of the race, the 

history of cluster p is cleared, in the other it is not cleared (because b1 is vacant and the 

conditional action to clear history does not take place). 

 Alternatively, events gamma, alpha are processed. A similar race takes place. In this 

case history is set on one of the transitions involved in the race, (as opposed to the 

previous case where history was set up before the race). 

 

 

 

a 

s 

α {v=v*10+1;} 

a1 a2 

b 

b1 b2 

α {v=v*10+2;} 

β {v=0;} 

β 

statechart sc 

a 

s 

α if (in($b.b1)) {clear (p);} 

a1 a2 

b 

b1 b2 

α  

β 

β 

statechart sc 

p1 p2 

p H 

α  if (in($b.b1)) {clear(p);} 

γ  γ  
δ{clear(p);} 
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Figure 33. Race nondeterminism - winner detected by trace [model t5470] 

 

 

Figure 34. Race to a single target [model t5472] 

 

 

Figure 35. Race to start (mutually exclusive transitions) [model t5474] 

 

statechart sc 

s 

a1 

c 
α {trace(1);} 

a2 

sys 

a β  

δ {trace_clear();) 

b1 
b2 

b γ  

α {trace(2);} 

a 

s 

α[in($b.b1)] 

a1 a2 

b 

b1 b2 

α [in($a.a1)] 

β 

β 

statechart sc 

a 

s 

α {trace("ab");} 

a1 a2 

b 

b1 b2 

α {trace("cd");} 

β{trace(25);} 

β{trace(36);} 

statechart sc 

γ{trace_clear();} 
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Figure 36. Compact multiple nondeterminism (4 kinds) [model t5480] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This model can be used with event β to illustrate set-transit, fork, and race-condition 

nondeterminism, or with event α to illustrate broadcast-event nondeterminism. 

 

a 

β 

b1 

s 

c 

z 

β 

c1 
c2 

α->a2 {fire β} 

a1 a2 

b 

c3 
β 

b2 

p q 

q2 

q1 

p2 

p1 

enter($b.b2.p.p1) 

z1 
z2 

z3 enter($c.c3) 

v=v*10+7 

v=v*10+6 

v=v*10+4 v=v*10+5 

v=v*10+2 v=v*10+3 

v=v*10+1 

statechart sc 

γ 

γ γ 

γ 

ω{v=0;} 
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Figure 37. Illustration of all kinds of STATECRUNCHER output [model t5490] 

 

Notes 

 This model is basically a race on event α between fired events γ and δ, with the winner 

established by the order of processing fired events γ and δ in member z and by trace data 

deposited in members a and b. 

 Scoped events ζ and $ζ 

 Scoped variables v and $v 

 Scoped PCOs pco1 and $pco1 

 Note how a nondefault cluster member (q) can be entered using event ε the first time and 

event α from state a1 using history the second time. 

 Note that internally generated events, in our example, exit(::a.a2.p) are not 

offered as user suppliable. 

 

This model is used an example to illustrate output that would be used in communication with 

a primer. (A primer is a program that decides what tests to perform, i.e. what events to 

process, whereas STATECRUNCHER gives the oracle to these tests). 

statechart sc 

a2 

s 

z 

α {fire γ; trace(5,7);} 

a1 
p 

γ 

z1 

z2 

z3 δ  

b 

b1 

b2 

α {fire δ;  

trace("xy");} 

ε 

β 

β 

a H 

q 

ζ(p1,p2,p3,p4,p5) 

{v=p1; $v=p2; col1=p3; 

 bool1=p4; str=p5;} 

$ζ[w>3]{str=str+"a";} 

β 

θ1@pco1{w++;} 

θ2@$pco1{w--;} 

exit(::s.a.a2.p){w++;} 

v=0, w=0, col1=blue, bool1=true, str1="a" 

 α β γ δ ε ζ pco1 

v=0,p1,p2,

p3,p4,p5 

pco1 

ζ 

global PCO 

local ζ;  global & local v 

local PCO 

global ζ 

 θ1 θ1 
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Figure 38. Transition Prioritization [model t5500] 

 

a 

aaa 

aq 

ap 

a2 aa 

s 

α
7
[v7] {v=1;} 

α
8
[v8] {v=1;} 

α
9
[v9] {v=1;} 

z 

τ   sets all vnn variables true 

τnn sets specific variable true 

φ   sets all vnn variables false 

φnn sets specific variable false 

statechart sc 

a8 

a4 
α

4
[v4] {v=1;} 

α
5
[v5] {v=1;} 

α
6
[v6] {v=1;} 

α
1
[v1] {v=1;} 

α
2
[v2] {v=1;} 

α
3
[v3] {v=1;} 

γ 

 

a1 

a3 

a5 

a9 

a7 

a6 

b 

bbb 

bq 

bp 

b11 bb 

α
16
[v16] {v=2;} 

α
17
[v17] {v=2;} 

α
18
[v18] {v=2;} 

b17 

b13 

α
13
[v13] {v=2;} 

α
14
[v14] {v=2;} 

α
15
[v15] {v=2;} 

α
10
[v10] {v=2;} 

α
11
[v11] {v=2;} 

α
12
[v12] {v=2;} 

δ 

b10 

b12 

b14 

b18 

b16 

b15 

ω3 {v=0;} 

 

etc. 

ω2 

 ω1 {v=0;} 

 

v v1 v2 v3 etc. 

Note: There is only one event α.  

The superscripts provide a way to identify transitions on α. 

(many separate transitions) 
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Figure 39. Scoped events illustrated by fork nondeterminism [model t5510] 

 

statechart sc 

x 

b 

p 

r 

s 

t 

e 

a 

β ::α 

c 

d 

α 

α 

α 

α 

no α here 

u 

v 

::x.α 

::x.a.b.α 

::x.a.α 

::x.a.b.c.α 

::x.a.b.c.d.α 

references ::x.a.α 

no α here 

references ::x.a.α 

references ::x.a.α 

 fork-2 

q 

$α 

 fork-1 

same as above by 

alternative notation 
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Figure 40. Limited permutation race nondeterminism [model t5520] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Explanation of the permutation limitations 

 no_race: Only one permutation will be generated. The transition in the first set 

member will be executed first, then the one in the second set member etc. The 

permutation using set member names is abcd. 

 low_race: Only two permutations will be generated. One is as above, and the other 

is the reverse of that order. The permutations are abcd and dcba. 

 med_race: The number of permutations generated is 2n.  These permutations are all 

the cyclic and anticyclic rotation operations on the no-race permutation. The 

permutations are (cyclic) abcd, bcda, cdab, dabc, (and anticyclic)  dcba, cbad, 

badc, adcb. 

 high_race: All n! permutations are generated, i.e. 4! = 24 permutations in this 

case. 

These options can be set at a PROLOG prompt by the predicates me_no_race, 

me_low_race, me_med_race and me_high_race. The default is me_med_race. 

statechart sc 

a 

α 

b1 

s 

c 

d 

α 

a1 

b 

ω1 

b2 

v=v*10+2 

a2 

v=v*10+1 

α 

c1 c2 

v=v*10+3 

α 

d1 d2 

v=v*10+4 

ω_no_race{no_race();} 

ω_low_race{low_race();} 

ω_high_race{high_race();} 

ω_med_race{med_race();} 

ω_v_reset{v=0;} 
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Figure 41. Limited permutation set-transit nondeterminism [model t5530] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Explanation of the permutation limitations 

 no_set_tran: Only one permutation will be generated. The transition in the first 

set member will be executed first, then the one in the second set member etc. The 

permutation using set member names is pqrs. 

 low_set_tran: Only two permutations will be generated. One is as above, and the 

other is the reverse of that order. The permutations are pqrs and srqp. 

 med_set_tran: The number of permutations generated is 2n.  These permutations 

are all the cyclic and anticyclic rotation operations on the no-set_tran permutation. 

The permutations are (cyclic) pqrs, qrsp, rspq, spqr, (and anticyclic)  srqp, 

rqps, qpsr, psrq. 

 high_set_tran: All n! permutations are generated, i.e. 4! = 24 permutations in 

this case. 

These options can be set at a PROLOG prompt by the predicates me_no_set_tran, 

me_low_set_tran, me_med_set_tran and me_high_set_tran. The default is 

me_med_set_tran. 

 

β 

a 

sy 

statechart sc ω1 

b 

p q 
q2 

q1 

p2 

p1 

x=x+"c" x=x+"e" 

x=x+"b" x=x+"d" 

x=x+"a" 

ρ 

ρ ρ 

ρ 
r2 

r1 

x=x+"g" 

x=x+"f" 

ρ 

ρ 
s2 

s1 

x=x+"i" 

x=x+"h" 

ρ 

ρ s r 

c 

p q 
q2 

q1 

p2 

p1 

x=x+"3" x=x+"5" 

x=x+"2" x=x+"4" 

x=x+"1" 

ρ 

ρ ρ 

ρ 
r2 

r1 

x=x+"7" 

x=x+"6" 

ρ 

ρ 
s2 

s1 

x=x+"9" 

x=x+"8" 

ρ 

ρ s r 

ε 
ζ 

α 

γ 
δ 

ω_no_set_tran{no_set_tran();} 

ω_low_set_tran{low_set_tran();} 

ω_high_set_tran{high_set_tran();} 

ω_med_set_tran{med_set_tran();} 

ω_vreset{x="";} 
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Figure 42. Different transitionable events after nondeterminism [model t5540] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

statechart sc 

m 

a1 

α 

{p1=0; 

p2=0; 

 p3=0;} 

p1=0, p2=0, p3=0 

β  

b3 

b1 

b2 

c4 

c2 

c3 

γ($p1)  

γ($p1,$p2,$p3)  

δ  

β  

β  

c1 

γ($p1,$p2)  
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Pruning of traces - fork - non-self transitions [model t5550] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43. Pruning of traces - fork - self transitions [model t5555] 

 

 

a 
α {trace("ab"); trace("cd");} 

p 

q 

statechart sc 
ρ {trace_clear} 

 

α {trace("ab");} 

r 

ρ1 {trace_clear; trace("pq");} 

s 

t 

α {trace("ab"); trace("cd");} trace("ef");}} 

α {trace("ab"); trace("yz");} 

u 
α {trace("yz");} 

statechart sc 

p 

ρ {trace_clear} 

 ρ1 {trace_clear; trace("pq");} 

a α {trace("ab"); trace("cd");} 

α {trace("ab");} 

α {trace("ab"); trace("cd");} trace("ef");}} 

α {trace("ab"); trace("yz");} 

α {trace("yz");} 
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Pruning of traces - race - non-self transitions [model t5560] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Pruning of traces - race - self transitions[model t5565] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

s 

α {trace("ab");fire α1;} 

p q 

b 

β {trace(1);fire β1} 

statechart sc 

c 

r 

d 

ρ {trace_clear} 

ρ1 {trace_clear; trace("pq");} 

α1 {trace("cd");} 

β1{trace(2);} 

α {trace("ab");fire α2;} 

β {trace(1);fire β2} 

α3 {trace("cd");trace("ef");} 

β2{trace(4);} 

α {trace("ab");fire α3;} 

β {trace(1);fire β3} β3{trace(6);} 

α2 {trace("yz");} 

α {trace("ab");fire α1;} 

β{trace(1);} 

p q r 

p q r 

p q 

s 

α {trace("ab");fire α1;} 

a 

statechart sc 
ρ {trace_clear} 

α1 {trace("cd");} 

α {trace("ab");fire α2;} 

b 
α2 {trace("yz");} 

α {trace("ab");fire α3;} 

c 
α3 {trace("cd"); trace("ef"); } 

α {trace("ab");} 

d 

ρ1 {trace_clear; trace("pq");} 
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Figure 45. Arrays with fork nondeterminism [model t5580] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As at Release 1.04 

 Array base (i.e. without index), and all array elements must be declared 

 Undeclared array elements may work as regards internal logic, but will not be shown in 

output, nor be accepted as command input (as from primer). 

 

Test sequence 

 events δ,β,γ,α. Event δ increments local k1, and so some indices, marked by a +. 

m 

a1 

α/ 

all 

variables 

to initial 

values 

 iv=0,  k1=3, k2=5 

β/ia[4]=5; 

β/::ia[::k1+k1]=-1; 

β/ia[k1+k2]=8+1; 

β/ia[k1+2][k1-1]=7; 

scoping =[4+] 

LVALUE TESTING RVALUE TESTING 

2 dimensions =[5+][2+] 

β/ia[k1+4][2][4]=12; 
3 dimensions =[7+][2][4] 

expression index =[8+] 

constant index [4] γ[ia[4]==(k1+2)] 

/iv=ia[4]+1; 

γ/::iv=::ia[::k1+k1]+1; 

γ/iv=ia[k1+k2]+1; 

γ/iv=ia[k1+2][k1-1]+1; 

γ/iv=ia[k1+4][2][4]+1; 

 iv=0,  k1=1, ia[4]=0, ia[5]=0 

β/sa[k1+1]="abc"; 

string =[4+] 
γ/sv=sa[k1+1]+"X"; 

b4 

b1 

b2 

b3 

b5 

b6 

b7 

β/ba[k1+1]=1; 

boolean =[4+] 
γ/bv=!ba[k1+1]; 

δ/k1++ 

 ia[4]=0, ia[8]=0, ia[5][2]=0; ia[7,2,4]=0 

 ia[5]=0, ia[9]=0, ia[6][3]=0; ia[8,2,4]=0 

 ba[4]=0  

 ba[5]=0  

 sa[4]="x",  

 sa[5]="x",  

 bv=0   sv="x",  

c4 

c1 

c2 

c3 

c5 

c6 

c7 

note the two scopes of  ia[4], ia[5] 

conditional transition 
fork 

nondeterminism 
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Figure 46. Simple scoped array [model t5581] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ/::a[3]=200 

a1 

α/a[3]=20 

β/v=a[3] 

δ/v=::a[3] 

ω/ 

::a[3]=100; 

a[3]=10; 

v=0; 

 a[3]=10, v=0 

m 

 a[3]=100 
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Figure 47. get_nworlds: Get number of worlds (1) [model t5600] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter P1 to get_nworlds: P1=1 (default) for command-time number-of-worlds 

Illustrative event sequence: φ,β,α 

 

Figure 48. get_nworlds: Get number of worlds (2) [model t5602] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter P1 to get_nworlds P1=2 for execution-time number-of-worlds 

This number may be higher than expected due to internal world generation on any action. 

Illustrative event sequence: β,α 

 

 m 

a1 

α 

{nw=0; 

v=0} 

nw=0,v=0 

β / 

nw=get_nworlds(); 

if (nw<=1)fire γ1; 

b3 

b1 

b2 

c3 

c2 

γ1 

γ2  

c1 

γ3  

β / 

nw=get_nworlds(1); 

if (nw<=2)fire γ2; 

β / 

nw=get_nworlds(1); 

if (nw<=3)fire γ3; 

φ/v+=1; 

φ 

a fork 

 m 

a1 

α 

{nw=0; 

v=0} 

nw=0,v=0 

β / 

nw=get_nworlds(2); 

if (nw<=6)fire γ1; 

b3 

b1 

b2 

c3 

c2 

γ1 

γ2  

c1 

γ3  

β / 

nw=get_nworlds(2); 

if (nw<=6)fire γ2; 

β / 

nw=get_nworlds(2); 

if (nw<=6)fire γ3; 

φ/v+=1; 

φ 

a fork 
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6. Systematic Test Models 

Diagrams with their model numbers follow. 
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6.1 State Hierarchy and Initial Machine Entry 

 

Figure 49. Hierarchy for initial/directed state entry [model t6200 & derivatives] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  Model t6200 contains all the above (8 sets in full exit from initial state). Other 

models contain just part of the full model as indicated, e.g.  t6201 contains just outer set ab 

from this model. (5 sets in all).  

 statechart sc  a(set) 

aaa(set) 

 aa(cluster) 

aaab(cluster) 

aaabb aaaba 

aac(cluster) 

aacaa aacab 

 ac 

aacba aacbb 

aaca(cluster) 

aacb(cluster) 

aacc(set) 

 aad 

aacca 
aaccb 

aaaab aaaaaa aaaaab 

 aaaaa(cluster) 

 aaaa(cluster) 

aaac(set) 

aaaca aaacc 

ab(set) 

abbb 

abb(cluster) 

abd 

abab 

aba(set) 

abcb 

abca 

abc(set) 

abaa(set) 

abaaa 

 

 

a 

abaab 

abba(set) 

abbaa abbab 

aaaaac 

aaabc 

aaacb 
aaccc 

aacac 

aacbc 

t6201 

t6202 

t6203 

t6205 

t6200 

t6204 

t6206 

aab(set) 

aaba(cluster) 

aabaa 
aabab 

aabc 

aabac 

aabbb 

aabba 

aabb(set) 
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Figure 50. t6200 structure 

 

 

Counting any non-first member as a second member, the above hierarchy contains routes 

from the top  

 

Set to set/cluster/leafstate 

 S1-S1  S1-S2  S2-S1  S2-S2 

 S1-C1  S1-C2  S2-C1  S2-C2 

 S1-L1  S1-L2  S2-L1  S2-L2 

 

Cluster to set/cluster/leafstate 

 C1-C1 C1-C2 C2-S1 C2-S2 

 C1-C1 C1-C2 C2-C1 C2-C2 

 C1-L1 C1-L2 C2-L1 C2-L2 

 

 
 statechart 

 C1 

S 

L 

 C2  S1 

C1 

 a 

 aa  ac 

 

initial state =occupied 

 initial state = vacant 

S2 C2 C1 

 aaa 

L 

 aad 

 S2 

 aab 

C1 

S2 

S1 

 ab 

C1 

C2 S2 

C2 

S1 L S1 L 

L 

 aba  abb 

S2 

L L 

 abc  abd  aac 

X 

X 

Legend 

  S = Set 1 = First member 

  C = Cluster  2 = Subsequent member 

  L = Leafstate 

   

 

S2 

L L L 

L L L 

L L L L L L L L L L L L L L L L L L L L L L L 
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Occupied/Vacant combinations 

 Setocc-Cluster 

 Setvac-Cluster 

 Setocc-Set 

 Setvac-Set 

 Clusterocc-Cluster 

 Clustervac-Cluster 

 Clusterocc-Set 

 Clustervac-Set 

 

The following sequences are also covered 

 Set Cluster Set 

 Cluster Set Cluster 

 

These are the primary aspects being tested, in respect of  “entering initial state”. 
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6.2 Specifying States in Transitions 

Figure 51. Specifying States (model t6220) 

 

statechart sc 

Notes: The notation shown does not include all delimitation (e.g. semicolons) 

Exclamation marks on names are attention-drawing, not syntactical 

Transitions are shown with explicit target state expressions 

Default states are not shown in this diagram x 

za zb 

to-cousin transition 

to-nephew transition 

to-uncle transition 

 

complex expression 

   to denote destination 

 

 

self transition of son 

self transition of parent 

 

z ζ1->zb 

ζ2->za 

scoped event 

Note: more local κ1 found by 

outbound search; 

 $$ needed to reference the outer κ1 

 

 

k 

ka kb 

κ1->kb 

$$κ1->ka 

Notes: 

1. Transitions between set members are potentially illegal, but 

they could be legalized by introducing an “orbit”.  

2. ma, mb are clusters, denoted in alternative notations 

 

m 

maa mab 
mba 

mbb 

mbb 

ma mb 
μ2->$mb 

μ5->$mb.mbb 

μ6->$ma.mab 

μ3->mab 

mc 

mca 

mbb 

μ8->$mc 

y 

d 

da b! 

e 

e! eb 

b 

ba d! 

g 

ga gb 

f 

fa fb 

to-child transition 

to-sibling transition 

b->d disambiguation 

to-uncle transition 

to-sibling transition 

da->b 

disambiguation 

external self-transitions 

to-parent transition 

to-child transition 

e->e disambiguation 

a 

aa 
ab 

internal self transitions 

to-child transition 

to-sibling transition 

to-parent transition 

 

i 

ia ib 

1->a.aa 

2->ab 
3->$a 

1->b.d 

2->d 

δ1->$b δ2->b 

ε1->e 

ε4->e.e 

ε2->$e 
ε3->e 

φ1->g.ga 

φ2->$g.ga 

φ3-> 

$g 

γ1->g 

γ2->ga 
ι1->y%%i.ib 

ι2->::x.y.i.ia 

5 

4 

κ1,κ2 

κ1,κ2 

μ7->$m 

μ1->$$m 

ε5->eb 

ω_a->y.a 

ω_b->y.b 

ω_d->y.d 

etc.  for many 

states 

 

 

μ4->$ma 
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Figure 52. Specifying States  - continued 

 

 
 

x 

y 

s 

sa sb 

t 

ta tb 

r 

ra rb 

τ1->tb  

{clear($r)} 

τ2->ta 

{deep_clear($r)} 

enter 

($$z.za)->sb 

exit 

($$z.za)->sa 

z 

p 

pa pb 

statechart sc 

parameterized event 

conditional transition 

conditional action 

π1[v==2] 

π1->pb 

{if(!in(S1)){A1} 

else {A2} } 

orbital route meta-events actions refer to states 

ρ->$$y->rb 

as on previous sheet 

the ν1 target expression in 

scope [n,y,s,st] evaluates to 

[[p2,p,n21,n2,n,y,s,st], 

 [q1,q,n21,n2,n,y,s,st], 

 [r,n22,n2,n,y,s,st], 

 [u,n23,n2,n,y,s,st]] 

n 

n2 

p1 

p2 

n22 n23 

n1 
n21 

q p 

q1 

q2 

r 

s 

t 

u 

ν2->n2.( n23.r /\ n22.u /\ (n21.(q.q1/\p.p2)) ) 

H 

ν82->s 

ν81->q2 

π2(::v)->p 

ν1->n2.( (n21.(p.p2/\q.q1)) /\ n22.r /\ n23.u ) 

ν2 as ν1, (details above) but specified in reverse order 

the ν2 target expression in 

scope [n,y,s,st] evaluates to 

[[u,n23,n2,n,y,s,st], 

 [r,n22,n2,n,y,s,st], 

 [q1,q,n21,n2,n,y,s,st], 

 [p2,p,n21,n2,n,y,s,st]] 

S1=::x.z.za 

A1=v=1; 

A2=v=3; 

sets v 

 fuller orbital 

 functionality 

 demonstrated elsewhere 
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6.3 Deep Nesting 

6.3.1 Deep Cluster nesting [model t6222] 

 

Figure 53. Deep Cluster Nesting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on event notation (showing destination relation) follow. 

 

 
s 

za zb 

statechart sc 

z ζ1 

ζ2 

y 

α3 

bba 

bbb 

baa 

bab 

aba 

abb 
aaa 

aab 

a 

ba 
ab 

b 

aa 
bb 

α3 

κ2 

 
κ2 

υ2 

ν2 

gυ1 

gν1 

dυ1 

dν1 

dκ1 

π1 

α1 

τ1 

gπ1 

gτ1 

α1 

α1 

α1 

α1 

α1 

α1 

α1 

α2 

α2 

τ2 π2 gτ2 

ν1 

υ1 

κ1 

gπ2 

dκ1 

κ1 

σ4 

σ3 

σ2 

σ1 
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Figure 54. Terminology for relationships (with event naming convention) 

 

 

Figure 55. Nonleaf-Nonleaf relationships 

 

 

Table 4. Matrix of event names 

    one removed  two removed 

to 

from 

 leaf lp lgp lggp  leaf lp lgp lggp  leaf lp lgp lggp 

                
leaf  α1 π1 gπ1 ggπ  κ1 υ1 gυ1   dκ1 dυ1   

  sibling parent gr-par gr-gr-p  cousin uncle gr-un   2cousin 2uncle   

                
lp  τ1  α2 π2 gπ1  ν1 κ2 υ2 gυ2  dν1 dκ2 dυ2  

  child sibling parent gr-par  nephew cousin uncle gr-un  2neph 2cousin 2uncle  

                
lgp  gτ1 τ2  α3 π3  gν1 ν2 κ3 υ3   dν2 dκ3 dυ3 

  gr-ch child sibling parent  gr-neph nephew cousin uncle   2neph 2cousin 2uncle 

                
lggp  ggτ gτ2 τ3 α4   gν2 ν3 κ4    dν3 dκ4 

 
 

aa ba 

parent π1 

child τ1 

great uncle gυ1 

great nephew gν1 

aaa aab baa 

second uncle dυ1 

second nephew dν1 

second cousin δκ1 cousin κ1 

uncle υ1 

nephew ν1 

sibling α1 

a 

 

b 

ab 

abb 

 

grandparent gπ1 

grandchild gτ1 

 
 

aa ba 

parent π2 

child τ2 

aaa aab baa 

uncle υ2 

nephew ν2 

a 

 

b 

ab 

abb 

 

sibling α2 cousin κ2 
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  gr-gr-c gr-ch child sibling   gr-neph nephew cousin    2neph 2cousin 
 

Legend:  

lp=leaf-parent; lgp=leaf-grand-parent; lggp=leaf-great-grand-parent; shaded=not tested 

 

Predicate gn_relname(FROM,TO,RELATION) will produce relation names, given 

machine paths to be read from right to left, e.g. 

 
gn_relname( 

  [u1,u2,u3,u4,u5,u6,u7,u8,u9,c], 

  [p1,p2,p3,p4,p5,            c],R). 

 

R=[5,[great,great,great,uncle]]). 

 

i.e.  TO is a fifth great,great,great,uncle of FROM. 
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6.3.2 Deep set nesting (model t6224) 

Figure 56. Deep set nesting 
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ν21 

υ21 

dκ1 
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τ1 

gπ1 gτ1 

α11 

α12 

α12 

α22 

α21 

τ2 π2 

gτ3 gπ3 

y 

aa 
ba 

q 

α13 

α13 

σ2 

σ4 

σ3 

σ1 

bb 

bba 

bab κ1 

κ1 

ν1 

υ1 

ggτ1 ggπ1 

dυ11 

dν11 

κ2 

α31 

gυ1 

gν1 

υ22 
ν22 

dυ12 

α14 
α14 

α31 
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With sets, any direct transition crossing a set member separator (                   ) is in principle 

illegal. Such an apparent transition can be re-interpreted as legal transition by introducing an 

orbit: 

 

 

Orbital transitions provide a legal way of transitioning to a set member, as long as any exited 

set is re-entered. 

 

The elements of a set are normally sets or clusters, so we chiefly use clusters as the innermost 

set members, with one leaf-state set member for completeness. 

 

The above figure allows for exercising of non-orbital direct-ancestor/direct descendant 

transitions. 
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6.4 Transition Selection 

Figure 57. Simple Enter-Exit Transition Selection [model t6230] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: This model is not suitable for user-level driving and is used at an API level. 

 

b 

s 

bb 

statechart sc 

ca cb 

c 

da db 

d 

exit($s)[B15] 

enter($b.bb)[B14] 

exit($s)[B13] 

ALPHA,enter($b.bb.bb)[B12] 

bb 

B12 B13 B14 B15 (boolean variables) 



   

© Graham G. Thomason 2003-2004  63
 

Figure 58. Transition Selection Basics - [model t6240] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: This model is a ‘legacy’ model, used in some low-level tests, but is not particularly 

suitable as a transition demonstration model due to the diversity of features. There ere two 

events α, with superscripts added as a means of identifying transitions on them. 

a1 

a4 

a5a 

a5b 

b2 

ω_a5b 

 

a2 

a3 

 b 

s 

ba bb 

α10[B10] 

α11[B11] 

α
0
(P1,P2)[B0&&P2] 

α
2
(P1) 

[B2&&P1] 

α
3
[B3] 

$$α
6
/*[B6]*/ 

β,α
5
[B5] 

α
7
[B7] 

α
4
[B4] 

α
8
[B8] 

α
9
[B9] 

z 

τ,φ 

 various self transitions used for control of (condition) variables 

ω_ba 

 

ca cb 
ω_ca 

 

ω_a5a 

 

 c α12,enter($b.bb.bb)[B12

] 

exit(s)[B13] 

 bb 
NB identical 

unscoped name bb 

NB: exit(s) actually gives a useless 

transition but it illustrates the 

outbound search mechanism in 

transition selection. 

 bb 

da db 
ω_da 

 

 d enter($b.bb)[B14] 

exit($s)[B15] 

NB note which α 

NB: exit($s) refers to same state as 

exit(s) above  

statechart sc 

α
1
 

(t1,$t2) 

[B1] 

bc 

bcdb 

bcda 

bca bcc bcd 

bccb 

bcca 

bcab 

bcaa 

bcb 

bcbb 

bcba 

P1,P2 

NB B6 

commented 

out 

 α (transitions α0 α1 α2 α6 α10 α11 α12) 

 α (transitions α3 α4 α5 α7 α8 α9) 

B1 B2 etc. 
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6.5 Orbits 

Figure 59. Orbits  [model t6260] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 

 Variables x and n are reset by ω transitions (specific set-to-state transitions), not shown in 

the diagram. 

 If an orbital transition arc cuts through n member-state boundaries, the orbital state can be 

addressed using n+1 $-signs. 

 

statechart sc n=0 x=0 

s 

y 

aa 

aaa aab 

α1->aab 

α2->$$a->aab 

ab 

b 

α3->$$$y->aab 

α5->::$sc->aab orbit=[sc] 

a 

β1->$$y 

->$a 

β2->$y 

->a.aa 

β3-> 

$a 

γ4->$$y->aa.aab 

 n=n*10+3 

 x=x*10+3 

 n=n*10+2 

 x=x*10+2 

za zb 

z ζ1 

ζ2 

γ3->$$$y->$ab 

β4->a.aa 

γ2->aa.aab 

γ1->$ab δ4->$$a->aaa 

ε1->a->a.aa.aaa 

 n=n*10+4 

 x=x*10+4 

n=n*10+5 

x=x*10+5 α4->::s->aab 

orbit=[s,sc] 

applies to cluster y 

ζ9->::$sc->$z.zb 

n=n*10+1 

x=x*10+1 
n=n*10+1 

x=x*10+1 

δ2->aaa 
δ1 

δ3->$aa->aaa 
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Figure 60. Orbits - Legalisation of doubtful orbits  [model t6264] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 statechart sc 

sy 

a 

j 

b2 

c1 

b1 

i 
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q2 

r1 

q1 

g 

f 

γ2 

r2 

c2 

k 

l 

t 

s 

occupied 

state 

historical 

state 

D 

γ1 

γ3 

γ4 

γ5 

γ6 

δ1 

x=x*10+2 

x=x*10+9 

n=n*10+9 

n=n*10+2 

n=n*10+3 

n=n*10+4 

x=x*10+3 

x=x*10+4 

α1 

z1 

z available for variable 

control 

γ7 

δ2 

zn=zn*10+1 

zx=zx*10+1 zn=zn*10+2 

zx=zx*10+2 

y 

x=x*10+6 

n=n*10+6 

 

effective transition in most cases 

α2 x=x*10+5 

n=n*10+5 applies to cluster y 

β4 

β5 

β1 

β6 

β3 

β2 

x=x*10+8 

x=x*10+8 

n=n*10+8 

n=n*10+8 

x=x*10+8 

n=n*10+8 

n=n*10+1 
x=x*10+1 
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6.6 Common Tree Removal 

Figure 61. Common tree removal in sets [model t6270] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Used without transitions, generating explicit enter/exit trees, in demonstration programs. 

 

 
s 

a 

i 

p 

j 

y 

f 

b 

q 

g 

x 

r 

statechart sc 

c 

k 

b1 b2 



   

© Graham G. Thomason 2003-2004  67
 

6.7 Scope of Enter/Exit Trees 

Figure 62. Scope of enter/exit trees [model t6280] 

 

The algorithm tested here is described in [StCrMain] in the section on the transition course. 

 

This model is used for low-level API testing and is not suitable as a high-level demonstration, 

since the exit and entry tree scopes are not visible at a high level. 

 

This model is also exhibited in the main STATECRUNCHER report [StCrMain], in the section 

on the transition algorithm, showing the scopes involved. 

 statechart sc 

x 

a 

α3->$$a.b.c 

α1->::x->::x.y.a.b.c orbit=[x,sc] 

y 

f 

b 

c 

d 

p 

q 

r 

s 

γ3->c 

β3->a.b.c 

δ3->$$c 

tα1 

tγ3 

tβ3 

tδ3 

tα3 

α2->::x.y.a->::x.y.a.b.c orbit=[y,x,sc] 

tα2 

e 

β2->a->a.b.c 
orbit=[a,y,x,sc] 

 

 

tβ2 

tγ1 
γ1->$b->c orbit=[b,a,y,x,sc] 

γ2->c->c  orbit=[c,b,a,y,x,sc] tγ2 

tδ2 

tδ1 δ1->$$$b->$$c  orbit=[b,a,y,x,sc] 

 
δ2->$$c->$$c  orbit=[c,b,a,y,x,sc] 

β1->$y->a.b.c  orbit=[y,x,sc] 

 

 

tβ1 

t 
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6.8 Transition Course 

Figure 63. Entry tree logic for clusters (1) - [model t6291] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes 

 The algorithm tested here is described in [StCrMain] in the section on the transition 

course. The terminology is taken from there (case numbers, guided/unguided entry, 

dho=deep history obligation). 
 

 Notation such as 12eff, with a dotted transition arc, refers to the effective transition of 

the one on event 12. 
 

 upon enter and upon exit assignments are made throughout the model: 

vn= upon enter assignment on entry into state above the symbol 

vx= upon exit assignment on exit of state abovethe symbol 
 

vn=vn*10+1 at leaf level; vn=vn*10+2 at parent;  vn=vn*10+3 at grandparent  

vx=vx*10+1 at leaf level; vx=vx*10+2 at parent; vx=vx*10+3 at grandparent  
 

 This model is used at API level as well as high level, and should not be changed lightly 

 

statechart sc 

sy 

main 

cases 1,2: at a, choosing p 

case1: 1: Guided, (D), target=occ, no orbit  

case1: 2: Guided, (D), target=occ, super-orbital  

case2: 3: Guided, (D), target=occ, at-orbital 

case2: 4: Guided, (D), target=occ, sub-orbital 

z ζ  available for various control functions 

p2 

p1 

q2 

q1 

a 
D 

historical 

state 

1 

p q 

occupied 
state 
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3 

9 

1eff 
9eff 
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3eff, 13eff ω_a_q2 
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vx=vx*10+1 
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vx=vx*10+1 

vn=vn*10+1 

vx=vx*10+1 

vn=vn*10+1 

vx=vx*10+1 

vn=vn*10+2 

vx=vx*10+2 

vn=vn*10+2 

vx=vx*10+2 

vn=vn*10+4 

vx=vx*10+4 

ω_vreset{vx=0;vn=0;} 

ω_a_p2 

ω_hreset{deep_clear(main);} 

2eff,12eff 

11 

 12 

  13 
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Figure 64. Entry tree logic for clusters (2) -[model t6292] 

 

 
statechart sc 

sy 
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case 3: at xq, choosing q 

β1: Guided, (D), target=vac, no orbit  

β2: Guided, (D), target=vac, super-orbital  

β3: Guided, (D), target=vac, at-orbital 

β4: Guided, (D), target=vac, sub-orbital 

z ζ  available for various control functions 
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historical 
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β3 
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xq 
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state 

β1eff etc. shown as dotted 

extensions to the transition arc. 
 

β4 

4 

β2 

β1 

D 

q 

p1 

  

case 3: at u, entering q 

υ1: Guided, (D), target=vac, no orbit  

υ2: Guided, (D), target=vac, at-orbital  

υ3: Guided, (D), target=vac, super-orbital 

υ4: Guided, (D), target=vac, orbit cancelled 

υ5: Guided, (D), target=vac, sub-orbital 

υ6: Guided, (D), target=vac, sub-orbital 
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q1 
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Figure 65. Entry tree logic for clusters (3) - [model t6293] 
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eff 

z ζ  various control functions 

cases 4,5: at c or d, choosing p 

case 4: γ1,δ1: Guided, (H/N), target=occ, no orbit  

case 4: γ9,δ9: Guided, (H/N), target=occ, super-orbital  

case 5: γ2,δ2: Guided, (H/N), target=occ, at-orbital 

case 5: γ3,δ3: Guided, (H/N), target=occ, sub-orbital 

case 5: γ14,δ14: Guided, (H/N), target=occ, sub-orbital 

d N 

xd D 

same as above with events δ1-δ24 
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γ4 
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Figure 66. Entry tree logic for clusters (4) - [model t6294] 
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statechart sc 

case 6: at e or f, entering p 

ε1,φ1: Guided, (H/N), target=vac, no orbit  

ε2,φ2: Guided, (H/N), target=vac, super-orb 

ε3,φ3: Guided, (H/N), target=vac, at-orbital 

ε4,φ4: Guided, (H/N), target=vac, sub-orbital 

 ( for ε1 ε2 ε3 ε4 dho is false on entering e) 

z ζ  various control 
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χ2,τ2: Guided, (H/N), target=vac, super-orb.  

χ3,τ3: Guided, (H/N), target=vac, at-orbital 

χ4,τ4: Guided, (H/N), target=vac, sub-orbital 
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Figure 67. Entry tree logic for clusters (5) - [model t6295] 
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statechart sc 

cases 7/8: at k, l or m, entering p 

case 7: κ1,λ1,μ1:  Unguided, (D/H/dho), target=occ, no orbit  

case 7: κ2,λ2,μ2:  Unguided, (D/H/dho), target=occ, super-orb 

case 8: κ3,λ3,μ3:  Unguided, (D/H/dho), target=occ, at-orbital 

case 8: κ4,λ4,μ4:  Unguided, (D/H/dho), target=occ, sub-orbital 
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Figure 68. Entry tree logic for clusters (6) - [model t6296] 
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Figure 69. Entry tree logic for clusters  (7) - [model t6297] 
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Figure 70. Entry tree logic for sets [model t6305] 

 

Note that the target states may be in direct hierarchical (i.e. ancestral) relationship, though in 

such cases the higher member is redundant in the target specification. This applies to the 

target x2 above. 
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6.9 Exercising Nondeterminism 

 

The 5000-series of models exercises nondeterminism quite extensively. In this section we add 

a few heavy-duty examples. 
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6.9.1 Set Transit Nondeterminism 

Figure 71. Set Transit Nondeterminism [models t6310, t6311] 

Model t6310 is shown (9 sets to exit). Model t6311 contains just member b (7 sets to exit). 

Note: event β1, (and more so σ and β2), is likely to cause combinatorial explosion. 
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Figure 72. Race and fork nondeterminism in separate sets [models t6350, t6351] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The full model t6350 is as shown with all transitions in place, including the ones struck out. 

We restrict this in t6351 by excluding some transitions as shown by strike-out. 

 

Under the restricted race condition permutation mode 

med_set_tran   

which gives 2n permutations of n elements (see comments following  Figure 41), we have the 

following data on event φ. 

 

Table 5. World generation in model t6350 

 NF 

nr. of forks 

NR 

nr.  in race 

nr of worlds 

2
NF

.2.NR 

Full Model t6350 5 5 2
5
.2.5 = 320 

Restricted Model t6351 3 4 2
4
.2.4 = 64 
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6.10 Finding Active Events 

Figure 73. Finding active events [model t6410] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that on-transition events and variables are evaluated in source-state scope, states in state 

parent scope. So $α references the local event α in the examples in cluster a above; $$α is 

needed to reference the global α. 
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6.11 Upon Exit/Upon Enter 

 

These actions are adequately exercised in model t5170. 

 

We reserved model number t6420 for additional tests if needed. 

 

Figure 74. Upon Enter / Upon Exit [model t6420] 

 

 

 

6.12 Exercising History 

History is adequately tested in model t5220. 

 

We reserved model number t6430 for additional tests if needed. 

 

Figure 75. Model to exercise history [model t6430] 
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7. Stress Testing 

7.1 Axes of Stress Testing 

The main axes along which stress tests can be constructed are 

 size 

- broad but shallow (cluster/set) 

- deep (cluster/set) 

 execution speed 

- deterministic situations 

- nondeterministic situations 

 

Some performance statistics are given, but timings may vary with the exact loading on the 

computer, in terms of core and mass memory, and any additional cpu loading (though the 

tests were run without any deliberate extra loading). 

 

Notation: In the performance tables that follow,  if an event is denoted as  “,β” or “then β” 

this refers to processing event β after some previous event(s) – the context should make it 

obvious which events. The timing data will apply to the time to process β excluding the time 

taken by previous events. 

 

 

7.2 Model Generation. 
 

The models in this section are generated by generation programs. 

Some common code for this is located in the mk_sc directory alongside the rest of 

STATECRUNCHER. The model generation modules themselves are located in the test model 

directory, alongside the place where the model itself is created, e.g. in directory 

 ..StCr\StCr3ModelsTest\t7000st\t7110_stress_broad_clusters 

 

The generation modules are normally loaded with STATECRUNCHER. A typical predicate to 

generate a module is 

  mk_t7110(10,12).  // k=10, n=12 

 

The test suite regenerates the models with the parameters as set in the test scripts. 
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7.3 Combinatorial Explosion and Limited Permutation 

Note that a major cause of slow performance is combinatorial explosion, due to the 

generation of permutations. The permutation options are denoted by FLAGs as follows 

 

Table 6. Flags for permutation control  

1 permutation 1 permutation 

backwards 

2 permutations 

forwards and 

backwards 

2n permutations 

all cyclic and 

anticyclic 

All n! 

permutations 

  

f_k1b f_k1b f_k2 f_k3a f_1 

 

The race (transition selection) permutation flag is stored in 

  me_permute_trnsel_flag(FLAG). 

 

The set-transit permutation flag is stored in 

  me_permute_settrnd_flag(FLAG). 

 

The flags can be set by 

  me_set_permute_trnsel_flag(FLAG). (FLAG can be f_k1b, f_k2, f_k3a, f_1) 

  me_set_permute_settrnd_flag(FLAG). (FLAG can be f_k1a, f_k2, f_k3a, f_1) 

 

These forms of nondeterminism can also be switched by 

  me_no_race. // equivalent to me_set_permute_trnsel_flag(f_k1b). 

  me_low_race. // equivalent to me_set_permute_trnsel_flag(f_k2). 

  me_med_race. // equivalent to me_set_permute_trnsel_flag(f_k3a). 

  me_high_race. // equivalent to me_set_permute_trnsel_flag(f_1). 

 

  me_no_set_tran.   // equivalent to me_set_permute_settrnd_flag(f_k1a). 

  me_low_set_tran.  // equivalent to me_set_permute_settrnd_flag(f_k2). 

  me_med_set_tran.  // equivalent to me_set_permute_settrnd_flag(f_k3a). 

  me_high_set_tran. // equivalent to me_set_permute_settrnd_flag(f_1). 

 

See also the descriptions after  Figure 40 and  Figure 41. 
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Figure 76. Broad  clusters [model t7110] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To generate this model:    mk_t7110(20,25).  // k=20, n=25 

 

Table 7. Performance statistics of model t7110 

Model 

params 

Event PROLOG Op. 

System 

Processor 

speed 

Perm 

Pm
set-tran 

Perm 

Pm
race 

Time 

(20,25) α SWI 5.0.3 Win98 300MHz f_k3a f_k3a 1s 

(20,25) then β SWI 5.0.3 Win98 300MHz f_k3a f_k3a 2s 

 

 sy 

y1 y4 x1 y2 y3 y5 yn ... 

y1 y4 x2 y2 y3 y5 yn ... 

y1 y4 xk ky2 y3 y5 yn ... 

... 

α α α α α α 

α α α α α α 

α α α α α α 

β 

β 

β 
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Figure 77. Broad sets [model t7120] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that this model can perform a massive set of transitions on α (but without exiting any 

sets), or any individual transition on αxy 

To generate this model:  mk_t7120(3,4). 

 

Table 8. Performance statistics of model t7120 

Model 

params 

Event PROLOG Op. 

System 

Processor 

speed 

Perm 

Pm
set-tran 

Perm 

Pm
race 

Time 

(3,4) α SWI 5.0.3 Win98 300MHz f_k3a f_k3a 6s 

.. then ω ..  ..  .. f_k3a f_k3a 2m 26s 

.. α .. .. .. none f_k3a 6s 

.. then ω .. .. .. none f_k3a 0.2s 

.. α .. .. .. f_k3a none 0.3s 

.. then ω .. .. .. f_k3a none 2m 26s 

 

sy 

... 

p 

 q q 

p 

... 

x1 

q 

p 

q 

p α,α11 

 

α,α11 

α,α12 

α,α12 

α,α13 

α,α13 

α,α1n 

α,α1n 

c1 c2 c3 cn 

p 

 q q 

p 

... 

x2 

q 

p 

q 

p α,α21 

 

α,α21 

α,α22 

α,α22 

α,α23 

α,α23 

α,α2n 

α,α2n 

c1 c2 c3 cn 

p 

 q q 

p 

... 

xk 

q 

p 

q 

p α,αk1 

 

α,αk1 

α,αk2 

α,αk2 

α,αk3 

α,αk3 

α,αkn 

α,αkn 

c1 c2 c3 cn 

ω 



   

© Graham G. Thomason 2003-2004  85
 

Detailed note 

On event ω, permutations of exited leafstates are generated, e.g. a DXLIST (definitive exit 

list) generated by me_sc_6a.pl: me_process_task_in_world is 

[[xt_leaf, [q, c1, x1, sy, sc]], 

 [xt_leaf, [q, c3, x1, sy, sc]], 

 [xt_leaf, [q, c2, x1, sy, sc]], 

 [xt_leaf, [q, c1, x3, sy, sc]], 

 [xt_leaf, [q, c3, x3, sy, sc]], 

 [xt_leaf, [q, c2, x3, sy, sc]], 

 [xt_leaf, [q, c1, x2, sy, sc]], 

 [xt_leaf, [q, c3, x2, sy, sc]], 

 [xt_leaf, [q, c2, x2, sy, sc]]] 

There are many other permutations of this list. 

This list is the basis of generating upon-exit actions and exit meta-events. 
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Figure 78. Deep clusters - to level 5 [model t7130] 

 

To generate this model: mk_t7130(5). 

To generate a large model: mk_t7130(10).  // source file 1500 lines 
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Table 9. Performance statistics for model t7130 

Model 

params 

Event PROLOG Op. 

System 

Processor 

speed 

Perm 

Pm
set-tran 

Perm 

Pm
race 

Time 

(5) α2 SWI 5.0.3 Win98 300MHz f_k3a f_k3a 0.06s 

.. , ω .. .. .. .. .. 0.06s 

.. α5 .. .. .. .. .. 0.06s 

.. , ω .. .. .. .. .. 0.06s 

(10) α2 .. .. .. .. .. 20s 

.. , ω .. .. .. .. .. 20s 

.. α4 .. .. .. .. .. 16s 

.. , ω .. .. .. .. .. 16s 

.. α10 .. .. .. .. .. 4 s 

.. ,ω .. .. .. .. .. 4s 

 

 



   

88  © Graham G. Thomason 2003-2004 

Figure 79. Deep Sets - to level 5 [model t7140] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To generate this model: mk_7140(5). 
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Table 10. Performance statistics for model t7140:  

Model 

params 

Event PROLOG Op. 

System 

Processor 

speed 

Perm 

Pm
set-tran 

Perm 

Pm
race 

Time 

or problem 

(5) α SWI 5.0.3 Win98 300MHz f_k3a f_k3a 2m 55s 

.. ,ω_x1 .. .. .. .. .. global stack 

.. ,ω_xx2 .. .. .. .. .. 1m 9s 

.. α_xxxx .. .. .. .. .. 0.7s 

.. ,ω_x1 .. .. .. .. .. 2m 21s 

.. α .. .. .. none none 4.3 s 

.. ,ω_x1 .. .. .. .. .. 1.6s 

.. ,ω_xx2 .. .. .. .. .. 1.2s 

.. α_xxxx .. .. .. .. .. 0.7s 

.. ,ω_x1 .. .. .. .. .. 1.3s 
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Figure 80. Alternating sets and clusters [model t7150] 

 

Initial states shaded for clarity. 

 

To generate this model: mk_t7150(5). (It is best to use an odd number). 
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Table 11. Performance statistics for model t7150 

Model 

params 

Event PROLOG Op. 

System 

Processor 

speed 

Perm 

Pm
set-tran 

Perm 

Pm
race 

Time 

or problem 

(5) α SWI 5.0.3 Win98 300MHz f_k3a f_k3a 2.5s 

.. ,ω_x1 .. .. .. .. .. 0.9s 

.. α_xx2 .. .. .. .. .. 2.5s 

.. ,ω_x1 .. .. .. .. .. 2.5s 
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Figure 81. Intensive fork and race non-determinism [model t7160] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To generate this model: mk_t7160(4,5).  //k=4, n=5 
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Table 12. Number of worlds for model t7160 

 

For k3  For k=2 

 Under f_1 (full) permutations = n
k
 . f_1(k) = n

k
.(k!) = n

k
.(k!)  

 Under f_k3a race-permutations = n
k
. f_k3a(k)  = n

k
.(2k) = n

k
.(k!) 

 Under f_k2 race-permutations  = n
k
. f_2(k) = n

k
.(2)  = n

k
.(k!) 

 

(k,n) n
k
 f_1 

 

f_k3a 

 

f_2 

 

full 

perm 

 f_k3a 

perm 

 f_k2 

perm 

 

(1,1) 1
1
=1 1!=1 1 1 1.1 = 1 1.1 = 1 1.1 = 1 

(1,2) 2
1
=2 1!=1 1 1 2.1 = 2 2.1 = 2 2.1 = 2 

(1,3) 3
1
=3 1!=1 1 1 3.1 = 3 3.1 = 3 3.1 = 3 

(1,4) 4
1
=4 1!=1 1 1 4.1 = 4 4.1 = 4 4.1 = 4 

(1,5) 5
1
=5 1!=1 1 1 5.1 = 5 5.1 = 5 5.1 = 5 

(2,1) 1
2
=1 2!=2 2 2 1.2 = 2 1.2 = 2 1.2 = 2 

(2,2) 2
2
=4 2!=2 2 2 4.2 = 8 4.2 = 8 4.2 = 8 

(2,3) 3
2
=9 2!=2 2 2 9.2 = 18 9.2 = 18 9.2 = 18 

(2,4) 4
2
=16 2!=2 2 2 16.2 = 32 16.2 = 32 16.2 = 32 

(2,5) 5
2
=25 2!=2 2 2 25.2 = 50 25.2 = 50 25.2 = 50 

(3,1) 1
3
=1 3!=6 6 2 1.6 = 6 1.6 = 6 1.2 = 2 

(3,2) 2
3
=8 3!=6 6 2 8.6 = 48 8.6 = 48 8.2 = 16 

(3,3) 3
3
=27 3!=6 6 2 27.6 = 162 27.6 = 162 27.2 = 54 

(3,4) 4
3
=64 3!=6 6 2 64.6 = 384 64.6 = 384 64.2 = 128 

(3,5) 5
3
=125 3!=6 6 2 125.6 = 750 125.6 = 750 125.2 250 

(4,1) 1
4
=1 4!=24 8 2 1.24 = 24 1.8 = 8 1.2 = 2 

(4,2) 2
4
=16 4!=24 8 2 16.24 = 384 16.8 = 128 16.2 = 32 

(4,3) 3
4
=81 4!=24 8 2 81.24 = 1944 81.8 = 648 81.2 = 162 

(4,4) 4
4
=256 4!=24 8 2 256.24 = 6144 256.8 = 512 256.2 = 512 

(4,5) 5
4
=625 4!=24 8 2 625.24 = 15000 625.8 = 5000 625.2 = 1250 

(5,1) 1
5
=1 5!=120 10 2 1.120 = 120 1.10 = 10 1.2 = 2 

(5,2) 2
5
=32 5!=120 10 2 32.120 = 3840 32.10 = 320 32.2 = 64 

(5,3) 3
5
=243 5!=120 10 2 243.120 = 29160 243.10 = 2430 243.2 = 486 

(5,4) 4
5
=1024 5!=120 10 2 1024.120= 122880 1024.10= 10240 1024.2= 2048 

(5,5) 5
5
=3125 5!=120 10 2 3125.120= 375000 3125.10= 31250 3125.2= 6250 

 

Note that event ω does not clear variable data, and so does not reduce to one world. The 

actual number of worlds is Perm(k), using the selected restricted-permutation generator.   
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Table 13. Performance statistics for model t7160 

[SWI-Prolog 5.0.3 / Windows98]:  

Model 

params 

Event Nr of  

Worlds 

Processor 

speed 

Perm 

Pm
set-tran 

Perm 

Pm
race 

Time 

or problem 

       

(2,3) α 118 300MHz f_k3a f_k3a 1.3s 

(2,3) ,ω 182 .. .. .. 0.8s 

(2,4) α 132 .. .. .. 3.7s 

(2,4) ,ω 322 .. .. .. 1.8s 

       

(3,2) α 148 .. .. .. 10.6s 

(3,2) ,ω 486 .. .. .. 10.0s 

(3,3) α 1162 .. .. .. 1m 53s 

(3,3) ,ω 1626 .. .. .. 3m 15s 

(3,4)  α 1384 .. .. .. 18m 3s 

(3,4)  ,ω 3846 .. .. .. 11m 0s 

       

(4,2) α 1128 .. .. .. 1m 59s 

(4,2) ,ω 1288 .. .. .. 4m 02 

(4,3) α 1648 .. .. .. >1hr 30m 

(4,3) ,ω 6488 .. .. .. untested 

 

 

[WinProlog 4.010 / Win98]: 

(3,4)  α 1384 .. .. .. >1hr 

(3,4)  ,ω 3846 .. .. .. untested 

 

It was noted that uncompleted event processing, under SWI- and Win- Prolog, involved 

intense disk activity - it could be that with more core memory the events will complete in 

much less time. 
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Figure 82. Stressing transition prioritization [model t7170] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To generate this model : mk_t7170(5). 

 

Table 14. Performance statistics for model t7170 [SWI-Prolog 5.0.3 / Win98]: 

Model 

params 

Event Worlds Processor 

speed 

Perm 

Pm
set-tran 

Perm 

Pm
race 

Time 

(20) α 12 300MHz f_k3a f_k3a 0.3s 

.. β 21 .. .. .. 0.3s 

 

x0 

z1 

x1 

z2 z3 z4 z5 

x6 

z6 

x2 

x3 

x4 

x5 

α[bz6] 

β 

α[bz5] α[bz4] α[bz3] α[bz2] α[bz1] 

β β β β β 

y1 y2 y3 y4 y5 

α[by5] α[by4] α[by3] α[by2] α[by1] 

β β β β β 

y6 
β 

α[by6] 

ω 
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Figure 83. Long-chain  broadcast-event non-determinism [model t7180] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To generate model to b(20): mk_t7180(20). 

 

Table 15. Performance statistics for model t7180(20) 

Model 

params 

Event PROLOG Op. 

System 

Processor 

speed 

Perm 

Pm
set-tran 

Perm 

Pm
race 

Time 

(20) β1 SWI 5.0.3 Win98 300MHz f_k3a f_k3a 1.0s 

(20) ,ω SWI 5.0.3 Win98 300MHz f_k3a f_k3a 16s 

 

s 

β1->b1b{fire β2;} 
b1a b1b 

β2->b2b{fire β3;} 

b2a b2b 

b1 

b2 

β3->b3b{fire β4;} 
b3a b3b 

b3 

β4->b4b{fire β5;} 
b4a b4b 

b4 

β
n-1
->b

n-1
b{fire βn;} 

b
n-1

a b
n-1

b 

bn-1 

... 

ω 

βn->bnb; 
bna bnb 

bn 
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Figure 84. Broad broadcast-event nondeterminism [model t7190] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To generate this model: mk_t7190(20). 

 

Table 16. Performance statistics for model t7190(20) 

Model 

params 

Event 

 

PROLOG Op. 

System 

Processor 

speed 

Perm 

Pm
set-tran 

Perm 

Pm
race 

Time 

(20) β SWI 5.0.3 Win98 300MHz f_k3a f_k3a 1m50s 

(20) ,ω SWI 5.0.3 Win98 300MHz f_k3a f_k3a 23s 

 

 

 

 

 

s 

β->b1b{fire γ;} 
b1a b1b 

γ ->b2b 

b2a b2b 

b1 

b2 

γ ->b3b 
b3a b3b 

b3 

γ ->b4b 
b4a b4b 

b4 

γ ->b
n-1
b 

b
n-1

a b
n-1

b 

bn-1 

... 

ω 

γ ->bnb; 
bna bnb 

bn 
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8. Conventions 

8.1.1 Omega Transitions 

Statecharts to exercise the state machine engine may contain implicit additional control 

transitions (named omega...) for the purpose of putting the statechart in a specific state (in 

particular leafstates) prior to a test.  

 

Figure 85. Omega transitions 

 

Notes 

 When priming a model, omega transitions to leaf-states are all that is required. Omega 

transitions to non-leaf-states are only needed in testing entry to the correct default state. 

The above diagram shows just one omega-transition (ω_a) to a non-leaf-state. 

 In order to be unique, the naming of an omega transition may have to incorporate the 

machine path (not necessary in the above model). 

 The event ω_vreset is used to reset variables, and ω_hreset to clear history, 

triggering an internal transition at a high level in the hierarchy 

statechart sc 
s 

za zb 

z 

y 

bba 

bbb 

baa 

bab 

aba 

abb 

aaa 

aab 

a 

ba ab 

b 

aa bb 

ω_zb 

ω_za 

ω_aaa 

... 

ω_abb 

ω_a 
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