

STATECRUNCHER Test Models

Graham G. Thomason

Report Relating to the Thesis “The Design

and Construction of a State Machine

System that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

STATECRUNCHER Test Models

This document provides diagrams of STATECRUNCHER test models for testing

STATECRUNCHER itself, (not for testing an “Implementation Under Test” of some other

system). For most test models it will be clear what is being demonstrated or tested. To explain

each model in detail, and to show its output, would multiply the size of this report by a

considerable factor. That is not necessary, for two reasons: (1) the italicised annotations to

the models are intended to clarify subtleties and (2) there is a manual/tutorial that discusses

many of the models, often in a simpler form, as part of the training material. Most of the

models are exercised in detail under program control in the test suite. The test suite provides

an extra resource should it be necessary to see how the model is driven there.

© Graham G. Thomason 2003-2004 iii

Contents

1. Introduction .. 1

1.1 Categories of Models ... 1

1.2 Notation ... 2

2. Testing the Compiler .. 3

2.2 The Compiler Test Models ... 3

3. Testing the Validator .. 5

3.1 Validator Coverage Aspects ... 5

3.2 Catalogue of Validator Error Messages as Written .. 6

3.3 The Validator Test Models ... 8

4. Illustrative Examples .. 11

5. Testing the Machine Engine: Small Test/Demonstration Models 18

5.1 Small Deterministic Models ... 18

5.2 Small Nondeterministic Models ... 32

6. Systematic Test Models .. 51

1.1 State Hierarchy and Initial Machine Entry ... 52

6.2 Specifying States in Transitions ... 55

6.3 Deep Nesting .. 57

6.4 Transition Selection ... 62

6.5 Orbits ... 64

6.6 Common Tree Removal ... 66

6.7 Scope of Enter/Exit Trees .. 67

6.8 Transition Course ... 68

6.9 Exercising Nondeterminism ... 76

6.10 Finding Active Events .. 79

6.11 Upon Exit/Upon Enter.. 80

6.12 Exercising History.. 80

7. Stress Testing ... 81

7.1 Axes of Stress Testing .. 81

7.2 Model Generation. ... 81

7.3 Combinatorial Explosion and Limited Permutation ... 82

8. Conventions .. 98

9. STATECRUNCHER References ... 99

© Graham G. Thomason 2003-2004 1

1. Introduction

This document provides diagrams of STATECRUNCHER test models for testing

STATECRUNCHER itself, (not for testing an “Implementation Under Test” of some other

system). In addition to these test models, the STATECRUNCHER test suite contains many

thousands of tests that do not require any model to be loaded. In fact such lower-level tests

form the bulk of the tests for the internal logic and API (Application Programmer Interface).

But from the point of view of demonstrating the system, interaction with complete models is

most attractive, and a diagram of the model is by far the most expressive way to communicate

the functionality being exercised.

The following diagram shows the processes applied to a model as it is compiled, validated

and deployed in a testing tool chain such as TorX [http://fmt.cs.utwente.nl/CdR].

Figure 1. Compilation, Validation and Application to a Testing Tool Chain

More details of the parsing process are given in [StCrParsing]. Details of STATECRUNCHER as

a whole are given in [StCrMain].

STATECRUNCHER is currently implemented in PROLOG. STATECRUNCHER's own syntax is

independent of PROLOG, but occasionally a remark reflects the implementation language.

The PROLOG-based test harness used to self-test STATECRUNCHER is described in

[StCrGP4].

For most test models it will be clear what is being demonstrated or tested. To explain each

model in detail, and to show its output, would multiply the size of this report by a

considerable factor. The italicised annotations to the models are intended to clarify subtleties.

Most of the models are exercised in detail under program control in the test suite. The test

suite provides an extra resource should it be necessary to see how the model is driven there.

1.1 Categories of Models

The models fall into various categories, in order to satisfy testing requirements per phase

during development:

 Models designed to test the compiler, but ignoring validator and run-time (machine

engine) considerations

 Model Compiler Validator TorX Machine

Engine

2 © Graham G. Thomason 2003-2004

 Models designed to test the validator, but not aimed at machine-engine execution. The

validator is a kind of back-end to the compiler; it generates a symbol table, cross

reference table, and initial data predicates (settings).

 Miscellaneous example models (e.g. as used in demonstrations and reports), but not

attempting any systematic coverage of functionality

 Models designed to demonstrate the run-time machine engine - (1), a feature-by-feature

approach, in an illustrative or didactic way, but without attempting to cover every detail.

 Models designed to systematically test the run-time machine engine - (2), where a more

structured testing approach has been taken.

Model numbering

Models are numbered by an index such as t4120 or c2117. In the ci_sc_1.pl module, a

link is set between model number and filename (including path). An example of such a link,

using relative path addressing with respect to a ‘root’ path defined in the boot file, is

 ci_file(t5110,'..\StCr3ModelsTest\t5000me\t5110_HelloWorld\HelloWorld').

Any one file can be made active for compiling, validating and exercising by setting

ci_current(model-index) in the ci_sc_1.pl file.

File ci_sc_1.pl and indices of the kind tnnnn are reserved for test-suite models and are

part of the formal STATECRUNCHER release. The user can define more files, e.g. in

ci_sc_2.pl, using an index such as the cnnnn range. The default

ci_current(model-index) setting should only be defined once and is defined in file

ci_sc_1.pl.

The numbering is as follows

 t2000 series: compiler tests

 t3000 series: validator tests

 t4000 series: miscellaneous examples

 t5000 series: machine engine demonstrations

 t6000 series: machine engine systematic tests

 t7000 series: stress tests

1.2 Notation

UML now (v1.5) describes a detailed notation for diagrams, but this report differs in respect

of certain features:

 on entry to a state (UML “entry/”) is a solid triangle pointing in to the state, e.g.

 on exit from a state (UML “exit/”) is a solid triangle pointing out of the state, e.g.

 events declared in a part of the hierarchy are denoted by the symbol , e.g.

 variables are declared in a part of the hierarchy by the symbol, e.g.

 PCOs (Points of Control and Observation) are declared by the symbol , e.g.

v=6

v=6

ζ1

pco1

v=6

© Graham G. Thomason 2003-2004 3

2. Testing the Compiler

2.1.1 Compiler coverage aspects

The compiler is mainly concerned with syntax rather than issues of legality of use, such as

whether an item has been declared, which are checked by the validator. An exception is that

the compiler is concerned about a proper hierarchical structure of the statechart, and it will

produce an error message (and stop compiling) if there are inconsistencies in the hierarchical

structure.

Most situations of erroneous STATECRUNCHER syntax result in a parse where the error is

tagged in the parse tree. These situations are extensively tested in lower level tests without

using a model. Such tests are not described here. The models are a system test on the

compiler, covering its ability to report the main kinds of error and to proceed appropriately.

The compiler recognises three levels of correctness/error

 statement with no errors

 statement with local errors tagged in the parse tree

 failed statement - the statement could not be parsed at all

Test areas

 Brackets errors

 States and the statechart hierarchy: clusters, sets, leafstates

 Declaration statements (PCOs, events, tags, variables)

 I/O stress: multiple line statements, long files.

2.2 The Compiler Test Models

Here we consider the test aims and error circumstances.

Table 1. Compiler test models

Model (directory) name Test aim

t2110_braces_er Error reported on mismatched braces

t2120_round_brack_er Error reported on mismatched round brackets

t2130_square_brack_er Error reported on mismatched square brackets

t2210_state_ok Correct handling of a simple state statement

t2211_state2_ok Correct handling of a more state statements

4 © Graham G. Thomason 2003-2004

t2215_state_er Detection of errors in state statements

t2220_cluster_ok Correct handling of a cluster statements

t2225_cluster_er Detection of errors in cluster statements

t2230_set_ok Correct handling of a set statements

t2235_set_er Detection of errors in set statements

t2240_struct_ok Correct handling of a hierarchical statechart structure

t2251_struct_er1 Error in hierarchy structure (1)

t2252_struct_er2 Error in hierarchy structure (2)

t2253_struct_er3 Error in hierarchy structure (3)

t2254_struct_er4 Error in hierarchy structure (4)

t2255_struct_er5 Error in hierarchy structure (5)

t2310_decl_ok Correct handling of declarations

t2315_decl_er Detection of errors in declarations

t2320_split_stmt Handling of a statement split over several lines

t2330_medium A general medium complexity model

t2340_complex A general complex model

t2350_longfile Stress test on a long file

t2360_longstmt Stress test on a long statement

These models are not put through the validator. The validator is tested independently.

© Graham G. Thomason 2003-2004 5

3. Testing the Validator

3.1 Validator Coverage Aspects

The purpose of the validator is to generate certain tables and in so doing to detect certain

errors. It generates a symbol table and a cross-reference table, and also a data table

(containing variable values). For more information on these tables, see [StCrParsing].

Validator coverage is considered from the viewpoint of producing the error messages, and

from source code error circumstances. This test approach largely verifies the correctness of

the tables. Further testing of the correctness of the tables is done with machine engine tests

(described in subsequent sections). The individual tests divide into tests for errors that are

detected by symbol table construction and by cross-reference table construction.

Some symbol table coverage aspects

 states

 inbuilt-constants (true, false)

 tags

 variables

 PCOs

 events

 scoped use of the above

 double definition of the above

Some cross-reference table coverage aspects

 variable references in initialization of other variables

 variable references in actions

- upon enter action

- upon exit action

- transition assignment action

 variable references in conditions

 variable references as terms of expression operators

 variable references in library function parameters (e.g. maximum)

 event references by transition

 event references by fired event

 state references by orbit

 state references by target

 state references by the in() function

 state references by the clear() function

6 © Graham G. Thomason 2003-2004

 state references by the deep_clear() function

 state references as terms of state-expression operators: :: $. %% /\

 PCO references by event declaration

3.2 Catalogue of Validator Error Messages as Written

The errors fall into the following categories

 warnings

 general errors: version incompatibility, compiler error detection

 type checking

 detection of non-implemented functions

 internal errors (diagnostic error – the program logic should preclude these)

Table 2. Validator error messages

write('** Error (VA-E-001) ** Code is in testing mode: va_testing(yes)')

write('** Error (VA-E-002) ** There are compilation errors')

write('** Warning (VA-W-003) ** Multiple files loaded')

write('** Error (VA-E-004) ** No "object" files loaded')

write('** Error (VA-E-005) ** Version incompatibility')

write('** Error (VA-E-006) ** Double definition of '),

 write(SYMB),write(':'),write(MPATH),

write('** Error (VA-E-007) ** Uninitialized term(s) in initialization of '),

 write(SYMBOL),write(':'),write(MPATH),

write('** Error (VA-E-008) ** Boolean value error initializing '),

 va_err_nltab,

 write(SYMBOL),write(':'),write(MPATH),write('.'),

 tab(1),

 write(VALUE),write(' not in '),write([0,1]),

write('** Error (VA-E-009) ** String value error initializing '),

 va_err_nltab,

 write(SYMBOL),write(':'),write(MPATH),write('.'),

 tab(1),

 write(VALUE),write(' is not a string'),

write('** Error (VA-E-010) ** Range error initializing '),

 va_err_nltab,

 write(SYMBOL),write(':'),write(MPATH),write('.'),

 tab(1),

 write(VALUE),write(' not in '),write([LOW,HIGH]),

write('** Error (VA-E-011) ** Enum value error initializing '),

 va_err_nltab,

 write(SYMBOL),write(':'),write(MPATH),write('.'),

 tab(1),

 write(VALUE),write(' not in '),write(SET),

© Graham G. Thomason 2003-2004 7

write('** Error (VA-E-012) ** Undefined symbol '),

 va_err_nltab,

 write(DSYMBOL),write(':'),write(EPATH),

 va_err_nltab,

 write('in statement '),write(UTYPE),tab(1),

 write(USYMBOL),write(':'),write(UPATH),

write('** Error (VA-E-013) ** Undefined symbol of required type'),

 va_err_nltab,

 write(SYMBOL),write(':'),write(EPATH),

 tab(1),

 write('of type '),write(STYPE),

 va_err_nltab,

 write('in statement '),write(UTYPE),tab(1),

 write(USYM),write(':'),write(UPATH),

write('** Error (VA-E-014) ** Polyvalent symbol (in overlapping scopes) '),

 write(SYMBOL),

 write(' is used of types '),write(SYMBOLTYPE),

 write(' and '),write(SYMBOLTYPE2),

 va_err_sep,

write('** Warning (VA-W-015) ** Polyvalent symbol (but scopes are distinct) '),

 write(SYMBOL),

 write(' is used of types '),write(SYMBOLTYPE),

 write(' and '),write(SYMBOLTYPE2),

write('** Warning (VA-W-016) ** Unreferenced symbol'),

 tab(1),

 write(DSYMBOL),write(':'),write(DPATH),

 va_wrn_nltab,

 write('of type '),write(DTYPE),

write('** Error (VA-E-017) ** Type mismatch in assignment '),

 va_err_nltab,tab(4),write('LHS-TYPE '),write(LHS),

 va_err_nltab,write('<assigned>'),

 va_err_nltab,tab(4),

 ((

 RHS=[typerr,OP,T1,T2],

 write('RHS-TYPE '),write(typerr),

 va_err_nltab,tab(12),write(T1),

 va_err_nltab,tab(8),write(OP),

 va_err_nltab,tab(12),write(T2)

);(

 write('RHS-TYPE '),write(RHS)

)),

 va_err_nltab,

 write('in statement '),write(UTYPE),tab(1),

 write(USYM),write(':'),write(UPATH),

8 © Graham G. Thomason 2003-2004

write('** Error (VA-E-018) ** Type mismatch in expression: '),

 va_err_nltab,

 ((

 DETAIL=[typerr,OP,T1,T2],

 tab(4),write(T1),

 va_err_nltab,write(OP),

 va_err_nltab,tab(4),write(T2)

);(

 write(DETAIL)

)),

 va_err_nltab,

 write('in statement '),write(UTYPE),tab(1),

 write(USYM),write(':'),write(UPATH),

write('** Error (VA-E-019) ** Non-implemented function: '),

 write(FUN),

write('*** Internal Error (VA-I-500) *** va_write_pred '),

 write(PRED),

A “polyvalent” symbol is one that is used for two or more different kinds (e.g. an integer and

an event). This is tolerated with a warning if the scopes are distinct. If the scopes overlap,

then an error is given, since symbol-table look-up (based on symbol and current scope) is

ambiguous – more than one entry could be returned as being in scope. This is a separate issue

to that of allowing a symbol to be used for two or more different scopes. This is a legal

situation which occurs where a symbol has several definitions, usually in of the same kind,

but which are distinguished by their scope. Symbol-table look-up is unambiguous, since only

the symbol with the innermost scope is taken.

The following are no longer in use: VA-E-001 (testing mode is no longer needed) and VA-E-

012 (superseded by VA-E-013). The program logic should prevent VA-I-500 from ever

appearing. The remaining error messages are covered in the tests.

3.3 The Validator Test Models

Here we consider the test aims and error circumstances.

Table 3. Validator test models

Model (directory) name Test aim

t3020_cp_er Validator error if compiler gave an error

t3031_mult_file1 Validator warning if multiple compiled files loaded

t3032_mult_file2 (used to produce a second file for above)

t3040_no_obj Validator error if no object file loaded

t3050_vers_incompat Validator error if file was compiled under an earlier version

t3110_tag_ok Tag names: normal correct usage, no errors

t3115_tag_er Tag names: error situations

t3120_var_bool_ok Boolean variables: normal correct usage, no errors

© Graham G. Thomason 2003-2004 9

t3125_var_bool_er Boolean variables: error situations

t3130_var_string_ok String variables: normal correct usage, no errors

t3135_var_string_er String variables: error situations

t3140_var_tagrange_ok Tag-ranged variables: normal correct usage, no errors

t3141_var_tagrange_med Tag-ranged variables: additional medium model

t3145_var_tagrange_er Tag-ranged variables: error situations

t3150_var_tagenum_ok Tag-enumerated variables: normal correct usage, no errors

t3151_var_tagenum_med Tag-enumerated variables: additional medium model

t3155_var_tagenum_er Tag-enumerated variables: error situations

t3210_pco_ok PCOs: normal correct usage, no errors

t3215_pco_er PCOs: error situations

t3220_evt_ok Events: normal correct usage, no errors

t3225_evt_er Events: error situations

t3230_sta_ok States: normal correct usage, no errors

t3231_sta_basic States: additional model

t3235_sta_er States: error situations

t3240_fun_ok Functions: normal correct usage, no errors

t3245_fun_er Functions: error situations

t3340_doubdef Extra double definition tests

t3360_polyvalent Polyvalent (overloaded) symbol warning/errors

t3370_BasTypChk Basic Type checking

t3371_AdvTypChk Advanced type checking

t3910_stxr_ok A detailed model illustrating scoping issues

 Figure 2 following shows a model that tests that items (tags, variables, events, states and

PCOs) are correctly addressed where it is necessary to search from the given scope outwards

in the state hierarchy (the outbound search). It especially tests variables and their

declarations, and the declaration of their type. A worst-case scenario is as follows. A variable

is used in an expression which is to be evaluated in a certain scope. The variable is operated

on by scoping operators, giving a new evaluated scope of that variable. But the variable is not

found in exactly that scope. However, it is found in a more global scope by the “outbound

search”. This is the declared scope of the variable, although the declaration may have been

made in a part of the hierarchy that has yet another scope, but using scoping operators so as to

effectively declare as if in the part of the hierarchy that is the declared scope.

When a variable is declared, it has a type defined by the tagname, defining the enumerators or

range. The tagname in a variable declaration is itself subject to an evaluated scope and

declared scope analogously to the variable declaration.

State scopes can only be defined by means of the place of the state definition in the state

hierarchy, but there can be several states of the same name. When a state is referenced, as

with variables and tagnames, the effectively referenced state depends on any explicit scoping

operations and then the outbound search.

10 © Graham G. Thomason 2003-2004

Figure 2. Symbol/cross-reference table: To test tags/variables/events/states/PCOs.

 [Model t3910_stxr_ok] (stxr_ok=symbol table and cross-reference table ok)

Note: The exclamation marks draw attention to names are not part of any syntax.

z1

r

z2

p

s
t
1

q

t
2
 (!)

tagname

refers

to here

but

defined

for this

scope

variable

actually

declared

here

but tag

defined

here

but

defined

for this

scope

variable

usage

here

but

referring

to

here

another

tag

PCO

state-u

event-u

bool-u bool-r bool-c bool-d

enum-

range

enum-

valns

another

bool

another

event

another

PCO

range-r range-c range-d tag-r tag-c tag-d

valns-r valns-c valns-d tag-r tag-c tag-d

another

range

another

valns

PCO

state-r

event-r

PCO

state-cd

event-c

PCO

event-d

v
t
4
 (!)

cannot declare a

foreign-scoped state

addit-

ional

usage

here

referring

to here

t
5
 (!)

another local set of

variables etc here

Note: t
1
 t

2
 t

4
 t

5
 all refer to the same name 't'.

z3

y1

split operator

upon exit

upon enter

t.η $$γ

α $β $$γ

 $$$$ε $$$$ζ

$$$δ

statechart sc

© Graham G. Thomason 2003-2004 11

4. Illustrative Examples

These models include examples that have been used in various reports.

 The Obj_example model that illustrates object code structure, as exhibited in the

STATECRUNCHER maintenance handbook (no diagram).

 The Tie example of [StCrParsing], (no diagram).

 The Tuner-Hop example of a Philips report on component binding
1
, p.30 (diagram

follows, Figure 3), modelled by Tim trew.

 The Traces example in the Transfer Report (diagram follows, Figure 4). The transfer

report is a deliverable of the author's PhD registration at the University of Surrey.

 A Program Installation model by Tim Trew, for determining the station ID during TV

program installation. In this case, the generation of teletext packets is not directly under

control of the test harness, and the result of the sequences that might be received is

predicted through the genPckts state, which exhibits iterative fork nondeterminism on

the next_pkt event (diagram follows, Figure 5).

1
G G Thomason

Component Binding in Composite Models for State-based Testing

PRL Technical Note TN 4102, August, 2001

12 © Graham G. Thomason 2003-2004

Figure 3. Tuner-Hop (modelled by Tim Trew) [model t4130]

Note colour coding per local event in a component, for Tuner and Hop.

Composition

Tuner

Green

DropReques

tProcessing

Red

Orange

Restore

Processing

EnvChange /

fire CallDropRequest

EnvChange

EnvRestore/

fire CallRestore
EnvChange

ReturnDropRequestAccepted

[MANUAL_TUNER]

CallDropAcknowledge

[MANUAL_TUNER] /

 fire ReturnDropAcknowledge
ReturnDropRequestPending

Hop

ReturnRestore

Green Orange

Red

DropAck

Processing2

CallDropRequest [MANUAL_HOP] /

fire ReturnDropRequestPending

EnvAck/

fire CallDropAcknowledge

CallRestore/

fire ReturnRestore

ReturnDropAcknowledge

ReturnDropAcknowledge

CallRestore /

fire ReturnRestore

CallDropAcknowledge[AUTO_TUNER]/

fire CallRestore,

 fire ReturnDropAcknowledge

CallDropRequest [AUTO_HOP] /

fire ReturnDropRequestAccepted

ReturnDropRequestAccepted

[AUTO_TUNER] /

fire CallRestore

DropAck

Processing1

control

setat / AUTO_ TUNER=true; MANUAL_ TUNER=false;

setmt / AUTO_ TUNER=false; MANUAL_ TUNER=false;

setah / AUTO_ HOP=true; MANUAL_ HOP=false;

setmh / AUTO_HOP=false; MANUAL_ HOP=true;

© Graham G. Thomason 2003-2004 13

Figure 4. Traces example in transfer report [Model t4140]

a

i

j

x y

p

q

sys

α

{trace(2)}

α

β{trace(8)}

β{trace(7)}

γ

b

c

β

{trace(8)}

β

{trace(8)}

α

{trace(3)}

14 © Graham G. Thomason 2003-2004

Figure 5. Program Installation (modelled by Tim Trew) [model t4150]

The model produces sequences of packets by fork nondeterminism.

acquiringTXT

gen

Pkts

fire

next_pkt

next_pkt[pkt_cnt<maxPkts]

{fire ni830; pkt_cnt++;}

next_pkt[pkt_cnt< maxPkts]

 {fire cni830; pkt_cnt++;}

next_pkt[pkt_cnt< maxPkts]

{fire cni_vps; pkt_cnt++;}

next_pkt

 {fire timeout; pkt_cnt++;}

gotCNI

830

waiting

For

Pkt

gotNI

830

high

low

name_source=

"none"

ni830{name_source="ni830";}

cni830{name_source="cni830";}

tvSystem

DetectWait

searching

tvSys

tv_system

_found

timeout

cni_vps

{name_source

="cni_vps";}

station_found

pkt_cnt=0;
deep_clear(acquiringTXT);

© Graham G. Thomason 2003-2004 15

Output from this model

The model is driven by turning set-transit nondeterminism off and processing event

tv_system_found. This can be done interactively, or in a Prolog predicate as follows,

where an output file is written in the same directory as the model.

This produces an output file ProgInst.out.txt. To reduce the output to the essentials

(occupied leafstates and key variables), a grep command was executed on it as follows:

go_t4150:-

 me_no_set_tran, /* turn set-transit ND off */

 ci_file(t4150,LOCAL_FILE_NO_EXTN), /* get model file name */

 gn_append_atoms(LOCAL_FILE_NO_EXTN,

 '.out.txt',LOCAL_FILE_W_EXTN), /* add an extension to file name */

 boot_root(sc,BOOT_ROOT), /* get boot directory */

 gn_append_atoms(BOOT_ROOT,

 LOCAL_FILE_W_EXTN,FULL_FILE), /* make full file name */

 io_tell(FULL_FILE), /* set output to go to this file */

 cs_go(t4150), /* load and enter machine */

 ut_wm,nl, /* write machine */

 EVENT=[tv_system_found,[sc]], /* this is the event to process */

 CALPRARAMS=[], /* no parameters to this event */

 write('About to process '),write(EVENT),nl,nl,

 TASK=[tk_event,[EVENT,CALPARAMS]], /* wrap the event as a "task" */

 db_worldbag(INWORLDS), /* get the current worlds */

 me_process_task_in_worlds(TASK,INWORLDS,OUTWORLDS), /* process task */

 da_kill_old_worlds, /* kill intermediate worlds */

 ut_wm, /* write machine again */

 io_told. /* close the file */

grep -E "(leafstate.*s_occ|name_source|pkt_cnt|^$)" ProgInst.out.txt >

grep_out.txt

16 © Graham G. Thomason 2003-2004

The output (with minor editorial refinements) is as follows

With set transit nondeterminism switched on, the following additional output is obtained (due

to the action on genPkts being executed prior to the action on waitingForPkt.

SET TRANSIT NONDETERMINISM SWITCHED OFF

9 leafstate searching [tvSys, sc] [s_occ, []] **

9 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none

9 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 1]

14 leafstate searching [tvSys, sc] [s_occ, []] **

14 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni_vps

14 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 1]

22 leafstate searching [tvSys, sc] [s_occ, []] **

22 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni830

22 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2]

27 leafstate searching [tvSys, sc] [s_occ, []] **

27 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni_vps

27 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2]

33 leafstate searching [tvSys, sc] [s_occ, []] **

33 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni830

33 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3]

38 leafstate searching [tvSys, sc] [s_occ, []] **

38 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni_vps

38 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3]

44 leafstate searching [tvSys, sc] [s_occ, []] **

44 VAR name_source [sc] [vardecl, [string]] =[ex_str, [99, 110 etc]] =cni830

44 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 4]

81 leafstate searching [tvSys, sc] [s_occ, []] **

81 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 105 etc]] =ni830

81 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2]

117 leafstate searching [tvSys, sc] [s_occ, []] **

117 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 105 etc]] =ni830

117 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3]

136 leafstate searching [tvSys, sc] [s_occ, []] **

136 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 105 etc]] =ni830

136 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 4]

158 leafstate searching [tvSys, sc] [s_occ, []] **

158 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none

158 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 4]

159 leafstate searching [tvSys, sc] [s_occ, []] **

159 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none

159 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 3]

160 leafstate searching [tvSys, sc] [s_occ, []] **

160 VAR name_source [sc] [vardecl, [string]] =[ex_str, [110, 111 etc]] =none

160 VAR pkt_cnt [sc] [vardecl, [enumtype, [int1, [sc]]]] =[ex_co, int, 2]

© Graham G. Thomason 2003-2004 17

Figure 6. Notification example [model t4152]

This model is discussed in [StCrMain].

prog_inst

idle

start_tuning/

fire

gen_notifs

n=4

tuned

gen_notifs /

 fire notif; n--; if (n>0) {fire gen_notifs;}

tuning

station_found

notif /

trace(notif_msg)

gen_notifs

fork nondeterminism

here, we stop

generating notifications

here, we generate more

notifications

18 © Graham G. Thomason 2003-2004

5. Testing the Machine Engine: Small

Test/Demonstration Models

Ideally, each model would be accompanied by a full explanation, and by the test scripts with

expected output. However, space does not permit. The title of each model indicates what is

being demonstrated or tested. The test scripts are part of the STATECRUNCHER delivery (see

directory am_sc). The diagrams give the general reader an overview of STATECRUNCHER

functionality and the extent of testing. But the main purpose of the diagrams is as a reference

document, serving a certain tutorial function, for discussions amongst STATECRUNCHER

users.

Variables and events will always be declared in the diagram if their scope is significant,

otherwise their declaration will not necessarily be shown. See Section 1.2 for the notation.

The following models may contain more events and transitions than are marked, to provide

direct access to all required states. We call these omega transitions – see Section 8.1.1

5.1 Small Deterministic Models

Figure 7. The hello world of state models [model t5110]

statechart sc

a

aa

ab

β

α,γ

γ

© Graham G. Thomason 2003-2004 19

Figure 8. Parameterized, with conditions [models t5120, t5121, t5122, t5123]

 a

aa

ab
β

α($b)[$b]

γ($v1,$v2)[$v1>$v2]
ac

α($b)[!$b]

b,v1,v2

model t5122 statechart sc

The parameter destinations are at the scope

of the cluster. Parameters to events on

transitions from leafstates address their

destinations using the parent operator, $.

 a

aa

ab
β

α(b)[b]

γ(v1,v2)[v1>v2]
ac

α(b)[!b]

b,v1,v2

model t5123 statechart sc
The parameter destinations are local - but

the destinations are not declared. From

release 1.05, the outbound search technique

will find the nearest-scoped variables. This

arrangement can now be recommended.

The parameter destinations are local, at

leafstate scope. Leafstate scope has to be

declared at cluster level with a descend

operator (e.g., in a, declare ac.v1), since

there is no place in the syntax to declare at

leafstate scope directly.

 a

aa

ab
β

α(b)[b]

γ(v1,v2)[v1>v2] ac

α(b)[!b]
b

v1,v2

model t5121 statechart sc

Variables are declared at cluster and

leafstate scope.

From release 1.05, the outbound search

technique will find the nearest-scoped

variables.

In earlier releases, if the variable was not

declared at the specified scope, a hidden

variable was created.

 a

aa

ab
β

α(b)[b]

γ(v1,v2)[v1>v2] ac

α(b)[!b]

b

v1,v2

model t5120 statechart sc

20 © Graham G. Thomason 2003-2004

Figure 9. Simple cluster transitions plus history [model t5130]

This model also illustrates internal and external self transitions on leaf states and nonleaf

states.

statechart sc

x

a1

a2

a

α

α

H

b1

b2

b

α

α

ε

ε
ζ

ζ

η

η

θ

θ
δ1 δ2

δ5

δ6 δ7
δ8

γ4 γ3

δ3 δ4

β1 β2

γ1 γ2

β3

β4

β5 β6

β7 β8

ι1

ι2

ι3

ι4

ω_a1

{deep_clear(x);}

the ω transitions

act as a reset or

set-state

ω_a2

{deep_clear(x);}

ω_b1

{deep_clear(x);} ω_b2

{deep_clear(x);}

© Graham G. Thomason 2003-2004 21

Figure 10. Set, but deterministic [model t5140]

Figure 11. Fired event, but deterministic [model t5150]

s

 zb

statechart sc

z ζ

ζ

y

p

q

a1

a2

b1

b

a
b2

α

α

za

b3

r

s

t

u

π

π
ρ

ρ

τ

τ
γ

γ

β

δ

ε

θ
θ

 s

 b2

statechart sc

b β(bvp1,bvp2)[bvp1&&(!bvp2)]

a

b1

 a2 a1

β{fire α }

α{fire β(bv1,bv2)}

α

bv1=true; bv2=false

γ(bv2)

22 © Graham G. Thomason 2003-2004

Model t5150 explored

Figure 12. Fired event in series [model t5152]

statechart sc

a

a1

α{fire β}

γ

a3 a2

β

s

b2
b β

a

b1

a2 a1

β{fire α }

α{fire β}

α

s

b2
b β

a

b1

a2 a1

β{fire α }

α{fire β}

α

s

b2
b β

a

b1

a2 a1

β{fire α }

α{fire β}

α

s

b2
b β

a

b1

a2 a1

β{fire α }

α{fire β}

α

β - in 2 steps

α

INACCESSIBLE

β α - in 3 steps
α

β - in 3 steps

© Graham G. Thomason 2003-2004 23

Figure 13. Assignment on transition with overloaded variable names [model t5160]

Figure 14. Simple assignment on transition [model t5161]

statechart sc

a

a1

α{$v+=3; $$v=$v+6;)}

γ(param){$v=param;}

v=1 i=0

v=2

a3

β{v+=3; $$v=v+6;)}

γ(param){v=param;}

exact scoping of local v

inexact scoping of local v

ι1{i+=1}

a2
ι2{i+=10}

ι3{i+=100}

statechart sc

a

a1

α{i=i*10+1;}

i=0

a3

β

a2

ι{i=0;}

α{i=i*10+2;}

α{i=i*10+3;}

24 © Graham G. Thomason 2003-2004

Figure 15. Simple on-enter/ on-exit actions [model t5170]

Notes

 Variable v tracks a transition from p to q.

 Variable u tracks a transition from q to p.

 The fired event ζ1 is only executed in a transition exiting p2 or entering q2.

statechart sc
s

p1

p2

p

α

α

u=u*10+4

v=v*10+1

u=u*10+4

v=v*10+1

fire ζ1

u=u*10+3

v=v*10+2

z

z1 z2

ζ1

v reveals local order

q1

q2

q

α

α

v=v*10+4

v=v*10+5

u=u*10+1

v=v*10+4

fire ζ1

u=u*10+1

v=v*10+3

u=u*10+2

a

γ

δ

β

γ

w=w*10+1 w=w*10+2

ζ2 {u=0;v=0;w=0;}

β

© Graham G. Thomason 2003-2004 25

Figure 16. Simple meta event (state entry/exit) [model t5180]

s

statechart sc

b

exit $a.a1

a

b1

a2

 a1

γ

α

p1

p2

q1

exit $a.p

enter $a.r

enter $a.s

exit $a.q

p
q

q2

q1a

q1b

q2b

q2a

α

α

j2

j1

j3

j5

j4

j6

j

enter $a.a1

r1

r

r2

r1a

r1b

r2b

r2a
s1

s2

s

α

α α

β

β
β

β

β

β

β

β

β

β

β

β

26 © Graham G. Thomason 2003-2004

Figure 17. Conditional actions and in() function [model t5190]

s

 z2

statechart sc

z

a

z1
ζ2 ζ1

 t

setu(param) {u=param;}

setv(param) {v=param;}

setw(param) {w=param;}

conditionl action with else action

γ if (v%2==1){w=w*10+2; w=w*10+3;}

 else {w=w*10+4; w=w*10+5;}

δ if (v%2==1) {AC1} else {AC2}

where
AC1= if (v==3) {w=w*10+1;} else {w=w*10+2;}

AC2= if (v==4) {w=w*10+3;} else {w=w*10+4;}

ε if (v%2==1){fire ζ2;}

a1

conditional transition

α [in($z.z2)&&v==0]

unconditional transition, conditional action

β if (in($z.z2)&&v==0){w=w*10+1;}

reset for next demo-transition

η {u=0;v=0;w=0;}

a2

if v>5

 u=u*10+1

else

 u=u*10+2

u=0 v=0 w=0

© Graham G. Thomason 2003-2004 27

Figure 18. History, Deep History and Clear Functions [model t5200]

d

D

i

 ijk

N

k

j1

π
π

π

 c

α

β

 d1 j2

ρ

ρ

N j

 e

statechart sc

ω

p

 pqr

D

r

q1

π

π

q2

ρ

ρ

N
q

x

 xyz

H

z

y1

π

π

y2

ρ

ρ

N y

 s

τ1 {clear c.d)

τ2 {clear c.d.ijk}

τ3 {clear c.d.ijk.j}

τ4 {clear c.d.pqr}

τ5 {clear c.d.pqr.q}

τ6 {clear c.d.xyz}

τ7 {clear $.d.xyz.y}

κ κ

τ1d {deep_clear c.d)

τ2d {deep_clear c.d.ijk}

τ3d {deep_clear c.d.ijk.j}

τ4d {deep_clear c.d.pqr}

τ5d {deep_clear c.d.pqr.q}

τ6d {deep_clear c.d.xyz}

τ7d {deep_clear c.d.xyz.y}

τ8 {clear c.d.fgh} τ8d {deep_clear c.d.fgh}

τ9 {clear c.d.fgh.g} τ9d {deep_clear c.d.fgh.g}

 fgh

h1

h2
π3

π3

D h

D

g1

g2
π2

π2

H g

f1

f2
π1

π1

N f

γ

uvw

w1

w2
π3

π3

D w

N

v1

v2
π2

π2

H v

u1

u2
π1

π1

N u

γ

δ
ε

τ10 {clear c.d.uvw} τ10d {deep_clear c.d.uvw}

τ11 {clear c.d.uvw.v} τ11d {deep_clear c.d.uvw.v}

t

etc.

ω2{deep_clear($s);}

π

π

28 © Graham G. Thomason 2003-2004

Figure 19. Arithmetic (with scoping) [model t5210]

a

etc.

 p

statechart sc

Note that set members are leafstates, not clusters(so this is tested here)

s

v=3

v=6

α(param} {v=param;}

α0 {v=0;}

α1 {v++;}

α2 {w=v++;}

α3 {++v;}

α4 {w=++v;}

b

etc.

c

etc.

w=0

α5 {w=v++ + +10;}

α6 {v+=20;}

β(param} {$$v=param;}

β0 {$$v=0;}

β1 {$$v++;}

β2 {w=$$v++;}

β3 {++$$v;}

β4 {w=++$$v;}

β5 {w=$$v++ + +10;}

β6 {$$v+=20;}

γ1 {w=0;}

γ2 {w=maximum(++v,++$$v);}

γ3 {w=minimum(v++,$$v++);}

© Graham G. Thomason 2003-2004 29

Figure 20. Strings and String Functions [model t5220]

statechart sc

 p

q

s1="aA"

s1="zZ"

a1

etc.

α0($$s1,$$$s1,$$$s2) //direct parameter placement

α1 {s1="abcdef";}

α2 {s2="cd";}

α3 {s1=s1+s2;}

α4 {s1=s1-s2;}

α5 {s1=s1*v;}

α6 {s1=s1/3;} //illegal

b

etc.

c

etc.

α7 {s1="";}

α8 // reserved

α9

β(vparam} {v=vparam;}

β0 {$$s1=s1+"xy";}

β1 {$$s1=$$s1+s1;}

β2 //reserved

γ1 {s1=upper_case(s1+"aA");}

γ2 {s1=lower_case(s1+"zZ");}

γ3 {v=length(s1);}

γ4 {s1=format(v,0)}

γ5 {s1=format(v,3)}

γ6 {s1=format(v,-3)}

a

a2
α(sparam,vparam) [(sparam=="xy")&&(vparam==1)]

α

s2 v=3

Note that here

$$s1 references sc.p.s1

(unlike the situation above, the

difference being that this set

member is a leafstate, not

wrapped in a cluster).

Note that here

$$$s1 references sc.p.s1

$$s1 references sc.p.q.s1

30 © Graham G. Thomason 2003-2004

Figure 21. Traces (deterministic) [model t5230]

Figure 22. Cycling [model t5240]

statechart sc

 p

b

a

c

g

f

e

d

trace("ab",6)

ω1

ω2{trace_clear();}

ω3{trace_clear("clr");}

ω1

α {trace(2);}

γ {trace(v);}

δ {trace(v+1);}

ε trace("cd",5,-7);}

ζ

β (trace(true);}

a

s

b2

β2 {v--; trace(v+10,"d"); fire α1; trace(v,"z");}

β1 {trace(v+10,"b"); fire α2; trace(v,"x");}

b1

b

a2

α2 {trace(v+10,"c"); fire β2; trace(v,"y");}

α1[v>0] {trace(v+10,"a"); fire β1; trace(v,"w");}

a1

γ(p) {v=p};

© Graham G. Thomason 2003-2004 31

Figure 23. Inexact state scoping - [model t5250]

y

sy

z
z2 z1

ζ1

ζ2

Available for parallel

activity

d

u

t

d1 d2 d3

s

r

q

p

δ->y->$$d.d1.q/\d2/\$$d.d3.u

(inexact orbit and inexact state in multiple

target specification)
n=n*10+3

x=x*10+3

n=n*10+5

x=x*10+5

n=n*10+2

x=x*10+2

n=n*10+1

x=x*10+1

n=n*10+1

x=x*10+1

n=n*10+4

x=x*10+4

statechart sc

a2

α->a

(inexact specification,

which is acceptable, the

exact specification

being α->$a)

a1

a

b

b

Note: same

name as parent b1 b2

β2->$b

ok
β1->b

Note: β1 does not give rise to fork nondeterminism

β1->b masked - not addressable this way

e

ε8

{deep_clear(sy);}

H

ε1

ε9 {clear(y);}

(inexact specifications)

ε2

32 © Graham G. Thomason 2003-2004

5.2 Small Nondeterministic Models

Figure 24. Set transit nondeterminism only [model t5410]

c

i j

j2

j1

i2

i1

v=v*10+4 v=v*10+5

v=v*10+1

a

statechart sc

b

p q

q2

q1

p2

p1

u=u*10+4 u=u*10+5

u=u*10+2 u=u*10+3

u=u*10+1

v=v*10+2 v=v*10+3

β

β

α

γ

ψ {u=0; v=0;}

u=u*10+4 u=u*10+5

v=v*10+5 v=v*10+4

© Graham G. Thomason 2003-2004 33

Figure 25. Set Action Nondeterminism [model t5412]

When, say, events α_j, α_n, and α_s are given, then ω is given, the actions that take

place are treated in the same way as set-transit actions on member states.

Notes

 α, α gives rise to race nondeterminism on a 5 way race, giving Perm
race

(5) worlds, i.e.

10 worlds under the med_set_tran option. (See Figure 41 and the description

following for more explanation about this). This option produces 2n of the n!

permutations. This is still quite fast.

 α, ω gives rise to set-action nondeterminism, causing permutations on (exit-j and exit-l

and exit-n) and on (exit-q and exit-s), and between them, as if set-transit nondeterminism

were involved, giving Perm
set-tran

(2).Perm
set-tran

(3).Perm
set-tran

(2) =24 worlds. This is slow.

 α, ω_race gives rise to mixed race and set-action nondeterminism, giving Perm
set-

tran
(2).Perm

set-tran
(3).Perm

set-race
(2) =24 worlds. The speed is medium.

Note on speed

 By medium, we mean, typically, a matter of minutes on a 300 MHz machine

 By slow, we mean, typically, a matter of 30 mins-2 hours on a 300 MHz machine

 Speeds vary according to

- the Prolog System

- whether we run the model under the GP4 test harness or stand-alone

- what has been run before (under the top-level Prolog prompt), since memory

fragmentation (presumably) can degrade performance by one or more orders of

magnitude.

sy

i

 j l

k

a

n

m α,α_j

α,α_i

α,α_l

α,α_k

α,α_n

α,α_m

a1 a2 a3

p

 q s

r

b

u

t α,α_q

α,α_p

α,α_s

α,α_r

α,α_u

α,α_t

b1 b2 b3

ω

ω_race, ω1

ω_race, ω2

v=v*10

+1

v=v*10

+3

v=v*10

+2

v=v*10

+4

v=v*10

+6

v=v*10

+5

commented out for performance reasons

34 © Graham G. Thomason 2003-2004

Figure 26. Set meta-event nondeterminism [model t5414]

Illustrative sequence: α_j α_n α_s ω_x, showing permutations of exit meta-events.

 Analogous comments regarding race nondeterminism versus set-meta-event

nondeterminism apply to those of model t5412, under med_set_tran permutations:

- α,α a 4-way race, Perm
race

(4)=8 worlds, fast.

- α,ω_x set-meta-event nondeterminism, Perm
set-tran

(1).Perm
set-tran

(3).Perm
set-tran

(2)

=12 worlds, slow.

- α,ω_race rise to mixed race and set-meta-event nondeterminism, giving Perm
set-

tran
(1).Perm

set-tran
(3).Perm

set-race
(2) =12 worlds, medium speed.

sy
ω

ω_race, ω1

i

 j l

k

a

n

m α,α_j

α,α_i

α,α_l

α,α_k

α,α_n

α,α_m

a1 a c3

p

 q s

r

b

u

t α,α_q

α,α_p

α,α_s

α,α_r

α,α_u

α,α_t

b1 b2 b3

ω_race, ω2

ω_x x

z

exl

exn

exj

exs

exu

exq

neutral

ω_neutral

exit(x.a.a1.j) {v=v*10+1;}

exit(x.a.a1.l) {v=v*10+2;}

exit(x.a.a1.n) {v=v*10+3;}

exit(x.b.b1.q) {v=v*10+4;}

exit(x.b.b1.s) {v=v*10+5;}

exit(x.b.b1.u{v=v*10+6;})

commented out for performance reasons

© Graham G. Thomason 2003-2004 35

Figure 27. Fork nondeterminism only [model t5420]

Figure 28. Fork Nondeterminism differentiated by history [model t5422]

To effectuate the nondeterminism, execute events as follows

 event γ brings the machine to state p2

 event γ brings the machine back to a1, with history of cluster p recorded

 event α forks on existence of the record of history

 event β of worlds causes reconvergence of worlds by clearing all record of history of

cluster p

m α {v=0;}

a

d2

d3

δ {v=v*10+2}

v=v*10+1

statechart sc

d4

v=v*10+4

δ

δ

δ {v=v*10+2}

δ {v=v*10+3}

δ {v=v*10+3}

b1

b2

β

β

c1

c2

c3

γ

γ

γ

γ

a

a1

statechart sc

p1 p2

p H

γ γ

α{clear(p);}

α

β{clear(p);}

36 © Graham G. Thomason 2003-2004

Figure 29. Race nondeterminism only; winner detected by meta-event [model t5430]

Figure 30. Race nondeterminism only - winner detected by fired event [model t5440]

a

s

z

α

a1 a2

enter($a.a2)

z1
z2

z3 enter($b.b2)

b

b1 b2

α

β

β

β

note that β resets as a 3-way race, but with same result in each case

statechart sc

a

s

z

α {fire γ}

a1 a2

γ

z1
z2

z3

δ

b

b1 b2

α {fire δ}

β

β

β

note that β resets as a 3-way race, but with same result in each case

statechart sc

© Graham G. Thomason 2003-2004 37

Figure 31. Race nondeterminism only - winner detected by variable value [model

t5450]

Figure 32. Race nondeterminism - winner detected by history [model t5460]

 For a simpler illustration of history in nondeterminism, as a case of fork nondeterminism,

see model t5422.

 To run the race, process events gamma, gamma, alpha. In one arm of the race, the

history of cluster p is cleared, in the other it is not cleared (because b1 is vacant and the

conditional action to clear history does not take place).

 Alternatively, events gamma, alpha are processed. A similar race takes place. In this

case history is set on one of the transitions involved in the race, (as opposed to the

previous case where history was set up before the race).

a

s

α {v=v*10+1;}

a1 a2

b

b1 b2

α {v=v*10+2;}

β {v=0;}

β

statechart sc

a

s

α if (in($b.b1)) {clear (p);}

a1 a2

b

b1 b2

α

β

β

statechart sc

p1 p2

p H

α if (in($b.b1)) {clear(p);}

γ γ
δ{clear(p);}

38 © Graham G. Thomason 2003-2004

Figure 33. Race nondeterminism - winner detected by trace [model t5470]

Figure 34. Race to a single target [model t5472]

Figure 35. Race to start (mutually exclusive transitions) [model t5474]

statechart sc

s

a1

c
α {trace(1);}

a2

sys

a β

δ {trace_clear();)

b1
b2

b γ

α {trace(2);}

a

s

α[in($b.b1)]

a1 a2

b

b1 b2

α [in($a.a1)]

β

β

statechart sc

a

s

α {trace("ab");}

a1 a2

b

b1 b2

α {trace("cd");}

β{trace(25);}

β{trace(36);}

statechart sc

γ{trace_clear();}

© Graham G. Thomason 2003-2004 39

Figure 36. Compact multiple nondeterminism (4 kinds) [model t5480]

This model can be used with event β to illustrate set-transit, fork, and race-condition

nondeterminism, or with event α to illustrate broadcast-event nondeterminism.

a

β

b1

s

c

z

β

c1
c2

α->a2 {fire β}

a1 a2

b

c3
β

b2

p q

q2

q1

p2

p1

enter($b.b2.p.p1)

z1
z2

z3 enter($c.c3)

v=v*10+7

v=v*10+6

v=v*10+4 v=v*10+5

v=v*10+2 v=v*10+3

v=v*10+1

statechart sc

γ

γ γ

γ

ω{v=0;}

40 © Graham G. Thomason 2003-2004

Figure 37. Illustration of all kinds of STATECRUNCHER output [model t5490]

Notes

 This model is basically a race on event α between fired events γ and δ, with the winner

established by the order of processing fired events γ and δ in member z and by trace data

deposited in members a and b.

 Scoped events ζ and $ζ

 Scoped variables v and $v

 Scoped PCOs pco1 and $pco1

 Note how a nondefault cluster member (q) can be entered using event ε the first time and

event α from state a1 using history the second time.

 Note that internally generated events, in our example, exit(::a.a2.p) are not

offered as user suppliable.

This model is used an example to illustrate output that would be used in communication with

a primer. (A primer is a program that decides what tests to perform, i.e. what events to

process, whereas STATECRUNCHER gives the oracle to these tests).

statechart sc

a2

s

z

α {fire γ; trace(5,7);}

a1
p

γ

z1

z2

z3 δ

b

b1

b2

α {fire δ;

trace("xy");}

ε

β

β

a H

q

ζ(p1,p2,p3,p4,p5)

{v=p1; $v=p2; col1=p3;

 bool1=p4; str=p5;}

$ζ[w>3]{str=str+"a";}

β

θ1@pco1{w++;}

θ2@$pco1{w--;}

exit(::s.a.a2.p){w++;}

v=0, w=0, col1=blue, bool1=true, str1="a"

 α β γ δ ε ζ pco1

v=0,p1,p2,

p3,p4,p5

pco1

ζ

global PCO

local ζ; global & local v

local PCO

global ζ

 θ1 θ1

© Graham G. Thomason 2003-2004 41

Figure 38. Transition Prioritization [model t5500]

a

aaa

aq

ap

a2 aa

s

α
7
[v7] {v=1;}

α
8
[v8] {v=1;}

α
9
[v9] {v=1;}

z

τ sets all vnn variables true

τnn sets specific variable true

φ sets all vnn variables false

φnn sets specific variable false

statechart sc

a8

a4
α

4
[v4] {v=1;}

α
5
[v5] {v=1;}

α
6
[v6] {v=1;}

α
1
[v1] {v=1;}

α
2
[v2] {v=1;}

α
3
[v3] {v=1;}

γ

a1

a3

a5

a9

a7

a6

b

bbb

bq

bp

b11 bb

α
16
[v16] {v=2;}

α
17
[v17] {v=2;}

α
18
[v18] {v=2;}

b17

b13

α
13
[v13] {v=2;}

α
14
[v14] {v=2;}

α
15
[v15] {v=2;}

α
10
[v10] {v=2;}

α
11
[v11] {v=2;}

α
12
[v12] {v=2;}

δ

b10

b12

b14

b18

b16

b15

ω3 {v=0;}

etc.

ω2

 ω1 {v=0;}

v v1 v2 v3 etc.

Note: There is only one event α.

The superscripts provide a way to identify transitions on α.

(many separate transitions)

42 © Graham G. Thomason 2003-2004

Figure 39. Scoped events illustrated by fork nondeterminism [model t5510]

statechart sc

x

b

p

r

s

t

e

a

β ::α

c

d

α

α

α

α

no α here

u

v

::x.α

::x.a.b.α

::x.a.α

::x.a.b.c.α

::x.a.b.c.d.α

references ::x.a.α

no α here

references ::x.a.α

references ::x.a.α

 fork-2

q

$α

 fork-1

same as above by

alternative notation

© Graham G. Thomason 2003-2004 43

Figure 40. Limited permutation race nondeterminism [model t5520]

Explanation of the permutation limitations

 no_race: Only one permutation will be generated. The transition in the first set

member will be executed first, then the one in the second set member etc. The

permutation using set member names is abcd.

 low_race: Only two permutations will be generated. One is as above, and the other

is the reverse of that order. The permutations are abcd and dcba.

 med_race: The number of permutations generated is 2n. These permutations are all

the cyclic and anticyclic rotation operations on the no-race permutation. The

permutations are (cyclic) abcd, bcda, cdab, dabc, (and anticyclic) dcba, cbad,

badc, adcb.

 high_race: All n! permutations are generated, i.e. 4! = 24 permutations in this

case.

These options can be set at a PROLOG prompt by the predicates me_no_race,

me_low_race, me_med_race and me_high_race. The default is me_med_race.

statechart sc

a

α

b1

s

c

d

α

a1

b

ω1

b2

v=v*10+2

a2

v=v*10+1

α

c1 c2

v=v*10+3

α

d1 d2

v=v*10+4

ω_no_race{no_race();}

ω_low_race{low_race();}

ω_high_race{high_race();}

ω_med_race{med_race();}

ω_v_reset{v=0;}

44 © Graham G. Thomason 2003-2004

Figure 41. Limited permutation set-transit nondeterminism [model t5530]

Explanation of the permutation limitations

 no_set_tran: Only one permutation will be generated. The transition in the first

set member will be executed first, then the one in the second set member etc. The

permutation using set member names is pqrs.

 low_set_tran: Only two permutations will be generated. One is as above, and the

other is the reverse of that order. The permutations are pqrs and srqp.

 med_set_tran: The number of permutations generated is 2n. These permutations

are all the cyclic and anticyclic rotation operations on the no-set_tran permutation.

The permutations are (cyclic) pqrs, qrsp, rspq, spqr, (and anticyclic) srqp,

rqps, qpsr, psrq.

 high_set_tran: All n! permutations are generated, i.e. 4! = 24 permutations in

this case.

These options can be set at a PROLOG prompt by the predicates me_no_set_tran,

me_low_set_tran, me_med_set_tran and me_high_set_tran. The default is

me_med_set_tran.

β

a

sy

statechart sc ω1

b

p q
q2

q1

p2

p1

x=x+"c" x=x+"e"

x=x+"b" x=x+"d"

x=x+"a"

ρ

ρ ρ

ρ
r2

r1

x=x+"g"

x=x+"f"

ρ

ρ
s2

s1

x=x+"i"

x=x+"h"

ρ

ρ s r

c

p q
q2

q1

p2

p1

x=x+"3" x=x+"5"

x=x+"2" x=x+"4"

x=x+"1"

ρ

ρ ρ

ρ
r2

r1

x=x+"7"

x=x+"6"

ρ

ρ
s2

s1

x=x+"9"

x=x+"8"

ρ

ρ s r

ε
ζ

α

γ
δ

ω_no_set_tran{no_set_tran();}

ω_low_set_tran{low_set_tran();}

ω_high_set_tran{high_set_tran();}

ω_med_set_tran{med_set_tran();}

ω_vreset{x="";}

© Graham G. Thomason 2003-2004 45

Figure 42. Different transitionable events after nondeterminism [model t5540]

statechart sc

m

a1

α

{p1=0;

p2=0;

 p3=0;}

p1=0, p2=0, p3=0

β

b3

b1

b2

c4

c2

c3

γ($p1)

γ($p1,$p2,$p3)

δ

β

β

c1

γ($p1,$p2)

46 © Graham G. Thomason 2003-2004

Pruning of traces - fork - non-self transitions [model t5550]

Figure 43. Pruning of traces - fork - self transitions [model t5555]

a
α {trace("ab"); trace("cd");}

p

q

statechart sc
ρ {trace_clear}

α {trace("ab");}

r

ρ1 {trace_clear; trace("pq");}

s

t

α {trace("ab"); trace("cd");} trace("ef");}}

α {trace("ab"); trace("yz");}

u
α {trace("yz");}

statechart sc

p

ρ {trace_clear}

 ρ1 {trace_clear; trace("pq");}

a α {trace("ab"); trace("cd");}

α {trace("ab");}

α {trace("ab"); trace("cd");} trace("ef");}}

α {trace("ab"); trace("yz");}

α {trace("yz");}

© Graham G. Thomason 2003-2004 47

Pruning of traces - race - non-self transitions [model t5560]

Figure 44. Pruning of traces - race - self transitions[model t5565]

a

s

α {trace("ab");fire α1;}

p q

b

β {trace(1);fire β1}

statechart sc

c

r

d

ρ {trace_clear}

ρ1 {trace_clear; trace("pq");}

α1 {trace("cd");}

β1{trace(2);}

α {trace("ab");fire α2;}

β {trace(1);fire β2}

α3 {trace("cd");trace("ef");}

β2{trace(4);}

α {trace("ab");fire α3;}

β {trace(1);fire β3} β3{trace(6);}

α2 {trace("yz");}

α {trace("ab");fire α1;}

β{trace(1);}

p q r

p q r

p q

s

α {trace("ab");fire α1;}

a

statechart sc
ρ {trace_clear}

α1 {trace("cd");}

α {trace("ab");fire α2;}

b
α2 {trace("yz");}

α {trace("ab");fire α3;}

c
α3 {trace("cd"); trace("ef"); }

α {trace("ab");}

d

ρ1 {trace_clear; trace("pq");}

48 © Graham G. Thomason 2003-2004

Figure 45. Arrays with fork nondeterminism [model t5580]

As at Release 1.04

 Array base (i.e. without index), and all array elements must be declared

 Undeclared array elements may work as regards internal logic, but will not be shown in

output, nor be accepted as command input (as from primer).

Test sequence

 events δ,β,γ,α. Event δ increments local k1, and so some indices, marked by a +.

m

a1

α/

all

variables

to initial

values

 iv=0, k1=3, k2=5

β/ia[4]=5;

β/::ia[::k1+k1]=-1;

β/ia[k1+k2]=8+1;

β/ia[k1+2][k1-1]=7;

scoping =[4+]

LVALUE TESTING RVALUE TESTING

2 dimensions =[5+][2+]

β/ia[k1+4][2][4]=12;
3 dimensions =[7+][2][4]

expression index =[8+]

constant index [4] γ[ia[4]==(k1+2)]

/iv=ia[4]+1;

γ/::iv=::ia[::k1+k1]+1;

γ/iv=ia[k1+k2]+1;

γ/iv=ia[k1+2][k1-1]+1;

γ/iv=ia[k1+4][2][4]+1;

 iv=0, k1=1, ia[4]=0, ia[5]=0

β/sa[k1+1]="abc";

string =[4+]
γ/sv=sa[k1+1]+"X";

b4

b1

b2

b3

b5

b6

b7

β/ba[k1+1]=1;

boolean =[4+]
γ/bv=!ba[k1+1];

δ/k1++

 ia[4]=0, ia[8]=0, ia[5][2]=0; ia[7,2,4]=0

 ia[5]=0, ia[9]=0, ia[6][3]=0; ia[8,2,4]=0

 ba[4]=0

 ba[5]=0

 sa[4]="x",

 sa[5]="x",

 bv=0 sv="x",

c4

c1

c2

c3

c5

c6

c7

note the two scopes of ia[4], ia[5]

conditional transition
fork

nondeterminism

© Graham G. Thomason 2003-2004 49

Figure 46. Simple scoped array [model t5581]

γ/::a[3]=200

a1

α/a[3]=20

β/v=a[3]

δ/v=::a[3]

ω/

::a[3]=100;

a[3]=10;

v=0;

 a[3]=10, v=0

m

 a[3]=100

50 © Graham G. Thomason 2003-2004

Figure 47. get_nworlds: Get number of worlds (1) [model t5600]

Parameter P1 to get_nworlds: P1=1 (default) for command-time number-of-worlds

Illustrative event sequence: φ,β,α

Figure 48. get_nworlds: Get number of worlds (2) [model t5602]

Parameter P1 to get_nworlds P1=2 for execution-time number-of-worlds

This number may be higher than expected due to internal world generation on any action.

Illustrative event sequence: β,α

 m

a1

α

{nw=0;

v=0}

nw=0,v=0

β /

nw=get_nworlds();

if (nw<=1)fire γ1;

b3

b1

b2

c3

c2

γ1

γ2

c1

γ3

β /

nw=get_nworlds(1);

if (nw<=2)fire γ2;

β /

nw=get_nworlds(1);

if (nw<=3)fire γ3;

φ/v+=1;

φ

a fork

 m

a1

α

{nw=0;

v=0}

nw=0,v=0

β /

nw=get_nworlds(2);

if (nw<=6)fire γ1;

b3

b1

b2

c3

c2

γ1

γ2

c1

γ3

β /

nw=get_nworlds(2);

if (nw<=6)fire γ2;

β /

nw=get_nworlds(2);

if (nw<=6)fire γ3;

φ/v+=1;

φ

a fork

© Graham G. Thomason 2003-2004 51

6. Systematic Test Models

Diagrams with their model numbers follow.

52 © Graham G. Thomason 2003-2004

6.1 State Hierarchy and Initial Machine Entry

Figure 49. Hierarchy for initial/directed state entry [model t6200 & derivatives]

Note: Model t6200 contains all the above (8 sets in full exit from initial state). Other

models contain just part of the full model as indicated, e.g. t6201 contains just outer set ab

from this model. (5 sets in all).

 statechart sc a(set)

aaa(set)

 aa(cluster)

aaab(cluster)

aaabb aaaba

aac(cluster)

aacaa aacab

 ac

aacba aacbb

aaca(cluster)

aacb(cluster)

aacc(set)

 aad

aacca
aaccb

aaaab aaaaaa aaaaab

 aaaaa(cluster)

 aaaa(cluster)

aaac(set)

aaaca aaacc

ab(set)

abbb

abb(cluster)

abd

abab

aba(set)

abcb

abca

abc(set)

abaa(set)

abaaa

a

abaab

abba(set)

abbaa abbab

aaaaac

aaabc

aaacb
aaccc

aacac

aacbc

t6201

t6202

t6203

t6205

t6200

t6204

t6206

aab(set)

aaba(cluster)

aabaa
aabab

aabc

aabac

aabbb

aabba

aabb(set)

© Graham G. Thomason 2003-2004 53

Figure 50. t6200 structure

Counting any non-first member as a second member, the above hierarchy contains routes

from the top

Set to set/cluster/leafstate

 S1-S1 S1-S2 S2-S1 S2-S2

 S1-C1 S1-C2 S2-C1 S2-C2

 S1-L1 S1-L2 S2-L1 S2-L2

Cluster to set/cluster/leafstate

 C1-C1 C1-C2 C2-S1 C2-S2

 C1-C1 C1-C2 C2-C1 C2-C2

 C1-L1 C1-L2 C2-L1 C2-L2

 statechart

 C1

S

L

 C2 S1

C1

 a

 aa ac

initial state =occupied

 initial state = vacant

S2 C2 C1

 aaa

L

 aad

 S2

 aab

C1

S2

S1

 ab

C1

C2 S2

C2

S1 L S1 L

L

 aba abb

S2

L L

 abc abd aac

X

X

Legend

 S = Set 1 = First member

 C = Cluster 2 = Subsequent member

 L = Leafstate

S2

L L L

L L L

L

54 © Graham G. Thomason 2003-2004

Occupied/Vacant combinations

 Setocc-Cluster

 Setvac-Cluster

 Setocc-Set

 Setvac-Set

 Clusterocc-Cluster

 Clustervac-Cluster

 Clusterocc-Set

 Clustervac-Set

The following sequences are also covered

 Set Cluster Set

 Cluster Set Cluster

These are the primary aspects being tested, in respect of “entering initial state”.

© Graham G. Thomason 2003-2004 55

6.2 Specifying States in Transitions

Figure 51. Specifying States (model t6220)

statechart sc

Notes: The notation shown does not include all delimitation (e.g. semicolons)

Exclamation marks on names are attention-drawing, not syntactical

Transitions are shown with explicit target state expressions

Default states are not shown in this diagram x

za zb

to-cousin transition

to-nephew transition

to-uncle transition

complex expression

 to denote destination

self transition of son

self transition of parent

z ζ1->zb

ζ2->za

scoped event

Note: more local κ1 found by

outbound search;

 $$ needed to reference the outer κ1

k

ka kb

κ1->kb

$$κ1->ka

Notes:

1. Transitions between set members are potentially illegal, but

they could be legalized by introducing an “orbit”.

2. ma, mb are clusters, denoted in alternative notations

m

maa mab
mba

mbb

mbb

ma mb
μ2->$mb

μ5->$mb.mbb

μ6->$ma.mab

μ3->mab

mc

mca

mbb

μ8->$mc

y

d

da b!

e

e! eb

b

ba d!

g

ga gb

f

fa fb

to-child transition

to-sibling transition

b->d disambiguation

to-uncle transition

to-sibling transition

da->b

disambiguation

external self-transitions

to-parent transition

to-child transition

e->e disambiguation

a

aa
ab

internal self transitions

to-child transition

to-sibling transition

to-parent transition

i

ia ib

1->a.aa

2->ab
3->$a

1->b.d

2->d

δ1->$b δ2->b

ε1->e

ε4->e.e

ε2->$e
ε3->e

φ1->g.ga

φ2->$g.ga

φ3->

$g

γ1->g

γ2->ga
ι1->y%%i.ib

ι2->::x.y.i.ia

5

4

κ1,κ2

κ1,κ2

μ7->$m

μ1->$$m

ε5->eb

ω_a->y.a

ω_b->y.b

ω_d->y.d

etc. for many

states

μ4->$ma

56 © Graham G. Thomason 2003-2004

Figure 52. Specifying States - continued

x

y

s

sa sb

t

ta tb

r

ra rb

τ1->tb

{clear($r)}

τ2->ta

{deep_clear($r)}

enter

($$z.za)->sb

exit

($$z.za)->sa

z

p

pa pb

statechart sc

parameterized event

conditional transition

conditional action

π1[v==2]

π1->pb

{if(!in(S1)){A1}

else {A2} }

orbital route meta-events actions refer to states

ρ->$$y->rb

as on previous sheet

the ν1 target expression in

scope [n,y,s,st] evaluates to

[[p2,p,n21,n2,n,y,s,st],

 [q1,q,n21,n2,n,y,s,st],

 [r,n22,n2,n,y,s,st],

 [u,n23,n2,n,y,s,st]]

n

n2

p1

p2

n22 n23

n1
n21

q p

q1

q2

r

s

t

u

ν2->n2.(n23.r /\ n22.u /\ (n21.(q.q1/\p.p2)))

H

ν82->s

ν81->q2

π2(::v)->p

ν1->n2.((n21.(p.p2/\q.q1)) /\ n22.r /\ n23.u)

ν2 as ν1, (details above) but specified in reverse order

the ν2 target expression in

scope [n,y,s,st] evaluates to

[[u,n23,n2,n,y,s,st],

 [r,n22,n2,n,y,s,st],

 [q1,q,n21,n2,n,y,s,st],

 [p2,p,n21,n2,n,y,s,st]]

S1=::x.z.za

A1=v=1;

A2=v=3;

sets v

 fuller orbital

 functionality

 demonstrated elsewhere

© Graham G. Thomason 2003-2004 57

6.3 Deep Nesting

6.3.1 Deep Cluster nesting [model t6222]

Figure 53. Deep Cluster Nesting

Notes on event notation (showing destination relation) follow.

s

za zb

statechart sc

z ζ1

ζ2

y

α3

bba

bbb

baa

bab

aba

abb
aaa

aab

a

ba
ab

b

aa
bb

α3

κ2

κ2

υ2

ν2

gυ1

gν1

dυ1

dν1

dκ1

π1

α1

τ1

gπ1

gτ1

α1

α1

α1

α1

α1

α1

α1

α2

α2

τ2 π2 gτ2

ν1

υ1

κ1

gπ2

dκ1

κ1

σ4

σ3

σ2

σ1

58 © Graham G. Thomason 2003-2004

Figure 54. Terminology for relationships (with event naming convention)

Figure 55. Nonleaf-Nonleaf relationships

Table 4. Matrix of event names

 one removed two removed

to

from

 leaf lp lgp lggp leaf lp lgp lggp leaf lp lgp lggp

leaf α1 π1 gπ1 ggπ κ1 υ1 gυ1 dκ1 dυ1

 sibling parent gr-par gr-gr-p cousin uncle gr-un 2cousin 2uncle

lp τ1 α2 π2 gπ1 ν1 κ2 υ2 gυ2 dν1 dκ2 dυ2

 child sibling parent gr-par nephew cousin uncle gr-un 2neph 2cousin 2uncle

lgp gτ1 τ2 α3 π3 gν1 ν2 κ3 υ3 dν2 dκ3 dυ3

 gr-ch child sibling parent gr-neph nephew cousin uncle 2neph 2cousin 2uncle

lggp ggτ gτ2 τ3 α4 gν2 ν3 κ4 dν3 dκ4

aa ba

parent π1

child τ1

great uncle gυ1

great nephew gν1

aaa aab baa

second uncle dυ1

second nephew dν1

second cousin δκ1 cousin κ1

uncle υ1

nephew ν1

sibling α1

a

b

ab

abb

grandparent gπ1

grandchild gτ1

aa ba

parent π2

child τ2

aaa aab baa

uncle υ2

nephew ν2

a

b

ab

abb

sibling α2 cousin κ2

© Graham G. Thomason 2003-2004 59

 gr-gr-c gr-ch child sibling gr-neph nephew cousin 2neph 2cousin

Legend:

lp=leaf-parent; lgp=leaf-grand-parent; lggp=leaf-great-grand-parent; shaded=not tested

Predicate gn_relname(FROM,TO,RELATION) will produce relation names, given

machine paths to be read from right to left, e.g.

gn_relname(

 [u1,u2,u3,u4,u5,u6,u7,u8,u9,c],

 [p1,p2,p3,p4,p5, c],R).

R=[5,[great,great,great,uncle]]).

i.e. TO is a fifth great,great,great,uncle of FROM.

60 © Graham G. Thomason 2003-2004

6.3.2 Deep set nesting (model t6224)

Figure 56. Deep set nesting

p

statechart sc

za zb

z ζ1

ζ2

s

bbb

aba

abb

aaa

aab

a

baa

ab

b

κ2

ν21

υ21

dκ1

dκ1

π1

α11

τ1

gπ1 gτ1

α11

α12

α12

α22

α21

τ2 π2

gτ3 gπ3

y

aa
ba

q

α13

α13

σ2

σ4

σ3

σ1

bb

bba

bab κ1

κ1

ν1

υ1

ggτ1 ggπ1

dυ11

dν11

κ2

α31

gυ1

gν1

υ22
ν22

dυ12

α14
α14

α31

© Graham G. Thomason 2003-2004 61

With sets, any direct transition crossing a set member separator () is in principle

illegal. Such an apparent transition can be re-interpreted as legal transition by introducing an

orbit:

Orbital transitions provide a legal way of transitioning to a set member, as long as any exited

set is re-entered.

The elements of a set are normally sets or clusters, so we chiefly use clusters as the innermost

set members, with one leaf-state set member for completeness.

The above figure allows for exercising of non-orbital direct-ancestor/direct descendant

transitions.

62 © Graham G. Thomason 2003-2004

6.4 Transition Selection

Figure 57. Simple Enter-Exit Transition Selection [model t6230]

Note: This model is not suitable for user-level driving and is used at an API level.

b

s

bb

statechart sc

ca cb

c

da db

d

exit($s)[B15]

enter($b.bb)[B14]

exit($s)[B13]

ALPHA,enter($b.bb.bb)[B12]

bb

B12 B13 B14 B15 (boolean variables)

© Graham G. Thomason 2003-2004 63

Figure 58. Transition Selection Basics - [model t6240]

Notes: This model is a ‘legacy’ model, used in some low-level tests, but is not particularly

suitable as a transition demonstration model due to the diversity of features. There ere two

events α, with superscripts added as a means of identifying transitions on them.

a1

a4

a5a

a5b

b2

ω_a5b

a2

a3

 b

s

ba bb

α10[B10]

α11[B11]

α
0
(P1,P2)[B0&&P2]

α
2
(P1)

[B2&&P1]

α
3
[B3]

$$α
6
/*[B6]*/

β,α
5
[B5]

α
7
[B7]

α
4
[B4]

α
8
[B8]

α
9
[B9]

z

τ,φ

 various self transitions used for control of (condition) variables

ω_ba

ca cb
ω_ca

ω_a5a

 c α12,enter($b.bb.bb)[B12

]

exit(s)[B13]

 bb
NB identical

unscoped name bb

NB: exit(s) actually gives a useless

transition but it illustrates the

outbound search mechanism in

transition selection.

 bb

da db
ω_da

 d enter($b.bb)[B14]

exit($s)[B15]

NB note which α

NB: exit($s) refers to same state as

exit(s) above

statechart sc

α
1

(t1,$t2)

[B1]

bc

bcdb

bcda

bca bcc bcd

bccb

bcca

bcab

bcaa

bcb

bcbb

bcba

P1,P2

NB B6

commented

out

 α (transitions α0 α1 α2 α6 α10 α11 α12)

 α (transitions α3 α4 α5 α7 α8 α9)

B1 B2 etc.

64 © Graham G. Thomason 2003-2004

6.5 Orbits

Figure 59. Orbits [model t6260]

Notes:

 Variables x and n are reset by ω transitions (specific set-to-state transitions), not shown in

the diagram.

 If an orbital transition arc cuts through n member-state boundaries, the orbital state can be

addressed using n+1 $-signs.

statechart sc n=0 x=0

s

y

aa

aaa aab

α1->aab

α2->$$a->aab

ab

b

α3->$$$y->aab

α5->::$sc->aab orbit=[sc]

a

β1->$$y

->$a

β2->$y

->a.aa

β3->

$a

γ4->$$y->aa.aab

 n=n*10+3

 x=x*10+3

 n=n*10+2

 x=x*10+2

za zb

z ζ1

ζ2

γ3->$$$y->$ab

β4->a.aa

γ2->aa.aab

γ1->$ab δ4->$$a->aaa

ε1->a->a.aa.aaa

 n=n*10+4

 x=x*10+4

n=n*10+5

x=x*10+5 α4->::s->aab

orbit=[s,sc]

applies to cluster y

ζ9->::$sc->$z.zb

n=n*10+1

x=x*10+1
n=n*10+1

x=x*10+1

δ2->aaa
δ1

δ3->$aa->aaa

© Graham G. Thomason 2003-2004 65

Figure 60. Orbits - Legalisation of doubtful orbits [model t6264]

 statechart sc

sy

a

j

b2

c1

b1

i

p
q2

r1

q1

g

f

γ2

r2

c2

k

l

t

s

occupied

state

historical

state

D

γ1

γ3

γ4

γ5

γ6

δ1

x=x*10+2

x=x*10+9

n=n*10+9

n=n*10+2

n=n*10+3

n=n*10+4

x=x*10+3

x=x*10+4

α1

z1

z available for variable

control

γ7

δ2

zn=zn*10+1

zx=zx*10+1 zn=zn*10+2

zx=zx*10+2

y

x=x*10+6

n=n*10+6

effective transition in most cases

α2 x=x*10+5

n=n*10+5 applies to cluster y

β4

β5

β1

β6

β3

β2

x=x*10+8

x=x*10+8

n=n*10+8

n=n*10+8

x=x*10+8

n=n*10+8

n=n*10+1
x=x*10+1

66 © Graham G. Thomason 2003-2004

6.6 Common Tree Removal

Figure 61. Common tree removal in sets [model t6270]

Used without transitions, generating explicit enter/exit trees, in demonstration programs.

s

a

i

p

j

y

f

b

q

g

x

r

statechart sc

c

k

b1 b2

© Graham G. Thomason 2003-2004 67

6.7 Scope of Enter/Exit Trees

Figure 62. Scope of enter/exit trees [model t6280]

The algorithm tested here is described in [StCrMain] in the section on the transition course.

This model is used for low-level API testing and is not suitable as a high-level demonstration,

since the exit and entry tree scopes are not visible at a high level.

This model is also exhibited in the main STATECRUNCHER report [StCrMain], in the section

on the transition algorithm, showing the scopes involved.

 statechart sc

x

a

α3->$$a.b.c

α1->::x->::x.y.a.b.c orbit=[x,sc]

y

f

b

c

d

p

q

r

s

γ3->c

β3->a.b.c

δ3->$$c

tα1

tγ3

tβ3

tδ3

tα3

α2->::x.y.a->::x.y.a.b.c orbit=[y,x,sc]

tα2

e

β2->a->a.b.c
orbit=[a,y,x,sc]

tβ2

tγ1
γ1->$b->c orbit=[b,a,y,x,sc]

γ2->c->c orbit=[c,b,a,y,x,sc] tγ2

tδ2

tδ1 δ1->$$$b->$$c orbit=[b,a,y,x,sc]

δ2->$$c->$$c orbit=[c,b,a,y,x,sc]

β1->$y->a.b.c orbit=[y,x,sc]

tβ1

t

68 © Graham G. Thomason 2003-2004

6.8 Transition Course

Figure 63. Entry tree logic for clusters (1) - [model t6291]

Notes

 The algorithm tested here is described in [StCrMain] in the section on the transition

course. The terminology is taken from there (case numbers, guided/unguided entry,

dho=deep history obligation).

 Notation such as 12eff, with a dotted transition arc, refers to the effective transition of

the one on event 12.

 upon enter and upon exit assignments are made throughout the model:

vn= upon enter assignment on entry into state above the symbol

vx= upon exit assignment on exit of state abovethe symbol

vn=vn*10+1 at leaf level; vn=vn*10+2 at parent; vn=vn*10+3 at grandparent

vx=vx*10+1 at leaf level; vx=vx*10+2 at parent; vx=vx*10+3 at grandparent

 This model is used at API level as well as high level, and should not be changed lightly

statechart sc

sy

main

cases 1,2: at a, choosing p

case1: 1: Guided, (D), target=occ, no orbit

case1: 2: Guided, (D), target=occ, super-orbital

case2: 3: Guided, (D), target=occ, at-orbital

case2: 4: Guided, (D), target=occ, sub-orbital

z ζ available for various control functions

p2

p1

q2

q1

a
D

historical

state

1

p q

occupied
state

2

3

9

1eff
9eff

11eff

3eff, 13eff ω_a_q2

vn=vn*10+1

vx=vx*10+1

vn=vn*10+1

vx=vx*10+1

vn=vn*10+1

vx=vx*10+1

vn=vn*10+1

vx=vx*10+1

vn=vn*10+2

vx=vx*10+2

vn=vn*10+2

vx=vx*10+2

vn=vn*10+4

vx=vx*10+4

ω_vreset{vx=0;vn=0;}

ω_a_p2

ω_hreset{deep_clear(main);}

2eff,12eff

11

 12

 13

© Graham G. Thomason 2003-2004 69

Figure 64. Entry tree logic for clusters (2) -[model t6292]

statechart sc

sy

main

case 3: at xq, choosing q

β1: Guided, (D), target=vac, no orbit

β2: Guided, (D), target=vac, super-orbital

β3: Guided, (D), target=vac, at-orbital

β4: Guided, (D), target=vac, sub-orbital

z ζ available for various control functions

p2
q2

q1

b

historical

state
β3

p
xq

occupied

state

β1eff etc. shown as dotted

extensions to the transition arc.

β4

4

β2

β1

D

q

p1

case 3: at u, entering q

υ1: Guided, (D), target=vac, no orbit

υ2: Guided, (D), target=vac, at-orbital

υ3: Guided, (D), target=vac, super-orbital

υ4: Guided, (D), target=vac, orbit cancelled

υ5: Guided, (D), target=vac, sub-orbital

υ6: Guided, (D), target=vac, sub-orbital

p2

p1

q2

q1

u D

historical

state

υ5

p q

occupied

state

υ6

4

υ4

υ1

υ2

υ3

70 © Graham G. Thomason 2003-2004

Figure 65. Entry tree logic for clusters (3) - [model t6293]

 sy

main

statechart sc

p2

p1

q2

q1

c H

historical

state

γ1

p q

occupied
state

γ2

γ9

γ1eff γ9eff

γ11eff

γ21eff

γ3 xc D γx3
eff

z ζ various control functions

cases 4,5: at c or d, choosing p

case 4: γ1,δ1: Guided, (H/N), target=occ, no orbit

case 4: γ9,δ9: Guided, (H/N), target=occ, super-orbital

case 5: γ2,δ2: Guided, (H/N), target=occ, at-orbital

case 5: γ3,δ3: Guided, (H/N), target=occ, sub-orbital

case 5: γ14,δ14: Guided, (H/N), target=occ, sub-orbital

d N

xd D

same as above with events δ1-δ24

γ4eff, γ14eff, γ24eff

γx2
eff

γ11

 γ12

 γ13

 γ14

γ21

 γ22

 γ23

 γ24

γ4

γx2
eff

stands for

 γ2eff

 γ12eff

 γ22eff

γx3
eff

stands for

 γ3eff

 γ13eff

 γ23eff

© Graham G. Thomason 2003-2004 71

Figure 66. Entry tree logic for clusters (4) - [model t6294]

sy

main

statechart sc

case 6: at e or f, entering p

ε1,φ1: Guided, (H/N), target=vac, no orbit

ε2,φ2: Guided, (H/N), target=vac, super-orb

ε3,φ3: Guided, (H/N), target=vac, at-orbital

ε4,φ4: Guided, (H/N), target=vac, sub-orbital

 (for ε1 ε2 ε3 ε4 dho is false on entering e)

z ζ various control

functions

xe

f

xf D

same as above with events φ1-4

N p xq

p2

p1

q2

q1

e

histor-
ical
state

ε3

p
q

occupied

state

ε4

ε2

ε1

D

H xq

ε5

t N

xt D

same as above with events τ1-5

cf case 6: at h or t, entering p

χ1,τ1: Guided, (H/N), target=vac, no orbit

χ2,τ2: Guided, (H/N), target=vac, super-orb.

χ3,τ3: Guided, (H/N), target=vac, at-orbital

χ4,τ4: Guided, (H/N), target=vac, sub-orbital

χ5,τ5: Guided, (H/N), target=vac, sub-orbital

 (for χ1 χ2 χ3 χ4 dho is false on entering e)

Note that the (H) marker

on cluster ‘h’ never has

any effect on the choice of

target-child of cluster ‘q’.

p2

p1

q2

q1

h

histor-
ical
state

χ3

p

q

occupied

state

χ4

χ2

χ1

xh D

H

χ5

72 © Graham G. Thomason 2003-2004

Figure 67. Entry tree logic for clusters (5) - [model t6295]

sy

main

statechart sc

cases 7/8: at k, l or m, entering p

case 7: κ1,λ1,μ1: Unguided, (D/H/dho), target=occ, no orbit

case 7: κ2,λ2,μ2: Unguided, (D/H/dho), target=occ, super-orb

case 8: κ3,λ3,μ3: Unguided, (D/H/dho), target=occ, at-orbital

case 8: κ4,λ4,μ4: Unguided, (D/H/dho), target=occ, sub-orbital

p2

p1

q2

q1

k D

historical

state

p q

occupied
state

κ3

κ1

κ1eff

κ2eff

κ9 κ2

κx3
eff

κx2
eff

l H same as k above with events λ1- λ14

but all target p1

N m

xm D

historical cluster

p3 historical

state

same as k above with events μ1- μ14

so μ4eff μ14eff target p2

Note that the current

cluster always acts

as a more recent

equivalent to history

than the formal

historical cluster.

xk

xl

κ13

κ11 κ12

κ14
κx4

eff κ4

© Graham G. Thomason 2003-2004 73

Figure 68. Entry tree logic for clusters (6) - [model t6296]

sy

main

statechart sc

cases 9/10: at n, the outer cluster p, or r, entering the outer cluster p

case 9: ν1: Unguided, (D/H/dho), targ=vac, orbital, history available

case 9: ν2: Unguided, (D/H/dho), targ=vac, non-orb, history available

case 10: ν1
history cleared

: Unguided, (D/H/dho), targ=vac, orbital, history not available

case 10: ν2
 history cleared

: Unguided, (D/H/dho), targ=vac, non-orb, history not available

Similarly π1,ρ1 etc

N same as n above with events ρ1-2 r

xr D

ρ1

r9

p2

p1

q2

q1

n D

historical

state

p q n9

historical state

historical

state

ν2
ν1

ν1eff ν2eff
(history cleared)

ν1eff

ν2eff

occupied

state

p2

p1

q2

q1

p H

historical

state

p q

historical state

historical

state

π2
π1

π1eff π2eff

(history cleared)
π1eff

π2eff

p9

occupied

state

occupied

state

ρ2

74 © Graham G. Thomason 2003-2004

Figure 69. Entry tree logic for clusters (7) - [model t6297]

sy

main

statechart sc

p2

p1

q2

q1

s N

historical

state

p q s9

historical state

historical

state

σ1 σ2

σ2eff σ1eff

case 11: at s, entering p

σ1: Unguided, no history, target=vacant, orbital, history available

σ2: Unguided, no history, target=vacant, non-orbital, history available

occupied

state

© Graham G. Thomason 2003-2004 75

Figure 70. Entry tree logic for sets [model t6305]

Note that the target states may be in direct hierarchical (i.e. ancestral) relationship, though in

such cases the higher member is redundant in the target specification. This applies to the

target x2 above.

sy

main

statechart sc

x

p5

q5

x1

x2

x3

x4 y4

x5

y5

y1

y2

y3

p2

q2

p3

q3

p1

q1

ξ1->x.x1.((x2/\x2.x3.y4.q5)/\y2.q2)

which, in scope sc.sy.main evaluates to

[[x2,x1,x,main,sy,sc],

 [q5,y4,x3,x2,x1,x,main,sy,sc],

 [q2,y2,main,sy,sc]]

w

r2

historical

state

D

z

effective transition target states

shown thus:

76 © Graham G. Thomason 2003-2004

6.9 Exercising Nondeterminism

The 5000-series of models exercises nondeterminism quite extensively. In this section we add

a few heavy-duty examples.

© Graham G. Thomason 2003-2004 77

6.9.1 Set Transit Nondeterminism

Figure 71. Set Transit Nondeterminism [models t6310, t6311]

Model t6310 is shown (9 sets to exit). Model t6311 contains just member b (7 sets to exit).

Note: event β1, (and more so σ and β2), is likely to cause combinatorial explosion.

a

 b

s

ba

bab

baba

t

α

q

bb

bc

β1

β2

β9

β9

tt

statechart sc

n=n+"s"

x=x+"s"
n and x are string

variables

n=n+" q"

x=x+" q"

q1a

q1b

q1

n=n+"1"

x=x+"1"

n=n+"a"

x=x+"a"

n=n+"b"

x=x+"b"

q2a

q2b

q2

n=n+"2"

x=x+"2"

n=n+"a"

x=x+"a"

n=n+"b"

x=x+"b"

q3a

q3b

q3

n=n+"3"

x=x+"3"

n=n+"a"

x=x+"a"

n=n+"b"

x=x+"b"

p
n=n+" p"

x=x+" p"

p1a

p1b

p1

n=n+"1"

x=x+"1"

n=n+"a"

x=x+"a"

n=n+"b"

x=x+"b"

p2a

p2b

p2

n=n+"2"

x=x+"2"

n=n+"a"

x=x+"a"

n=n+"b"

x=x+"b"

p3a

p3b

p3

n=n+"3"

x=x+"3"

n=n+"a"

x=x+"a"

n=n+"b"

x=x+"b"

n=n+" ba"

x=x+" ba"

n=n+" babbb"

x=x+" babbb" etc.

n=n+" T"

x=x+" T"

n=n+" bab"

x=x+" bab"

babab babaa

n=n+" baba"

x=x+" baba"

babbb babba

n=n+" babb"

x=x+" babb" babb

baa

baaa

n=n+" baa"

x=x+" baa"

baaab baaaa

n=n+" baaa"

x=x+" baaa"

baabb baaba

n=n+" baab"

x=x+" baab"
baab

σ

n=n+" B"

x=x+" B"

applies to

cluster b.

n=n+" A"

x=x+" A"

applies to

cluster a.

bd

β2

β9

Note fork

nondeterminism on

β2

78 © Graham G. Thomason 2003-2004

Figure 72. Race and fork nondeterminism in separate sets [models t6350, t6351]

The full model t6350 is as shown with all transitions in place, including the ones struck out.

We restrict this in t6351 by excluding some transitions as shown by strike-out.

Under the restricted race condition permutation mode

med_set_tran

which gives 2n permutations of n elements (see comments following Figure 41), we have the

following data on event φ.

Table 5. World generation in model t6350

 NF

nr. of forks

NR

nr. in race

nr of worlds

2
NF

.2.NR

Full Model t6350 5 5 2
5
.2.5 = 320

Restricted Model t6351 3 4 2
4
.2.4 = 64

sy

y

statechart sc

z

 f

f1

f1a

f1b
φ5{v=v+"5";}

φ6{v=v+"6";}
f1c

f2

f2a

f2b
φ7{v=v+"7";}

φ8{v=v+"8";}
f2c

 e

e1

e1a

e1b
φ1{v=v+"1";}

φ2{v=v+"2";}
e1c

e2

e2a

e2b
φ3{v=v+"3";}

φ4{v=v+"4";}
e2c

za

zb
φ9{v=v+"9";}

φ10{v=v+"0";}
zc

© Graham G. Thomason 2003-2004 79

6.10 Finding Active Events

Figure 73. Finding active events [model t6410]

Note that on-transition events and variables are evaluated in source-state scope, states in state

parent scope. So $α references the local event α in the examples in cluster a above; $$α is

needed to reference the global α.

s

y

statechart sc

a1

a3

a

a2

β1

β2

p

q

b1

α

γ1

z

γ2

b

r

s

b2

z1 z2

v=6

v=6

 α

α

α

$α($v) =α(v)

α($$v)

$$α(v)

α, β1, ζ1

ι2
α2

ζ2

γ1(v)

δ1(v)

$$α($$v)

α(v,$$v)

$$α(v,$$v,v,col1,str1,bool1)

α(bool1)

α1

ι1

θ

θ

ι1(v)

ι2(v)

ydead

zdead

col1=blue str1="abc"

range enumerated

bool1=true

boolean string event

80 © Graham G. Thomason 2003-2004

6.11 Upon Exit/Upon Enter

These actions are adequately exercised in model t5170.

We reserved model number t6420 for additional tests if needed.

Figure 74. Upon Enter / Upon Exit [model t6420]

6.12 Exercising History

History is adequately tested in model t5220.

We reserved model number t6430 for additional tests if needed.

Figure 75. Model to exercise history [model t6430]

Reserved

Reserved

© Graham G. Thomason 2003-2004 81

7. Stress Testing

7.1 Axes of Stress Testing

The main axes along which stress tests can be constructed are

 size

- broad but shallow (cluster/set)

- deep (cluster/set)

 execution speed

- deterministic situations

- nondeterministic situations

Some performance statistics are given, but timings may vary with the exact loading on the

computer, in terms of core and mass memory, and any additional cpu loading (though the

tests were run without any deliberate extra loading).

Notation: In the performance tables that follow, if an event is denoted as “,β” or “then β”

this refers to processing event β after some previous event(s) – the context should make it

obvious which events. The timing data will apply to the time to process β excluding the time

taken by previous events.

7.2 Model Generation.

The models in this section are generated by generation programs.

Some common code for this is located in the mk_sc directory alongside the rest of

STATECRUNCHER. The model generation modules themselves are located in the test model

directory, alongside the place where the model itself is created, e.g. in directory

 ..StCr\StCr3ModelsTest\t7000st\t7110_stress_broad_clusters

The generation modules are normally loaded with STATECRUNCHER. A typical predicate to

generate a module is

 mk_t7110(10,12). // k=10, n=12

The test suite regenerates the models with the parameters as set in the test scripts.

82 © Graham G. Thomason 2003-2004

7.3 Combinatorial Explosion and Limited Permutation

Note that a major cause of slow performance is combinatorial explosion, due to the

generation of permutations. The permutation options are denoted by FLAGs as follows

Table 6. Flags for permutation control

1 permutation 1 permutation

backwards

2 permutations

forwards and

backwards

2n permutations

all cyclic and

anticyclic

All n!

permutations

f_k1b f_k1b f_k2 f_k3a f_1

The race (transition selection) permutation flag is stored in

 me_permute_trnsel_flag(FLAG).

The set-transit permutation flag is stored in

 me_permute_settrnd_flag(FLAG).

The flags can be set by

 me_set_permute_trnsel_flag(FLAG). (FLAG can be f_k1b, f_k2, f_k3a, f_1)

 me_set_permute_settrnd_flag(FLAG). (FLAG can be f_k1a, f_k2, f_k3a, f_1)

These forms of nondeterminism can also be switched by

 me_no_race. // equivalent to me_set_permute_trnsel_flag(f_k1b).

 me_low_race. // equivalent to me_set_permute_trnsel_flag(f_k2).

 me_med_race. // equivalent to me_set_permute_trnsel_flag(f_k3a).

 me_high_race. // equivalent to me_set_permute_trnsel_flag(f_1).

 me_no_set_tran. // equivalent to me_set_permute_settrnd_flag(f_k1a).

 me_low_set_tran. // equivalent to me_set_permute_settrnd_flag(f_k2).

 me_med_set_tran. // equivalent to me_set_permute_settrnd_flag(f_k3a).

 me_high_set_tran. // equivalent to me_set_permute_settrnd_flag(f_1).

See also the descriptions after Figure 40 and Figure 41.

© Graham G. Thomason 2003-2004 83

Figure 76. Broad clusters [model t7110]

To generate this model: mk_t7110(20,25). // k=20, n=25

Table 7. Performance statistics of model t7110

Model

params

Event PROLOG Op.

System

Processor

speed

Perm

Pm
set-tran

Perm

Pm
race

Time

(20,25) α SWI 5.0.3 Win98 300MHz f_k3a f_k3a 1s

(20,25) then β SWI 5.0.3 Win98 300MHz f_k3a f_k3a 2s

 sy

y1 y4 x1 y2 y3 y5 yn ...

y1 y4 x2 y2 y3 y5 yn ...

y1 y4 xk ky2 y3 y5 yn ...

...

α α α α α α

α α α α α α

α α α α α α

β

β

β

84 © Graham G. Thomason 2003-2004

Figure 77. Broad sets [model t7120]

Note that this model can perform a massive set of transitions on α (but without exiting any

sets), or any individual transition on αxy

To generate this model: mk_t7120(3,4).

Table 8. Performance statistics of model t7120

Model

params

Event PROLOG Op.

System

Processor

speed

Perm

Pm
set-tran

Perm

Pm
race

Time

(3,4) α SWI 5.0.3 Win98 300MHz f_k3a f_k3a 6s

.. then ω f_k3a f_k3a 2m 26s

.. α none f_k3a 6s

.. then ω none f_k3a 0.2s

.. α f_k3a none 0.3s

.. then ω f_k3a none 2m 26s

sy

...

p

 q q

p

...

x1

q

p

q

p α,α11

α,α11

α,α12

α,α12

α,α13

α,α13

α,α1n

α,α1n

c1 c2 c3 cn

p

 q q

p

...

x2

q

p

q

p α,α21

α,α21

α,α22

α,α22

α,α23

α,α23

α,α2n

α,α2n

c1 c2 c3 cn

p

 q q

p

...

xk

q

p

q

p α,αk1

α,αk1

α,αk2

α,αk2

α,αk3

α,αk3

α,αkn

α,αkn

c1 c2 c3 cn

ω

© Graham G. Thomason 2003-2004 85

Detailed note

On event ω, permutations of exited leafstates are generated, e.g. a DXLIST (definitive exit

list) generated by me_sc_6a.pl: me_process_task_in_world is

[[xt_leaf, [q, c1, x1, sy, sc]],

 [xt_leaf, [q, c3, x1, sy, sc]],

 [xt_leaf, [q, c2, x1, sy, sc]],

 [xt_leaf, [q, c1, x3, sy, sc]],

 [xt_leaf, [q, c3, x3, sy, sc]],

 [xt_leaf, [q, c2, x3, sy, sc]],

 [xt_leaf, [q, c1, x2, sy, sc]],

 [xt_leaf, [q, c3, x2, sy, sc]],

 [xt_leaf, [q, c2, x2, sy, sc]]]

There are many other permutations of this list.

This list is the basis of generating upon-exit actions and exit meta-events.

86 © Graham G. Thomason 2003-2004

Figure 78. Deep clusters - to level 5 [model t7130]

To generate this model: mk_t7130(5).

To generate a large model: mk_t7130(10). // source file 1500 lines

x2

x3

x4

p

q
x5

α6

β6

α5

β5

p

q
y5

α6

β6

α4 β4

y4

p

q
x5

α6

β6

α5

β5

p

q
y5

α6

β6

α2 β2

y3

x4

p

q
x5

α6

β6

α5

β5

p

q
y5

α6

β6

α4 β4

y4

p

q
x5

α6

β6

α5

β5

p

q
y5

α6

β6

α3

β3

x1

y2

x3

x4

p

q
x5

α6

β6

α5

β5

p

q
y5

α6

β6

α4 β4

y4

p

q
x5

α6

β6

α5

β5

p

q
y5

α6

β6

y3

x4

p

q
x5

α6

β6

α5

β5

p

q
y5

α6

β6

α4 β4

y4

p

q
x5

α6

β6

α5

β5

p

q
y5

α6

β6

α3

β3

ω

© Graham G. Thomason 2003-2004 87

Table 9. Performance statistics for model t7130

Model

params

Event PROLOG Op.

System

Processor

speed

Perm

Pm
set-tran

Perm

Pm
race

Time

(5) α2 SWI 5.0.3 Win98 300MHz f_k3a f_k3a 0.06s

.. , ω 0.06s

.. α5 0.06s

.. , ω 0.06s

(10) α2 20s

.. , ω 20s

.. α4 16s

.. , ω 16s

.. α10 4 s

.. ,ω 4s

88 © Graham G. Thomason 2003-2004

Figure 79. Deep Sets - to level 5 [model t7140]

To generate this model: mk_7140(5).

x1

x2

x3 y3

y2

x3 y3

p

q

x4

x5 y5

p

q

α,

α_xxxx

β,

β_xxxx

β,

β_xxxy

α,

α_xxxy

p

q

y4

x5 y5

p

q

α,

α_xxyx

β,

β_xxyx

β,

β_xxyy

α,

α_xxyy

p

q

x4

x5 y5

p

q

α,

α_xyxx

β,

β_xyxx

β,

β_xyxy

α,

α_xyxy

p

q

y4

x5 y5

p

q

α,

α_xyyx

β,

β_xyyx

β,

β_xyyy

α,

α_xyyy

p

q

x4

x5 y5

p

q

α,

α_yxxx

β,

β_yxxx

β,

β_yxxy

α,

α_yxxy

p

q

y4

x5 y5

p

q

α,

α_yxyx

β,

β_yxyx

β,

β_yxyy

α,

α_yxyy

p

q

x4

x5 y5

p

q

α,

α_yyxx

β,

β_yyxx

β,

β_yyxy

α,

α_yyxy

p

q

y4

x5 y5

p

q

α,

α_yyyx

β,

β_yyyx

β,

β_yyyy

α,

α_yyyy

ω_x1

ω_xx2

ω_xxx3

ω_xxxx4 ω_xxyx4

ω_xxxy4

y4

ω_xxyy4

ω_xyxx4 ω_xyyx4

ω_xyxy4

y4

ω_xyyy4

ω_xxy3

ω_xxx3 ω_xxy3

ω_xy2

© Graham G. Thomason 2003-2004 89

Table 10. Performance statistics for model t7140:

Model

params

Event PROLOG Op.

System

Processor

speed

Perm

Pm
set-tran

Perm

Pm
race

Time

or problem

(5) α SWI 5.0.3 Win98 300MHz f_k3a f_k3a 2m 55s

.. ,ω_x1 global stack

.. ,ω_xx2 1m 9s

.. α_xxxx 0.7s

.. ,ω_x1 2m 21s

.. α none none 4.3 s

.. ,ω_x1 1.6s

.. ,ω_xx2 1.2s

.. α_xxxx 0.7s

.. ,ω_x1 1.3s

90 © Graham G. Thomason 2003-2004

Figure 80. Alternating sets and clusters [model t7150]

Initial states shaded for clarity.

To generate this model: mk_t7150(5). (It is best to use an odd number).

x2

x3 y3

y2

x3 y3

p

q

x4

x5 y5

p

q

α,

α_xxxx

β,

β_xxxx

β,

β_xxxy

α,

α_xxxy

p

q

y4

x5 y5

p

q

α,

α_xxyx

β,

β_xxyx

β,

β_xxyy

α,

α_xxyy

p

q

x4

x5 y5

p

q

α,

α_xyxx

β,

β_xyxx

β,

β_xyxy

α,

α_xyxy

p

q

y4

x5 y5

p

q

α,

α_xyyx

β,

β_xyyx

β,

β_xyyy

α,

α_xyyy

p

q

x4

x5 y5

p

q

α,

α_yxxx

β,

β_yxxx

β,

β_yxxy

α,

α_yxxy

p

q

y4

x5 y5

p

q

α,

α_yxyx

β,

β_yxyx

β,

β_yxyy

α,

α_yxyy

p

q

x4

x5 y5

p

q

α,

α_yyxx

β,

β_yyxx

β,

β_yyxy

α,

α_yyxy

p

q

y4

x5 y5

p

q

α,

α_yyyx

β,

β_yyyx

β,

β_yyyy

α,

α_yyyy

ω_x1

ω_xx2

ω_xxx3

ω_xxxx4 ω_xxyx4

ω_xxxy4

y4

ω_xxyy4

ω_xyxx4 ω_xyyx4

ω_xyxy4

y4

ω_xyyy4

ω_xxy3

ω_xxx3 ω_xxy3

ω_xy2

x1

α_xx2 β_xy2

β_xxyy4

α_xxyx4

β_xxxy4

α_xxxx4

β_xyyy4

α_xyyx4

β_xyxy4

α_xyxx4

© Graham G. Thomason 2003-2004 91

Table 11. Performance statistics for model t7150

Model

params

Event PROLOG Op.

System

Processor

speed

Perm

Pm
set-tran

Perm

Pm
race

Time

or problem

(5) α SWI 5.0.3 Win98 300MHz f_k3a f_k3a 2.5s

.. ,ω_x1 0.9s

.. α_xx2 2.5s

.. ,ω_x1 2.5s

92 © Graham G. Thomason 2003-2004

Figure 81. Intensive fork and race non-determinism [model t7160]

To generate this model: mk_t7160(4,5). //k=4, n=5

s

a

b1
a1 α{v=v*10+1;}

b2

b3

b4

bn

...

α{v=v*10+1;}

α{v=v*10+1;}

α{v=v*10+1;}

α{v=v*10+1;}

a

b1
a2 α{v=v*10+2;}

b2

b3

b4

bn

...

α{v=v*10+2;}

α{v=v*10+2;}

α{v=v2*10+2;}

α{v=v*10+2;}

a

b1
a3 α{v=v*10+3;}

b2

b3

b4

bn

...

α{v=v*10+3;}

α{v=v*10+3;}

α{v=v*10+3;}

α{v=v*10)+3;}

a

b1
ak α{v=v*10+n;}

b2

b3

b4

bn

...

α{v=v*10+n;}

α{v=v*10+n;}

α{v=v*10+n;}

α{v=v*10+n;}

...

ω _a1

ω

ω _a2

ω _a3

ω _ak

© Graham G. Thomason 2003-2004 93

Table 12. Number of worlds for model t7160

For k3 For k=2

 Under f_1 (full) permutations = n
k
 . f_1(k) = n

k
.(k!) = n

k
.(k!)

 Under f_k3a race-permutations = n
k
. f_k3a(k) = n

k
.(2k) = n

k
.(k!)

 Under f_k2 race-permutations = n
k
. f_2(k) = n

k
.(2) = n

k
.(k!)

(k,n) n
k
 f_1

f_k3a

f_2

full

perm

 f_k3a

perm

 f_k2

perm

(1,1) 1
1
=1 1!=1 1 1 1.1 = 1 1.1 = 1 1.1 = 1

(1,2) 2
1
=2 1!=1 1 1 2.1 = 2 2.1 = 2 2.1 = 2

(1,3) 3
1
=3 1!=1 1 1 3.1 = 3 3.1 = 3 3.1 = 3

(1,4) 4
1
=4 1!=1 1 1 4.1 = 4 4.1 = 4 4.1 = 4

(1,5) 5
1
=5 1!=1 1 1 5.1 = 5 5.1 = 5 5.1 = 5

(2,1) 1
2
=1 2!=2 2 2 1.2 = 2 1.2 = 2 1.2 = 2

(2,2) 2
2
=4 2!=2 2 2 4.2 = 8 4.2 = 8 4.2 = 8

(2,3) 3
2
=9 2!=2 2 2 9.2 = 18 9.2 = 18 9.2 = 18

(2,4) 4
2
=16 2!=2 2 2 16.2 = 32 16.2 = 32 16.2 = 32

(2,5) 5
2
=25 2!=2 2 2 25.2 = 50 25.2 = 50 25.2 = 50

(3,1) 1
3
=1 3!=6 6 2 1.6 = 6 1.6 = 6 1.2 = 2

(3,2) 2
3
=8 3!=6 6 2 8.6 = 48 8.6 = 48 8.2 = 16

(3,3) 3
3
=27 3!=6 6 2 27.6 = 162 27.6 = 162 27.2 = 54

(3,4) 4
3
=64 3!=6 6 2 64.6 = 384 64.6 = 384 64.2 = 128

(3,5) 5
3
=125 3!=6 6 2 125.6 = 750 125.6 = 750 125.2 250

(4,1) 1
4
=1 4!=24 8 2 1.24 = 24 1.8 = 8 1.2 = 2

(4,2) 2
4
=16 4!=24 8 2 16.24 = 384 16.8 = 128 16.2 = 32

(4,3) 3
4
=81 4!=24 8 2 81.24 = 1944 81.8 = 648 81.2 = 162

(4,4) 4
4
=256 4!=24 8 2 256.24 = 6144 256.8 = 512 256.2 = 512

(4,5) 5
4
=625 4!=24 8 2 625.24 = 15000 625.8 = 5000 625.2 = 1250

(5,1) 1
5
=1 5!=120 10 2 1.120 = 120 1.10 = 10 1.2 = 2

(5,2) 2
5
=32 5!=120 10 2 32.120 = 3840 32.10 = 320 32.2 = 64

(5,3) 3
5
=243 5!=120 10 2 243.120 = 29160 243.10 = 2430 243.2 = 486

(5,4) 4
5
=1024 5!=120 10 2 1024.120= 122880 1024.10= 10240 1024.2= 2048

(5,5) 5
5
=3125 5!=120 10 2 3125.120= 375000 3125.10= 31250 3125.2= 6250

Note that event ω does not clear variable data, and so does not reduce to one world. The

actual number of worlds is Perm(k), using the selected restricted-permutation generator.

94 © Graham G. Thomason 2003-2004

Table 13. Performance statistics for model t7160

[SWI-Prolog 5.0.3 / Windows98]:

Model

params

Event Nr of

Worlds

Processor

speed

Perm

Pm
set-tran

Perm

Pm
race

Time

or problem

(2,3) α 118 300MHz f_k3a f_k3a 1.3s

(2,3) ,ω 182 0.8s

(2,4) α 132 3.7s

(2,4) ,ω 322 1.8s

(3,2) α 148 10.6s

(3,2) ,ω 486 10.0s

(3,3) α 1162 1m 53s

(3,3) ,ω 1626 3m 15s

(3,4) α 1384 18m 3s

(3,4) ,ω 3846 11m 0s

(4,2) α 1128 1m 59s

(4,2) ,ω 1288 4m 02

(4,3) α 1648 >1hr 30m

(4,3) ,ω 6488 untested

[WinProlog 4.010 / Win98]:

(3,4) α 1384 >1hr

(3,4) ,ω 3846 untested

It was noted that uncompleted event processing, under SWI- and Win- Prolog, involved

intense disk activity - it could be that with more core memory the events will complete in

much less time.

© Graham G. Thomason 2003-2004 95

Figure 82. Stressing transition prioritization [model t7170]

To generate this model : mk_t7170(5).

Table 14. Performance statistics for model t7170 [SWI-Prolog 5.0.3 / Win98]:

Model

params

Event Worlds Processor

speed

Perm

Pm
set-tran

Perm

Pm
race

Time

(20) α 12 300MHz f_k3a f_k3a 0.3s

.. β 21 0.3s

x0

z1

x1

z2 z3 z4 z5

x6

z6

x2

x3

x4

x5

α[bz6]

β

α[bz5] α[bz4] α[bz3] α[bz2] α[bz1]

β β β β β

y1 y2 y3 y4 y5

α[by5] α[by4] α[by3] α[by2] α[by1]

β β β β β

y6
β

α[by6]

ω

96 © Graham G. Thomason 2003-2004

Figure 83. Long-chain broadcast-event non-determinism [model t7180]

To generate model to b(20): mk_t7180(20).

Table 15. Performance statistics for model t7180(20)

Model

params

Event PROLOG Op.

System

Processor

speed

Perm

Pm
set-tran

Perm

Pm
race

Time

(20) β1 SWI 5.0.3 Win98 300MHz f_k3a f_k3a 1.0s

(20) ,ω SWI 5.0.3 Win98 300MHz f_k3a f_k3a 16s

s

β1->b1b{fire β2;}
b1a b1b

β2->b2b{fire β3;}

b2a b2b

b1

b2

β3->b3b{fire β4;}
b3a b3b

b3

β4->b4b{fire β5;}
b4a b4b

b4

β
n-1
->b

n-1
b{fire βn;}

b
n-1

a b
n-1

b

bn-1

...

ω

βn->bnb;
bna bnb

bn

© Graham G. Thomason 2003-2004 97

Figure 84. Broad broadcast-event nondeterminism [model t7190]

To generate this model: mk_t7190(20).

Table 16. Performance statistics for model t7190(20)

Model

params

Event

PROLOG Op.

System

Processor

speed

Perm

Pm
set-tran

Perm

Pm
race

Time

(20) β SWI 5.0.3 Win98 300MHz f_k3a f_k3a 1m50s

(20) ,ω SWI 5.0.3 Win98 300MHz f_k3a f_k3a 23s

s

β->b1b{fire γ;}
b1a b1b

γ ->b2b

b2a b2b

b1

b2

γ ->b3b
b3a b3b

b3

γ ->b4b
b4a b4b

b4

γ ->b
n-1
b

b
n-1

a b
n-1

b

bn-1

...

ω

γ ->bnb;
bna bnb

bn

98 © Graham G. Thomason 2003-2004

8. Conventions

8.1.1 Omega Transitions

Statecharts to exercise the state machine engine may contain implicit additional control

transitions (named omega...) for the purpose of putting the statechart in a specific state (in

particular leafstates) prior to a test.

Figure 85. Omega transitions

Notes

 When priming a model, omega transitions to leaf-states are all that is required. Omega

transitions to non-leaf-states are only needed in testing entry to the correct default state.

The above diagram shows just one omega-transition (ω_a) to a non-leaf-state.

 In order to be unique, the naming of an omega transition may have to incorporate the

machine path (not necessary in the above model).

 The event ω_vreset is used to reset variables, and ω_hreset to clear history,

triggering an internal transition at a high level in the hierarchy

statechart sc
s

za zb

z

y

bba

bbb

baa

bab

aba

abb

aaa

aab

a

ba ab

b

aa bb

ω_zb

ω_za

ω_aaa

...

ω_abb

ω_a

© Graham G. Thomason 2003-2004 99

9. STATECRUNCHER References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

