

The Design and Construction of a State Machine

System that Handles Nondeterminism

Graham G. Thomason

Submitted for the Degree of

Doctor of Philosophy

from the

University of Surrey

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

Summary

We describe a language system (called STATECRUNCHER) which implements statecharts,

handling nondeterminism in a novel way. Statecharts specified in the style of UML dynamic

models can generally easily be expressed in STATECRUNCHER. STATECRUNCHER is intended

as a test oracle, working in conjunction with a test generator and a test harness connected to

an implementation. Such a tool chain tests an implementation for conformance against a

specification (compare model checking, which checks properties of a specification without the

need for an implementation). Nondeterminism is becoming an increasingly important issue,

especially in integration testing, where internal behaviour may be subject to some freedom,

and where control over subsystems is limited, so that alternatives in behaviour are acceptable.

We cover the language, its implementation, and experience with it in a tool chain

automatically generating and executing tests on embedded software at the sponsoring

company, Philips Electronics N.V.

© Graham G. Thomason 2003-2004 iii

Acknowledgements

Thanks are due to my supervisors:

 Timotheo Trew, ars cui summa est, studium doctrinae pudorque. quem magni artifices

semper dicunt magistrum. doctior hoc nemo est; potest quem vincere nemo programmata

qui noverit probare.

 Aan Prof. Paul Krause. Hij bezit de grootste vaardigheid, enthousiasme voor het vak, en

bescheidenheid. Grote waarschijnlijkheidsleerdeskundigen noemen hem steeds meester.

Niemand is geleerder dan hij; niemand kan hem overtreffen die kan redeneren onder

onzekerheid.

 To Dr. David Pitt, who has the greatest skill, enthusiasm for his subject, and modesty.

Great academics always call him the expert. No-one is more scholarly than he; no-one

who knows how to formally specify a system can surpass him.

If STATECRUNCHER is found to have syntax and semantics that map well to (models of) a

variety of industrial systems, —that are intuitive to system architects and testing practitioners,

—that are powerful enough to satisfy the intellectually adventurous, —then this is thanks to

the expert guidance of Tim Trew.

If STATECRUNCHER is found to be of interest to the scholarly world, and if the works of the

scholarly world are found to be amenable to engagement with STATECRUNCHER, then thanks

for this are due to Prof. Paul Krause who first proposed that the present author submit the

work in an academic context.

If the present thesis bridges the proverbial industrial-academic gap, then thanks are due to Dr

David Pitt, without whose assistance much of the academic side would have remained an

unknown quantity.

Thanks are also due to Nitin Koppalkar at Philips Research India Bangalore for his competent

integration skills in a cross-continental co-operation to see the successful integration of

STATECRUNCHER in the TorX tool chain, and subsequent testing of various embedded

software components.

Thanks are also due to many others at Philips, including my internal customer Ing. Wil

Hoogenstraaten at Consumer Electronics who was contract research project owner for this

project, and Bob Barnes at Philips Digital Systems Laboratories Redhill, whose support for

the undertaking was invaluable.

iv © Graham G. Thomason 2003-2004

Contents

1. Introduction .. 1

1.1 Context of the work .. 1

1.2 The problem to be considered ... 1

1.3 A peek at the result of the work .. 2

1.4 What STATECRUNCHER is not ... 2

1.5 The structure of this thesis .. 4

2. Software testing in context ... 5

3. State-based testing and STATECRUNCHER overview ... 9

3.1 States and events ... 9

3.2 Deterministic state-based testing .. 12

3.3 Nondeterministic testing ... 25

3.4 STATECRUNCHER and the TorX tool chain .. 26

3.5 Alternative modelling techniques to state-based modelling 26

3.6 Summary of this section ... 28

4. Nondeterminism ... 29

4.1 Review of nondeterministic testing ... 29

4.2 Fork nondeterminism .. 30

4.3 Race nondeterminism ... 33

4.4 Set transit nondeterminism ... 35

4.5 Fired-event and multiple nondeterminism .. 36

4.6 Set-action nondeterminism ... 38

4.7 Set-meta-event nondeterminism ... 39

4.8 Effects of nondeterminism .. 41

4.9 Worlds .. 42

4.10 Containment of combinatorial explosion .. 44

4.11 Test generation under nondeterminism ... 63

4.12 Summary of this section ... 64

5. STATECRUNCHER as a language .. 66

5.1 General syntax .. 66

5.2 STATECRUNCHER statements... 68

5.3 Basic syntax of statechart / cluster / set and (leaf-)states in a hierarchy 69

5.4 More about hierarchical states .. 70

5.5 Declarations and scoping .. 75

5.6 Expressions, operators and functions .. 80

5.7 Review of items parsed as expressions ... 99

5.8 Transition block .. 101

6. Algorithmic sequencing .. 118

6.1 Cycling ... 119

© Graham G. Thomason 2003-2004 v

6.2 Maintaining machine integrity .. 120

6.3 An in-flight approach .. 124

6.4 An after-landing approach .. 131

6.5 Client-server composition and PCOs .. 133

6.6 Conclusions on the sequencing in the transition algorithm 135

7. The transition algorithm ... 136

7.1 The formal statechart and the nondeterministic transition function 136

7.2 Statechart properties ... 139

7.3 Transition selection ... 142

7.4 Discussion of hierarchical fork nondeterminism ... 145

7.5 Transition course .. 150

7.6 Task processing .. 165

8. The STATECRUNCHER command language ... 190

9. Using STATECRUNCHER .. 195

9.1 Data flow .. 195

9.2 Running STATECRUNCHER .. 196

9.3 Testing of STATECRUNCHER ... 197

9.4 The dining philosophers.. 198

10. Experience with STATECRUNCHER and conclusions ... 218

10.1 Experience at Philips .. 218

10.2 PROLOG as the implementation language ... 226

10.3 Future directions ... 229

10.4 Final conclusion .. 233

11. Glossary and abbreviations etc. .. 234

11.1 Greek letters .. 234

11.2 Glossary and abbreviations ... 234

12. References .. 239

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

vi © Graham G. Thomason 2003-2004

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

© Graham G. Thomason 2003-2004 1

1. Introduction

1.1 Context of the work

We are concerned with testing embedded and distributed software systems. They are difficult

to test, yet it is vital that they are properly tested, as consumers expect reliable products. The

introduction of component technology has facilitated the design and construction of such

systems, but the issue of integration testing remains – indeed the lack of knowledge of

component internals may increase the potential for integration faults, c.f. [Trew 01]. Lack of

implementation knowledge may translate itself into a nondeterministic view of a component,

where several behaviours are acceptable. This, too, increases the complexity of testing.

Furthermore, system composability leads to large state spaces from which, for an effective

test-suite, an intelligently selected subspace must be distilled – as a separate problem in its

own right.

We discuss software testing in more detail in the next main section, and in more detail still in

the appendix [StCrContext], where we consider various approaches to automating test

execution and test generation. In the present introduction, we focus on the approach that is our

main subject matter: state-based testing.

1.2 The problem to be considered

One of the most successful approaches taken to software testing is state-based-testing. Tests

(and their ‘oracle’) can be automatically generated from a model based on a description of

state behaviour. The statechart concept of [Harel] has made this approach much more

manageable than it was previously, with large, flat state machines, and statecharts are now

part of standard [UML] dynamic modelling. In this area, Philips Research has in the past

helped deploy State Relation Tables [Yule] and Concurrent Hierarchical State Machines

[CHSM]. These tools are powerful but they have limitations. Neither can deal with

nondeterminism, a factor that is becoming increasingly important. Although Philips Research

can demonstrate many techniques to address these issues, they use special, often academic,

products such as the Concurrency Workbench [CWB], or LOTOS or PROMELA based tools,

such as [SPIN], that would not be suitable for direct use by most testing practitioners. An aim

of the present research programme as a whole at Philips is to provide an integrated toolset that

is sufficiently easy to deploy for use on development sites. UML is well-known to many

software professionals, and the UML dynamic model – the statechart – is the basic model

from which we wish to derive tests. The broad problem considered is: how best to test

(composed) systems based on a nondeterministic UML dynamic model. We tackle a specific

aspect of this problem, the design and construction of a UML-statechart based

nondeterministic test oracle, since existing tools for the remainder of a testing tool chain are

conveniently already in place, thanks to e.g. the TorX tool chain delivered by the Côte de

2 © Graham G. Thomason 2003-2004

Resyste project [CdR]. While constructing our nondeterministic oracle program, we

investigate the usefulness of PROLOG as the implementation language for compilation and as

a runtime ‘machine engine’.

1.3 A peek at the result of the work

The work underlying this thesis has resulted in a state based test oracle program called

STATECRUNCHER. Its main novel and distinguishing feature is its handling of

nondeterminism. In STATECRUNCHER, provision has also been made for component

composition at a language level by its scoping operators.

At the time of writing, STATECRUNCHER is being used with the TorX tool chain (which is part

of the Côte de Resyste [CdR] project) to derive tests from formal specifications. Philips

Research India - Bangalore (PRI-B) is testing software components using this tool chain,

illustrated in the following figure:

Figure 1. STATECRUNCHER in a tool chain

Experience with this tool chain is described in the concluding part of this thesis (chapter 10).

1.4 What STATECRUNCHER is not

Remembering that STATECRUNCHER is a test oracle program, we discuss the issue of what

STATECRUNCHER is not, for clarification with respect to related disciplines.

STATECRUNCHER is not a property checker

We distinguish two kinds of tool: model checkers and simulators/test oracles. The

corresponding activities may be called property checking and testing respectively. A software

system needs a design and an implementation, and both need a separate kind of tool and

activity to ensure the quality of the final system
1
.

1
 Property checking is often called software verification [Bérard], but others, e.g. [Callahan],

effectively equate validation with property checking, and verification with testing. Neither [IEEE-

610.12.1990] nor [CMMI] makes a clear distinction of the V&V terms along these lines. They should

always be looked at in context.

STATECRUNCHER

Compiler/

Validator

Machine

Engine

System
Under

Test

Textual
Dynamic

Model

Test case
generator

Test

Report

Test

 harness

Glue
code/

Glue

tools

Component

Specification

© Graham G. Thomason 2003-2004 3

The distinction is as follows:

 The design must guarantee certain properties, e.g. safety, liveness, fairness, freedom from

deadlock. Given a formal design, such as a statechart with properties attached to states,

and a formulation of the properties required in a system, a model checker can attempt to

prove them. Two possible limitations are: the expressiveness of the property language

(typically a temporal logic), and the size of the state space (though some techniques allow

for vast numbers of states).

 Given a design, the system must be implemented, and the implementation tested.

Televisions, mobile phones etc. are a combination of hardware and software. The concept

of being in a state means much more to a real system than to a simulator: mobile phone

transmitters may be switched on, threads may be waiting for semaphores, buffers should

have certain content, such as a teletext page. Testing involves making sure that these

things that should happen really do happen. The state model tells us what it is that should

happen.

A slogan popular in Philips in the 1990s was: Doing the right thing and doing things right.

This is like saying: checking the properties of the design, and testing that the implementation

conforms to the design. Both are extremely important, but distinct.

Despite the above, model checking tools necessarily have state exploration capabilities,

whether by exhaustive search or algebraic manipulation, and some tools offer verification and

simulation facilities, e.g. [SPIN]. For an interesting combination of tools, using a property

checking tool to generate state-based test inputs, see [Jagadeesan].

STATECRUNCHER was designed as a test oracle, and the thrust of the main thesis is that its

design will help in testing. Nevertheless it could be used to verify properties, given the aid of

an additional tool communicating with it, because it offers facilities which will help in

exploring state spaces. However, STATECRUNCHER is probably not a very efficient tool for

this purpose.

The appendix with a bibliography [StCrBiblRef] includes many references to property

checking because it is a closely related field to testing.

STATECRUNCHER is not a test generator

There are two concerns in state based testing that can usefully be separated out: (1)

determining what test to perform and (2) obtaining an expected result (an oracle) to that test.

A tool for the first is a test generator; a tool for the second is a simulator or oracle program.

STATECRUNCHER belongs to the latter category. We mention test generation techniques in

section 3.2.4 and include many annotated references in our appendix [StCrBiblRef], since it is

an important related subject.

4 © Graham G. Thomason 2003-2004

1.5 The structure of this thesis

We first put software testing in context. Then we introduce the concepts of state behaviour

and state-based testing, with an introduction to STATECRUNCHER's role in this. Special

attention is given to handling of nondeterminism, as this is the main novel feature in the

system. The subsequent section covers the syntax of STATECRUNCHER in more detail. This is

followed by a discussion of approaches to detailed transition semantics, and the chosen

transition algorithm is described in depth. Since STATECRUNCHER is intended to work with

other tools, its command-level interface is explained. Finally, the deployment of

STATECRUNCHER at Philips is discussed, and the PROLOG-based implementation technology

is reviewed. There are various appendices to this thesis to support many of the discussions in

more detail, including a comparison of STATECRUNCHER's semantics with those of some

process algebras. There are also many “related reports”, based on Philips reports produced in

connection with the work. These are listed under the references.

STATECRUNCHER has been implemented in PROLOG, but the ordinary user need not be

aware of this, because STATECRUNCHER has its own syntax which is independent of

PROLOG. Nevertheless, the author feels that some samples of PROLOG code, for some key

algorithms, are valuable for the record, and they have been included in this thesis.

© Graham G. Thomason 2003-2004 5

2. Software testing in context

In this section we describe the various kinds of software testing activities and what the aim is

in each case. This will give a context to our main theme of state-based testing. For a more

detailed discussion of what kind of testing is applicable under what circumstances, the reader

is referred to appendix [StCrContext].

The V-model for the software development life-cycle is well-known from standard works on

software engineering. The testing phases of this model are shown in Figure 2.

Figure 2. V-model and testing

The V-model identifies various kinds of testing activity, and each has its own emphasis. We

consider the aims of and techniques for each form of testing, starting at the bottom of the

V-model and working up the right-hand side:

 Code checking in general: Static analysis can reveal bad coding style and possible

pitfalls. Dynamic techniques can check for memory leaks and can provide code

coverage, such as statement coverage, described in more detail in [StCrContext].

 Module testing: The question to be answered is: Does the implementation correspond

to the design? Modules are usually single functions, or a small number of tightly

coupled functions designed against a single specification. Exercise code statements

and branches. Use code instrumentation to check for coverage of these. Also include a

memory leak check in the tests. Module testing is typically white-box testing - we

have a knowledge of the code structure and use it to guide us in designing test cases,

and we have detailed controllability and observability of the module.

Coding

Requirements

System

design

Module

design

System

test

Integration

test

Module

test

tests

tests

tests

Code

checking

checks

6 © Graham G. Thomason 2003-2004

 Integration testing: The question to be answered is: Is the design internally

consistent? Exercise interfaces between modules. Measure call-pair coverage (i.e.

every call and every return from it). Integration testing is typically black-box testing -

some modules may even be only available as object code, and the only way we can

test the integrated system is via the published interfaces.

 System testing. The question to be answered is: Does the system satisfy the project

requirements? This will typically be a black-box testing activity, since the

requirements do not normally specify internal controllability and observability, but

rather the operations and their outputs to which the end-user has access. For some

kinds of system, a part of system testing will be volume testing. For example, a set-

top box will need to be tested with large quantities of MPEG streams, and a Global

Positioning System will need to be tested with large quantities of sampled radio-front-

end (intermediate frequency) satellite data.

All the above testing phases are suitable for at least some automation. There are two levels of

test automation: automated test execution and automated test generation.

Automated test execution

The first level of automation is to be able to run tests automatically and have a test report

produced. Tests are preferably called in a uniform way, and each test should provide its own

pass/fail criterion. The test report should produce a uniform description of whether each test

passed or failed. A tool providing facilities for doing this is called a test harness. We can

picture automatic execution of tests as follows:

Figure 3. Automated test execution

There are good commercial and public domain test harnesses. A Unix-based public-domain

test harness with which Philips Research has considerable experience is Deja Gnu

[DejaGnu]. A commercial tool for GUI-driven testing under Windows NT with which Philips

Research is also familiar is WinRunner [WinRun]. A Philips Research tool to give an

Test script

Test report

System

Under Test

Test Harness

© Graham G. Thomason 2003-2004 7

(embedded) multi-threaded application a GUI so that it can be tested using WinRunner is

GFET [GFET].

A second level of automation is automated test generation. In this case we have some formal

specification or model of the system to be tested. From that we derive tests, either as a batch

or dynamically during testing.

Figure 4. Automated test generation

The kinds of model that are most used for automated test generation are:

 A state behaviour model, or statechart, such as the UML dynamic model

 A cause-effect graph (or a decision table, which is a simple form of cause effect graph)

 A grammar of a language or protocol for syntax testing

 Orthogonal arrays for parameter/property interaction testing.

The next section of this thesis focusses on state behaviour and modelling. The other

techniques are described briefly at the end of that section. More detail on them is given in the

appendix [StCrContext].

In addition to being aware of model-based testing techniques, the tester should be aware of

other technical considerations in ensuring adequate testing, such as a static and dynamic

analysis of code properties. We have mentioned measuring the degree of statement and

branch coverage exercised in a test suite, (preferably using code instrumentation techniques);

this gives guidance on how to design more tests to cover unexecuted statements and branches.

Similarly data flow analysis techniques examine the declaration, write-usage, read-usage, and

destruction of variables, signalling any anomalies. These and related techniques are well

described in [Beizer] and [BCS-SIGIST].

test script generation

or on-the-fly testing

Test script

Test report

System

Under Test

Test Harness

Model of System under Test

8 © Graham G. Thomason 2003-2004

Summary of this section

We have seen that different forms of testing are applicable in different phases of the V-model.

Code can be statically analysed and instrumented for dynamic checking and coverage

measurement. Testing is more efficient when automatically executed, and for this we use a

test harness, and define all tests in a uniform way, where each test defines its own pass/fail

criterion. Results are logged to a test report. Further gains are made when we automatically

generate tests, using a model of the system under test. We mentioned state behaviour models,

cause-effect graphs, grammars, and the use of orthogonal arrays. These will be described in

the next section, with a heavy emphasis on state behaviour models, since that is the area we

focus on in this thesis.

© Graham G. Thomason 2003-2004 9

3. State-based testing and

STATECRUNCHER overview

In this section we consider what is meant by a system state and an event, both from the

perspective of a mental model of a system, and from the microscopic computer hardware

perspective. We show how a model of state behaviour can be used in test generation and

execution. The question of how to represent the model is addressed, leading to the concept of

a statechart. Then we introduce STATECRUNCHER as a statechart system, restricting ourselves

to deterministic situations while we introduce the fundamental features. White box and black

box testing issues are addressed. Nondeterministic testing is mentioned, but details are

reserved for the next section, as this is a major topic. STATECRUNCHER cannot perform testing

on its own, and we mention how it can fit into the TorX tool chain as an example of a

complete testing tool chain. We conclude the section with a brief look at alternative testing

approaches to state-based testing.

3.1 States and events

Many systems can be modelled according to their state behaviour – that is their state and how

the state changes as a result of some stimulus or signal, which we call an event.

Under this modelling technique, if a system is “in a particular state”, it will remain so

indefinitely until an event occurs. In other words, the notion of a state entails durability - the

state exists over a period of time. Even if a system enters a particular state s1 and there is an

event ready and waiting to cause a change of state (say to state s2), we still regard the moment

when the system is in state s1 as a point at which the system has become stable in terms of its

state behaviour. At such a point, the state of the system (in a wide sense) will map to a state in

our model of the system.

Events are modelled as instantaneous signals which have no duration. They are able to trigger

some processing in the system which may or may not result in a new state. In some states,

events may effectively be ignored by the system without any further processing at all, so

leaving the system in its previous state.

While the system is processing an event, at a modelling level we do not talk about its state,

while still recognising that the system will assume ‘states’ at a detailed level which we do not

model. At a modelling level we regard processing an event ideally as an infinitely fast and

atomic activity, whilst recognising that real-world implementations require time to process

events.

10 © Graham G. Thomason 2003-2004

If an event would appear to require duration, the situation should probably be modelled by

two events (start x and stop x events) and an intermediate state (doing x).

A system may be of the kind that theoretically runs indefinitely, such as an operating system

or real-time kernel, or it may have a clear lifecycle. But even operating systems can generally

be closed down in a controlled way.

A simple picture of a system state lifecycle under a specific set of events, (so not a state

transition diagram, which will be introduced later) is as follows:

Figure 5. Specific system-life-cycle – abstract example

As a concrete example, we take using a television (in a simplified way - for example tuning

and teletext page acquisition are regarded as instantaneous). Here we place the time axis

vertically

Figure 6. Specific system-life-cycle – concrete example: Television

We have a concept of a state as something durable until an event is presented and processed.

Systems characterized by this kind of behaviour are called reactive systems, since they do

state 1

time

state 2 state 3

event α

state 2

system

startup event β

event δ

(causes system

termination) event γ event γ

switch on

press 2

press Txt

press 3

press 7

press 4

press Txt

switch off

time

off

Channel 1 audio/video

Channel 2 audio/video

Channel 2 Teletext - page 100 & no digit stored

Channel 2 Teletext - page 100 & first digit stored

Channel 2 Teletext - page 100 & second digit stored

Channel 2 Teletext - page 374 & no digit stored

Channel 2 audio/video

off

state event

© Graham G. Thomason 2003-2004 11

nothing until they react to an event. For a computer system, this suggests that the system is

actually idle (as regards machine processing cycles) when it has settled into a state. However,

this need not be the case. For example, a multi-threaded application might be modelled with

states which represent the fact that low priority threads are running - such a system would still

be able to react to events which interrupt at a higher priority. It may even be necessary to

represent cpu-bound tasks as states, perhaps using several states so as to model events as

having been recorded but unable to be processed until the task completes.

Input data to a program can also often conveniently be thought of as a sequence of events. In

this case, the program will normally have instant access to the “next event” (apart perhaps

from an occasional disc-access), and so will be cpu-bound, but this does not detract from the

state model. An example of such a kind of program is a compiler where the input tokens can

be regarded as events; the state is some record of completed successful parsing of ‘terms’ in

production rules.

We can ask the question: what does it mean to say a computer system is in a particular state?

The system modeller may distinguish states according to a mental model of the system, or

according to situations (such as use-case situations) from the requirements or specification

documentation.

It should be possible to distinguish in the system implementation between states which the

modeller has defined somehow - either by direct observation of the system, or by examining

the system behaviour as further events are presented and processed. If two states show

identical responses to any sequence of events that is processed from a system in such a state,

then they are indistinguishable and are best modelled as one state, so as to avoid redundancy

in the model.

Conversely, if a particular state has been defined in a model, that state must show identical

behaviour as regards its response to further events, irrespective of how that state was arrived

at by preceding sequences of events.

As an initial modelling technique, we consider a system as being in just one state at any one

time. This will be extended later.

We can also describe the state at a microscopic level. A computer application, based on binary

memory and registers, at the finest level of detail, has as many states as bit patterns in its

memory and registers (e.g. program counter, accumulator, working registers, overflow and

carry indicators, interrupt registers, device registers, system clock) - as far as these can

impinge on the application - in other words 2
N
, where N is the number of bits in all this

memory and registers. The macroscopic states that a system modeller defines are equivalence

classes of the microscopic states.

12 © Graham G. Thomason 2003-2004

3.2 Deterministic state-based testing

Deterministic systems always process an event from a given state in the same way.

Nondeterministic systems show alternative permissible outcomes. This is usually due to

working at a level of abstraction at which detailed system information is lacking, or because

of limited control and observation of the IUT (Implementation Under Test). We first consider

the deterministic case.

When states are controllable (i.e. we can directly set any state in the IUT), and are observable,

we have the white-box situation. If states can only be set by driving the system through a

transition sequence to reach them, and if states must be deduced from system output produced

on transitions (traces), then this is a black box situation. We consider these in turn.

3.2.1 White box testing

We wish to exercise all events under all state configurations. For a state machine consisting of

three parallel machines, we wish to execute the following pseudo-code:

For each state i in parallel machine 1

 For each state j in parallel machine 2

 For each state k in parallel machine 3

 For each event

 {

 Put machine 1 in state i

 Put machine 2 in state j

 Put machine 3 in state k

 Process event

 Check IUT is in correct state

 }

The oracle comes from some executable state behaviour model (SBM). The process of

sending instructions to the SBM and IUT is illustrated in the following figure:

Figure 7. White-box state-based testing

A typical message-sequence diagram of the testing process is as follows:

State Behaviour

Model (SBM)

Implementation

Under Test (IUT)

compare

set

state

process

event

get

state

set

state

process

event

get

state

Test Script

© Graham G. Thomason 2003-2004 13

Figure 8. Message Sequence Diagram for White-Box State Based Testing

There is an issue as to whether the “For all events” loop should refer to all events that are

transitionable (i.e. they will trigger some transition) from the state as set in the outer loop, or

to all events in the model absolutely. A possible problem with the latter is that some tests may

be hard to run, or be unrunnable. This might be because a certain event cannot be offered to

the implementation for processing in certain states. For example, one cannot press a button on

a GUI (graphical user interface) if that button is not present in some context (though one can

verify that the button really is absent). As another example, one cannot call a function on a

certain thread if that thread is currently executing another function. So certain tests may have

to be excluded. A caveat to the tester is that when a designer or developer says “the program

logic precludes the situation where this event is offered to this state”, the tester should verify

this before accepting it, by some form of testing and/or by a code review.

How should the state behaviour be represented? Early work used a state-relation table, or

SRT, in which entries in the first columns define initial states, a middle column contains the

event, and the latter columns define final states, i.e. states after processing the event. The use

of wildcards can help keep the table size reasonable. An SRT has affinities with a decision

table. At Philips, a program by David Yule has been used to obtain an oracle to state

behaviour this way, to test inter alia a DVD player and a set-top box. As an example (without

parallelism), the figure below shows a dynamic model of a smart card reader, followed by part

of an SRT representing it.

Test

Script
IUT SBM

set state x set state x

process event ξ

done
done

process event ξ

done
done

get state get state

state = y1
state = y2

compare y1 and y2

14 © Graham G. Thomason 2003-2004

Figure 9. Dynamic model of smart card reader

The state-relation table below represents part of the above model, using the notation “?” for a

wildcard, and “#0” for as in the first column.

Start State Event Result State

Disconnected Connect No_Card

Disconnected ? #0

? Disconnect Disconnected

No_Card InsertCard Resetting

No_Card ? #0

? RemoveCard No_Card

Error ErrorHandled Resetting

Table 1. Partial state-relation table for a smart card reader

A disadvantage to state-relation tables is that they are hard to maintain (“write only”). What is

needed is something that users can more easily relate to the diagram of a statechart.

3.2.2 Statechart systems

A diagram showing states and transitions is called a state-transition diagram. Statecharts

extend the basic notion with hierarchical structure, to be described in detail later, but evident

in Figure 9, which is a statechart. Such a representation provides a compact and intuitive

means to express all the relationships between states, events, and new states after processing

Error Card

MiscellaneousErrors ErrorHandled

Disconnected

Connected
No_Card

InsertCard RemoveCard

Connect Disconnect

Card OK

Sent

Ready

Retrieving

Sending

Configuring

DscDataReceived

DscDataReceived

DscDataTransmit

Resetting

Configure
Send

OK

OK

Reset

© Graham G. Thomason 2003-2004 15

the event. Statecharts were first proposed and used by David Harel [Harel]. We now consider

the primitives of a statechart in more detail.

A transition is what maps a source state and event to a new state (the target or destination

state). We say the event triggers the transition.

States are conventionally denoted by circles or rounded boxes, and transitions by arcs with an

arrowhead. Transition arcs are normally annotated with the events that trigger the transition

(not with transition names). The present author frequently adopts for compactness the

convention of [CHSM] in using Roman-letter names for states and Greek-letter names for

events in an abstract model. Transitions are often not named – they are normally referred to as

“the transition on event some event”, qualified by the source state if necessary to avoid

ambiguity.

A transition triggered by events β or δ is drawn as follows:

To explicitly name a transition, we will use the following diagrammatic convention:

We now give an elementary example of a state-transition diagram.

Figure 10. Elementary state-transition diagram

The above diagram models a system as having:

 three states: a, b and c. The initial state is a (symbol).

 five events: α, β, γ, δ and ε.

 four transitions: t1, t2, t3 and t4.

At any one time, a system modelled by the above state-transition diagram will be in one and

only one state. That state is called the occupied (or active) state. The others are vacant (or

inactive).

β,δ

t22
β,δ

a b

c

α

α,ε

β,δ

β,γ

t1

t2

t3

t4

16 © Graham G. Thomason 2003-2004

Transitions whose source states are vacant (at the time an event occurs) do not cause any state

transitioning to take place – they are inapplicable (or invalid) in the current state.

If an event occurs which is the trigger to a transition whose source state is occupied, then

(apart from exceptional situations
1
 to be considered later) the transition takes place. The

source state is vacated and the target state is occupied.

In the above example, when the system is in state a, it will react to event α by executing

transition t1, i.e. by transitioning from state a to state b. If the system is not in state a, then

transition t1 is not applicable because the system is not in t1's source state. Only one

transition takes place as a result of one occurrence of this event, so transition t2 does not take

place as well, unless (and, in this case, until) another event (α or ε) occurs. Notice that:

 there can be several transitions emanating from any state (for example t1 and t3 from

state a).

 an event can be a trigger to more than one transition (for example α triggers t1 and t2),

but, (until we consider nondeterminism), we do not expect to find two transitions

triggered by the same event from the same source state.

 a transition can be triggered by more than one event, in which case any one of the events

will trigger the transition. For example, transition t3 is triggered by event β or δ.

If an event occurs which does not trigger a transition, (for example if in state b event β

occurs), then the event is disregarded and no state change occurs. This is not an indication of

an error. Indeed, if such an event does represent an error in a system, then the state-transition

diagram should model the error-handling, for example with a transition to a new state

‘error’. There is then nothing special about a state called ‘error’ except its interpretation.

The way in which the state transition diagram of Figure 10 is represented in the

STATECRUNCHER language is:

statechart sc(s)

 event alpha,beta,gamma,delta;

 cluster s(a,b,c)

 state a {alpha->b;beta,delta->c;}

 state b {alpha,epsilon->c;}

 state c {beta,gamma->a;}

The syntax will be fully explained later. For the moment, observe that the state transition

diagram is declared as a “statechart”, which consists of a cluster s, which consists of three

(leaf-) states a, b, and c. A cluster indicates a grouping in which no more than one member

state can be occupied (the XOR-state of [Harel]). Events are declared and are used in

transitions, which are denoted by

1
 e.g. hierarchical prioritisation, where an inner transition masks an outer one or vice versa

© Graham G. Thomason 2003-2004 17

 events -> target state;

State behaviour modelling is part of the UML (Unified Modelling Language) dynamic view.

It is not particularly onerous to prepare STATECRUNCHER models using a text editor. But an

alternative way might be to use CASE (Computer Aided Software Engineering) tools to draw

the diagram, and use them to export the state machine view in textual form. Utilities could

then be written as necessary to convert exported descriptions to STATECRUNCHER code.

A good public domain tool that relates well to statechart diagrams, supporting hierarchy and

concurrency, is CHSM by Paul J Lucas [CHSM]. It generates a C++ class having the same

behaviour as the statechart. As such, the class behaves consistently, even if the statechart is

nondeterministic. CHSM has been used for testing at Philips, and it provided the inspiration

and a basis for the extended system, which is the subject of this thesis. The main extension to

be discussed is alternative outcomes under nondeterminism, but we begin with some more

basic concepts.

The hierarchical structures supported by statecharts are hierarchy and parallelism, which lead

to the concept of a cluster and set. If a cluster is occupied, then exactly one of its member

states must be occupied. If a set is occupied, all its member states must be occupied (the

AND-state of [Harel]). The members may be leaf-states, or clusters or sets themselves.

Clusters

The following figure illustrates a cluster, with the source code in STATECRUNCHER (which is

similar to that of CHSM).

Figure 11. Cluster and transition target notation [model t4160]

Source code:

statechart sc(sys)

event alpha, beta, gamma, delta;

event epsilon, zeta, eta, theta;

cluster sys(a,cl)

 state a {alpha->cl; eta->cl.c;}

 cluster cl(b,c,d){beta->a; theta->cl.d;}

 state b {gamma->c;}

 state c {delta->d; epsilon->$a;}

 state d {zeta->$cl;}

d a

δ->d α->cl γ->c

ζ->$cl

cl

c b

ε->$a

η->cl.c

β->a

θ->cl.d

18 © Graham G. Thomason 2003-2004

The syntax of STATECRUNCHER is such that target states are by default a sibling of the source

state. Non-sibling target states need more precise specification than just their name, giving

their scope. Parent scope is specified using the operator "$". A grandparent scope would be

designated by "$$". Descent into child states is achieved using the operator ".".

Grandchildren would be designated using this operator twice, e.g. cl.d.grch. Note that on

event theta a transition will take place from anywhere in cluster cl to member state d.

On loading this model, STATECRUNCHER will enter the default state and give the following

output:

2 statechart sc

2 cluster sys [sc] = OCC [] **

2 leafstate a [sys, sc] = OCC [] **

2 cluster cl [sys, sc] = VAC []

2 leafstate b [cl, sys, sc] = VAC []

2 leafstate c [cl, sys, sc] = VAC []

2 leafstate d [cl, sys, sc] = VAC []

2 TRACE =[]

2 TREV [[alpha, [sc]], 0, [], []]

2 TREV [[eta, [sc]], 0, [], []]

States are indicated with their position in the hierarchy and their occupancy. Occupied states

are emphasized by a double asterisk. The output also shows TRansitionable EVent

information, i.e. what events can be responded to, (with some other details not discussed right

now). On processing event eta, the following output is obtained:

3 statechart sc

3 cluster sys [sc] = OCC [] **

3 leafstate a [sys, sc] = VAC []

3 cluster cl [sys, sc] = OCC [] **

3 leafstate b [cl, sys, sc] = VAC []

3 leafstate c [cl, sys, sc] = OCC [] **

3 leafstate d [cl, sys, sc] = VAC []

3 TRACE =[]

3 TREV [[delta, [sc]], 0, [], []]

3 TREV [[epsilon, [sc]], 0, [], []]

3 TREV [[beta, [sc]], 0, [], []]

3 TREV [[theta, [sc]], 0, [], []]

Sets

A set is illustrated in the figure below, with STATECRUNCHER source code following:

© Graham G. Thomason 2003-2004 19

Figure 12. Set and transition target notation [model t4170]

Source code:

statechart sc(sys)

event beta, gamma, delta, epsilon, theta;

event pi, rho, tau;

cluster sys(a,b)

 state a {theta->b; gamma->b.b1; \

 beta-> b.(b1.q/\b3.t); \

 delta->b.(b1.q/\b2.r/\b3.u);}

 set b(b1,b2,b3) {theta->a;}

 cluster b1(p,q) {gamma->$a;}

 state p {pi->q;}

 state q {pi->p;}

 cluster b2(r,s)

 state r {rho->s;}

 state s {rho->r;}

 cluster b3(t,u)

 state t {tau->u;}

 state u {tau->t; epsilon->$$a;}

When members of sets are clusters (as they often are), the rounded rectangle for the cluster

can be omitted. In defining transitions, strictly one should distinguish targeting the set as a

whole (as is done by a transition on theta), and targeting a single member, as is done by a

transition on gamma). But in practice there is no difference, because targeting the whole set

entails entering the default state in each member, and targeting just one member entails

entering that member and, (in order to maintain integrity of the set occupation rule) the

remaining members too.

When targeting sets, individual states in different members can be specified, using the split

operator, "/\". The transition on beta does this, though it does not specify a target in all

members. Where no explicit target is specified, the default is taken.

p

q

b1

b

a

b2 b3

r

s

t

u

π

π
ρ

ρ

τ

τ
γ->b.b1

γ->$a

β->b.(b1.q/\b3.t)

δ->b.(b1.q/\b2.r/\b3.u)

ε->$$a

θ->a

θ->b

20 © Graham G. Thomason 2003-2004

On entering the initial state, the STATECRUNCHER output is:

2 statechart sc

2 cluster sys [sc] = OCC [] **

2 leafstate a [sys, sc] = OCC [] **

2 set b [sys, sc] = VAC []

2 cluster b1 [b, sys, sc] = VAC []

2 leafstate p [b1, b, sys, sc] = VAC []

2 leafstate q [b1, b, sys, sc] = VAC []

2 cluster b2 [b, sys, sc] = VAC []

2 leafstate r [b2, b, sys, sc] = VAC []

2 leafstate s [b2, b, sys, sc] = VAC []

2 cluster b3 [b, sys, sc] = VAC []

2 leafstate t [b3, b, sys, sc] = VAC []

2 leafstate u [b3, b, sys, sc] = VAC []

2 TRACE =[]

2 TREV [[theta, [sc]], 0, [], []]

2 TREV [[gamma, [sc]], 0, [], []]

2 TREV [[beta, [sc]], 0, [], []]

2 TREV [[delta, [sc]], 0, [], []]

On processing event beta, the output is:

3 statechart sc

3 cluster sys [sc] = OCC [] **

3 leafstate a [sys, sc] = VAC []

3 set b [sys, sc] = OCC [] **

3 cluster b1 [b, sys, sc] = OCC [] **

3 leafstate p [b1, b, sys, sc] = VAC []

3 leafstate q [b1, b, sys, sc] = OCC [] **

3 cluster b2 [b, sys, sc] = OCC [] **

3 leafstate r [b2, b, sys, sc] = OCC [] **

3 leafstate s [b2, b, sys, sc] = VAC []

3 cluster b3 [b, sys, sc] = OCC [] **

3 leafstate t [b3, b, sys, sc] = OCC [] **

3 leafstate u [b3, b, sys, sc] = VAC []

3 TRACE =[]

3 TREV [[pi, [sc]], 0, [], []]

3 TREV [[rho, [sc]], 0, [], []]

3 TREV [[tau, [sc]], 0, [], []]

3 TREV [[gamma, [sc]], 0, [], []]

3 TREV [[theta, [sc]], 0, [], []]

The rule for set occupancy is seen, with each member cluster (b1, b2 and b3) being

occupied.

© Graham G. Thomason 2003-2004 21

3.2.3 Additional (deterministic) features

A summary of additional enhancements to the basic idea of a statechart is now given. These

are illustrated in STATECRUNCHER syntax, but the features are not unique to

STATECRUNCHER. It should be borne in mind that these are introduced for user convenience

(as with the cluster and set structures). Any finite model can be “flattened” to an equivalent

leafstate-only model, but for any sizeable statechart, the flattened model is totally unwieldy.

Internal events are generated when any state is entered or exited. So it is possible to have a

transition as follows, where $x.y is some parallel state (addressed relative to the parent of

state b).

Figure 13. Internal event

Variables can be defined and assigned to expressions on state entry or exit (the triangles

pointing in or out of a state make for a compact notation, but UML uses keywords entry/ and

exit/ inside the state). Assignments can also be on transitions. STATECRUNCHER allows for

integer ranges and enumerated types, booleans, and strings.

Figure 14. Variable assignment

Variables and events can also be declared locally to a part of the hierarchy and be addressed

with scoping operators. The operators have high precedences and can be used in arithmetic

expressions, e.g. n=i+$j+s.t.k. If this assignment is found on a transition, n and i are in

the scope of the source state of the transition, j is in the scope of the parent of the source

state, and k is in the scope of child t of sibling s of the source state. A library of functions

(such as maximum) is also provided.

Transitions can be conditional. The conditional expression in square brackets will evaluate to

a Boolean value (but as in the ‘C’ language, 0 is taken as false and nonzero is interpreted as

true). The expression may refer to the occupancy of another parallel state, using the in()

function, as in the example below. This gives the equivalent of multiple source states of a

transition.

Figure 15. Conditional transition

c b

enter($x.y)->c

c b

α[(i+j>4)&&!in($x.y)]->c

c b

α->c {i=i*j+3;}

n=n*10+1

x=x*10+1

22 © Graham G. Thomason 2003-2004

Events can be parameterized. The destinations for the parameters are listed in round brackets.

A parameter may be used in the condition of the transition triggered by the parameterized

event. In this example, care has been taken that there should be no nondeterminism.

Figure 16. Parameterized event

Events can be fired on state entry or exit, or on transitions. Fired events and variable

assignments are examples of what STATECRUNCHER calls actions. Some parallel part of the

statechart will respond to the fired events if that is applicable.

Figure 17. Fired events

There can of course be several actions on a transition or on entry or exit. An assignment has

been included in the above figure to show this. The exact ordering of actions is a semantic

issue, discussed later, with good arguments being made for various alternatives.

Actions can be conditional. This is a separate matter to transitions being conditional. In the

figure below, the transition is unconditional, but the action is conditional.

Figure 18. Conditional action

Conditional actions can also have an else part, and the if-actions and else-actions can

themselves be conditional (not illustrated).

Transitions can be internal. This means that there will be no state change, but any actions on

the transition will be executed. In Figure 19, on event β the internal transition will take place

provided cluster p is in the occupied state.

c b

α->c {fire β; i=j;}

fire γ

fire δ

c b

α->c {if (in($z.y) && i==0) {w=w*10+1;} }

α(i)[i>j]->c

b

c

d
α(i)[i<=j]->d

© Graham G. Thomason 2003-2004 23

Figure 19. Internal transition

Transitions can have an orbital trajectory. In the figure below, the transition on event β causes

cluster p to be exited and re-entered, whereas the transition on event α does not. This is

reflected in the resultant occupied member of cluster q. Orbits can be to any height in the

hierarchy, and are specified as event->orbital-state->target-state. In the diagram, the loop in

the transition arc emphasizes the orbit.

Figure 20. Orbital transition

When a cluster is exited, the member that was occupied is stored as the historical state. UML

uses pseudo-states to indicate entering clusters either recursively (deep history) or just at the

top cluster level. History can be (deep-) cleared. STATECRUNCHER currently marks a cluster

with a (deep-) history marker (as in CHSM), indicating how the cluster is to be entered if a

transition targets it. A deep-history cluster can be shallow-history-entered by deep-clearing its

child history, or default-entered by deep-clearing its own history. UML's pseudo-states may

be implemented in the future, where transitions can individually specify whether a (deep-)

historical state is to be entered or not. In Figure 21, the transition on α will cause the historical

states of cluster b to be entered. Initially this is state b1, but if the last occupied states were

b2 and q, then these would now be entered. However, event ε clears b's history, and if this

has happened since exiting b, then the transition on α will target member b1.

Figure 21. (Deep-) History

c b

p

β{v=v+1;}

c b

p

β->$$s->c

α->c

e d

exit($p) q

s ω

q

b1

b
δ

a
p

b2 α

β

γ

ε {clear(b);}

D

24 © Graham G. Thomason 2003-2004

3.2.4 Black box testing

With white-box testing, we assume the state and variable values in the IUT (Implementation

Under Test) are observable. In the black box case, this is not so, and only sequences of

outputs, called traces, are observable. The basic testing paradigm is as shown in the figure

below (compare with Figure 7).

Figure 22. Black box testing - compare traces

Trace elements can be produced wherever an action is allowed: on transitions, on state entry

and on state exit. Some transitions may not produce any output, or produce the same output

that other transitions produce. For this reason, a transition tour, (where all transitions are

taken, and output from the tour is verified, but where that is all), is not a strong test. This is

also known as the Chinese postman tour, after a publication by [Kwan] in 1962. Stronger

testing can become quite difficult, involving transfer sequences to each state, with further

event sequences to be executed in order to verify that the system is in the expected state.

States can be checked in various ways; for deterministic systems, the best-known methods

are:

 the D-method, or distinguishing method, where a sequence of events is sought such that

the output produced distinguishes all states. A distinguishing sequence might not exist.

The concept was known to [Hennie] in 1964.

 the W-method, also known as the characterizing set method [Chow], where a set of event

sequences are sought which collectively identify the state. A disadvantage is that in

general the state under investigation must be regenerated many times so that each member

of the characterizing set can be applied to it.

 the U-method, or unique I/O sequence method [Sabnani], where an event sequence is

sought for the expected state, which distinguishes this state from any other state, without

necessarily identifying the actual state in the case of mismatch.

Some of the methods are often considered impracticable, due to exponential calculation time

with the size of the machine, or the sequence may not exist, (D and U methods). There are

many optimizations to the basic algorithms in the literature, sometimes making extra

assumptions about the state machine. For an overview of test sequence generation, see [Lee],

[Dahbura], and the Philips report by [Koymans].

Although most theoretical articles describe a finite state machine in terms of a machine

without hierarchy or parallelism, a concurrent hierarchical statechart can be flattened (or

unfolded), since any configuration of state occupancies, variable values and historical states

Model Implementation

Under Test (IUT)

compare

process

event

get

trace

process

event

get

trace

Test Script

© Graham G. Thomason 2003-2004 25

can be regarded as a single flattened state. So the theoretical results are fully applicable to

statecharts.

The figure below shows a trace of an expression value on a transition.

Figure 23. Trace on a transition

All traces recorded in this way are part of the output STATECRUNCHER produces per world

when given a command to do so, e.g.

3 TRACE =[44]

3.2.5 Points of control and observation

When testing distributed systems, or systems with restricted observability and controllability,

it is useful to categorize events (and traces) according to their PCO –Point of Control and

Observation. PCOs are defined in [ISO 9646-1]. When STATECRUNCHER lists transitionable

(and other) events, it includes their PCO. Traces are under user control and can contain an

indication of the PCO that produced them.

3.3 Nondeterministic testing

The distinguishing feature of STATECRUNCHER is its handling of nondeterminism. The basic

principle that is applied is that, where alternative outcomes of processing an event are

possible, each one is produced in a “world” of its own. In general, there will be several worlds

in existence, and when an event is processed, it is processed in all of them. Identical worlds

are merged (i.e. redundant worlds are eliminated). For worlds to be identical, their state

occupancy and history and all data (variable values) and their traces must be identical. When

testing, a comparison must be made between actual output and a match in any of the extant

worlds. In the figure below, the sacks on the model side represent worlds.

Figure 24. Testing with a nondeterministic oracle

b a

α{trace(i+3);}

Model IUT-Implementation

Under Test

Compare. Accept a

match of any sack in

Model with IUT sack

26 © Graham G. Thomason 2003-2004

It is a major issue to discuss the ways in which the different worlds can come about. The

subject is addressed in section 4, where we meet fork nondeterminism, race nondeterminism

and other forms of nondeterminism.

3.4 STATECRUNCHER and the TorX tool chain

TorX is a tool chain delivered by the Côte de Resyste Project [CdR]. It separates out areas of

concern in testing into distinct processes. Different test generation algorithms can be plugged

in at the Primer level. STATECRUNCHER, which is an Explorer in TorX terminology, provides

a command language to this end, described in detail in [StCrPrimer], but summarized in

section 8. The test harness is incorporated into the Driver.

Figure 25. TorX tool chain

STATECRUNCHER has been experimentally integrated into this tool chain by Philips Research

India - Bangalore. We show screenshots of this in chapter 10.

3.5 Alternative modelling techniques to state-based modelling

Experience has shown that a common category of system defects is a fault in their state

behaviour. However, state behaviour is not always the dominant characteristic of a system,

and it is worth mentioning alternative approaches and discussing when each approach is

particularly relevant.

State-based modelling is appropriate where the memory aspect of a system is prominent: the

system reacts one way or another way to the same event depending on something that has

happened in the past.

EXPLORER

Test Oracle e.g. STATECRUNCHER

PRIMER

Test case generator

DRIVER

Controls test process & produces log

ADAPTER

Abstract to concrete & interface to IUT

IUT
Implementation Under Test

© Graham G. Thomason 2003-2004 27

Decision tables and cause-effect graphs

Systems which simply show feed-forward logical behaviour are often better modelled by

Decision Tables or Cause-Effect Graphing, described in [Myers, p.56]. The idea here is to

model the relationships between logical (binary) inputs and outputs in terms of logical

functions (and-gates, or-gates, not-gates) and constraint relationships between them and their

derivatives (exclusive, requires, masks etc). The figure below shows how outputs Y and Z are

related to inputs A B C F G H J K P Q R S and T. It also how the inputs are constrained

amongst themselves in that one and only one of B and F can and must be true, and G requires

H, i.e. for G to be true, H must be true.

Figure 26. A cause-effect graph

State behaviour can be imitated to some extent using cause-effect graphs – some of the inputs

could represent states, and others events, and the outputs might represent new states. But this

is clearly not as elegant as a state machine model. Moreover, it has its limitations, since we

cannot obtain a transition tour directly from this format.

Syntax testing

Another modelling technique is to describe the syntax, not only of input data and input

commands, but of the conventions and protocols of inter-process communication – perhaps

even of inter-module communication. This is related to state modelling (mention has already

been made of regarding input tokens to a compiler as events), but there is a difference in

perspective. In addition to basic coverage of legal syntax, there will probably be a strong

emphasis on checking the behaviour of the system when invalid input is processed.

Reference: [Beizer, Ch. 9]

Orthogonal arrays

A testing technique to test pairwise (or any subset-wise) every combination of parameters is

to use orthogonal arrays. The technique is applicable to interacting subsystems as well as

A

B

C

F

G

H

X1

J

K

X2

P

{ Q

X3

R

S

Y
(nand)

(or)

(and)

(or)

(one)

O

R

(requires)

T

(and)

Z

(and)

28 © Graham G. Thomason 2003-2004

parameters. For a popular article, see [Phadke]; for a library of orthogonal arrays, see

[Sloane]. Suppose a routine needs testing with 4 parameters, (A, B, C, and D), each of which

can take 3 values (1, 2, and 3). Exhaustive testing would require running 3
4
=81 tests. Now

suppose we find it adequate that all pairwise parameter value combinations are taken. A table

can be found satisfying this with 9 entries of values of the 4 parameters as follows:
ABCD

1111

1223

1332

2122

2231

2313

3133

3212

3321

For pairwise coverage we speak of orthogonal arrays of strength 2. If we had required that all

triples of parameters should be covered for all combinations of values, the strength would be

3 and so on. The above array is equivalent to the one published by Sloane at

http://www.research.att.com/~njas/oadir/oa.9.4.3.2.txt. There is opportunity to combine

orthogonal array techniques with state-based testing where there are parameterized events.

3.6 Summary of this section

This section discussed the concepts involved in state modelling and state-based testing, and

introduced STATECRUNCHER, but reserved its handling of nondeterminism for the next

section. We concluded with a quick look at alternatives to state-based testing: cause-effect

graphs, syntax testing, and the use of orthogonal arrays.

For a more detailed discussion of testing in relation to the software development lifecycle, see

the appendix [StCrContext].

© Graham G. Thomason 2003-2004 29

4. Nondeterminism

This section gives an informal treatment of nondeterminism in state behaviour; for a precise

definition, see section 7 (The transition algorithm). Although the concepts of forks, races and

interleavings are well-known in the literature, we believe that our implementation of a UML-

compatible language to handle these concepts in a concurrent, hierarchical statechart exhibits

many novel features. Since nondeterminism is a major source of combinatorial explosion, we

consider ways of containing state space issues in this section.

4.1 Review of nondeterministic testing

In the previous section, we saw that nondeterminism is represented by different worlds, and

that in testing an implementation, we accept its behaviour provided that it is in accordance

with one world generated by the model:

Figure 27. Review of testing with a nondeterministic oracle

We now consider various forms of structured nondeterminism as supported by

STATECRUNCHER. This is the main novel area of the present work. The novelty with respect

to existing systems is that we provide a broadly UML-compliant statechart language

supporting structured nondeterminism, i.e. nondeterminism relating to the concurrent and

hierarchical elements of statecharts. Existing experiments in nondeterministic testing, such as

the Côte de Resyste project [CdR], use the languages LOTOS and PROMELA. Whilst these

experiments have been very successful, are well-suited to the telecommunications industry,

and have provided great inspiration, we feel that UML-aligned modelling is more accessible

to most software practitioners. Within Philips, evaluations are currently (2003) taking place

with STATECRUNCHER in the TorX tool chain as delivered by the Côte de Resyste project, and

the results are encouraging (discussed in section 10).

Model IUT-Implementation

Under Test

Compare. Accept a

match of any sack in

Model with IUT sack

30 © Graham G. Thomason 2003-2004

4.2 Fork nondeterminism

Fork nondeterminism occurs where there are several transitions on the same event from the

same source state. The figure below illustrates fork nondeterminism on events β, γ and δ.

Figure 28. Fork nondeterminism [model u5420]

The forks are emphasized by the double ellipses. The first fork is on event β, where the fork

leads to two different target states. Then on event γ there is another fork, but with two

transitions from different source states (b1 and b2) converging on the same target state. A

duplicate world will be discarded, and there will be 3 resultant worlds. On event δ, two

worlds do not respond (those in states c1 and c3); these will be left intact. Departing from

the world where c2 is occupied, there are 5 transitions, but they only lead to 4 new worlds,

because the transitions marked δ {v=v*10+1+1} and δ {v=v*10+2} lead to an

identical world. They target the same state and set an identical value of the only variable v,

whilst history and traces do not come into play. In all there are 6 worlds after event δ. The

model can effectively be reset by event α, which will be processed in all worlds, but will take

them to the same configuration, and duplicates will be removed, leaving one world.

After processing event β, the configuration as given by STATECRUNCHER is as follows.

3 statechart sc

3 cluster m [sc] = OCC [] **

3 leafstate a [m, sc] = VAC []

3 leafstate b1 [m, sc] = VAC []

3 leafstate b2 [m, sc] = OCC [] **

3 leafstate c1 [m, sc] = VAC []

3 leafstate c2 [m, sc] = VAC []

3 leafstate c3 [m, sc] = VAC []

3 leafstate d2 [m, sc] = VAC []

3 leafstate d3 [m, sc] = VAC []

3 leafstate d4 [m, sc] = VAC []

3 VAR INTEGER v [sc] =0

3 TRACE =[]

3 TREV [[gamma, [sc]], 0, [], []]

m α {v=0;}

a

d2

d3

δ {v=v*10+1+1}

v=v*10+1

d4

v=v*10+4

δ

δ

δ {v=v*10+2}

δ {v=v*10+3}

b1

b2

β

β

c1

c2

c3

γ

γ

 γ

γ

© Graham G. Thomason 2003-2004 31

3 TREV [[alpha, [sc]], 0, [], []]

4 statechart sc

4 cluster m [sc] = OCC [] **

4 leafstate a [m, sc] = VAC []

4 leafstate b1 [m, sc] = OCC [] **

4 leafstate b2 [m, sc] = VAC []

4 leafstate c1 [m, sc] = VAC []

4 leafstate c2 [m, sc] = VAC []

4 leafstate c3 [m, sc] = VAC []

4 leafstate d2 [m, sc] = VAC []

4 leafstate d3 [m, sc] = VAC []

4 leafstate d4 [m, sc] = VAC []

4 VAR INTEGER v [sc] =0

4 TRACE =[]

4 TREV [[gamma, [sc]], 0, [], []]

4 TREV [[alpha, [sc]], 0, [], []]

STATECRUNCHER has produced 2 worlds. Space does not permit us to reproduce the output on

processing events γ and δ.

In practice, fork nondeterminism is used to model cases in which there is uncertainty about

what will happen, e.g. because of limited control over the IUT's environment.

An issue in fork nondeterminism

We have seen fork nondeterminism where the transitions have the identical source state:

Figure 29. Fork nondeterminism with same source state

But how is the following situation to be handled? The transitions are named t1 and t2.

Figure 30. Hierarchical issue

There are three ways this could be handled:

(1) We could say it is fork nondeterminism, with one world ending up in state m.b1 and the

other in state b2.

a

b1

b2

β

β

a b1

β

m

b2

β

 t1

t2

32 © Graham G. Thomason 2003-2004

(2) We could say that we prioritize and override by specialisation, saying that t1 takes

precedence, because its source state is deeper in the hierarchy, and it masks t2. In this

case, the model is deterministic. This is the approach taken by UML, and is in line with

overriding member methods in C++ derived classes.

(3) We could say that we prioritize and override by the more external transition, saying that

t2 takes precedence and masks t1. In this case, the model is again deterministic. This

approach has the advantage that an external transition cannot be affected by (perhaps

poorly understood) internals of a deeply embedded machine. This is the approach taken

by [CHSM].

As pointed out by Lucas in [CHSM], under this scheme we can alter the precedence as

follows:

Figure 31. Forced prioritisation reversal giving specialisation

STATECRUNCHER implements option (2) and conforms with UML, since that is the standard

with which many designs comply.

A more general situation occurs when there are different levels of forks, and where the

transitions are conditional:

Figure 32. Forks in a hierarchy with conditional transitions

The hierarchical prioritization scheme means that transitions t1 and t2 form a fork, and t3

and t4 are masked by this and are not triggered by event β. If t1 has a false condition, then

only t2 is taken and there is no nondeterminism. If t1 and t2 have false conditions, then t3

and t4 come into view and form a fork.

STATECRUNCHER proceeds as follows:

 Under an event, collect all possible transitions on it in the entire statechart hierarchy

 Evaluate all their conditions

a b1

β

m

b2

β[!in(m.a)]

 t1

t2

a

b1

β[C1]

m

c1

β[C3]

t1

t3

b2

β[C2]

 t2

β[C4]

t4

c2

© Graham G. Thomason 2003-2004 33

 Find all innermost layers of the hierarchy that have at least one transition attached with a

satisfied condition

 Take all satisfied transitions from these layers.

To obtain behaviour equivalent to hierarchical impartiality on event β in the above figure

under the hierarchical prioritization scheme, a self-transition fork can be introduced as

follows:

Figure 33. Equivalent for hierarchical nondeterminism

The original transitions on β are renamed β1 and β2. Two internal self-transitions are

introduced as a fork on β. One fires β1 and the other β2. STATECRUNCHER will generate

separate new worlds for each.

4.3 Race nondeterminism

Race nondeterminism occurs where there are transitions on the same event in parallel

components of the model (i.e. in different set members). The winner of the race may be

distinguished by state occupancy or a variable value or a trace value or by cluster history.

In the figure below, there is a race between the transitions on α. They are distinguished by the

resultant value of variable v, which, given an initial value of 0, is 12 in one world and 21 in

the other. The resultant state occupancy is identical in these worlds.

Figure 34. Race - winner determined by variable value

a

s

α {v=v*10+1;}
a1 a2

b

b1 b2

α {v=v*10+2;}

β {v=0;}

β

p
β{fire β1;}

β{fire β2;}

a

b1

β1[C1]

m

c1

β2[C3]

 t1

b2

β1[C2]

 t2

β2[C4]

t4

c2

t3

34 © Graham G. Thomason 2003-2004

Race nondeterminism is a convenient way of expressing what would be fork nondeterminism

in a flattened (or unfolded) model. The above model is equivalent to the following one:

Figure 35. Flattened race model

In the above model, the states are marked so as to indicate the corresponding states and

variable value in the statechart of Figure 34. All structured nondeterminism is equivalent to

fork nondeterminism in a flattened model. Although the flattened model in this case is very

small, that is not normally the case, and a flattened representation is often not practicable.

The next example shows a similar race, but the winner is distinguished by the transition that

takes place in set member z. Only one can take place, and as soon as it has taken place, the

internal event on the other one will have no effect, since the source state of that transition, z1,

is no longer occupied.

Figure 36. Race - winner determined by state

As with fork nondeterminism, the distinguishing aspect of the worlds generated, (so in a race,

revealing the race winner), could also be trace values or cluster history.

a

s

z

α

enter($a.a2)

enter($b.b2)

b

a1 a2

z1
z2

z3

b1 b2

α

β

β

β

a1,b1,

v0

a2,b2,

v12

a2,b2,

v21

α

α

β

β

© Graham G. Thomason 2003-2004 35

4.4 Set transit nondeterminism

When a set is entered, all its members are entered. The order in which the members are

entered may be significant, because of upon enter actions. STATECRUNCHER offers the facility

to generate different orderings of entering the members. Similarly when a set is exited.

Consider the following model:

Figure 37. Set transit nondeterminism [model u5410]

We use strings rather than integers in the actions, because the integers could become very

large. On processing event alpha, set b is exited in two orderings, then for each of those

orderings, set c is entered in two different orderings. There are 4 different orderings of the set

transit, and the values of u will register them:

exit: (p2,p),(q2,q),b; enter: c,(i,i2),(j,j2); u=1234567890

exit: (p2,p),(q2,q),b; enter: c,(j,j2),(i,i2); u=1234569078

exit: (q2,q),(p2,p),b; enter: c,(i,i2),(j,j2); u=3412567890

exit: (q2,q),(p2,p),b; enter: c,(j,j2),(i,i2); u=3412569078

These orderings are produced in different worlds. The output lines showing the value of u in

each world are:
22 VAR STRING u [sc] =[49, ...] =1234569078

23 VAR STRING u [sc] =[51, ...] =3412569078

a

b

p q

q2

q1

p2

p1

v=v+"8"

u=u+"1"

v=v+"0"

u=u+"3"

v=v+"7"

u=u+"2"

v=v+"9"

u=u+"4"

v=v+"6"

u=u+"5"

β

β

α

γ

ω{u="";v="";}

v=v+"8"

u=u+"1"

v=v+"0"

u=u+"3"

v assigned on transitions in this direction

u assigned on transitions in this direction

c

i j

j2

j1

i2

i1

u=u+"8"

v=v+"1"

u=u+"0"

v=v+"3"

u=u+"7"

v=v+"2"

u=u+"9"

v=v+"4"

u=u+"6"

v=v+"5"

u=u+"8"

v=v+"1"

u=u+"0"

v=v+"3"

36 © Graham G. Thomason 2003-2004

32 VAR STRING u [sc] =[49, ...] =1234567890

33 VAR STRING u [sc] =[51, ...] =3412567890

If we transition back to set a with event gamma, say, then variable v will track another 4

orderings. And these will be done in the 4 existing worlds. That will produce 16 worlds. The

last lines of output are:
157 VAR STRING u [sc] =[49, ...] =1234569078

157 VAR STRING v [sc] =[51, ...] =3412567890

157 TRACE =[]

157 TREV [[omega, [sc]], 0, [], []]

157 TREV [[beta, [sc]], 0, [], []]

157 TREV [[alpha, [sc]], 0, [], []]

outworlds=[53, 54, 63, ... 156, 157]

number of outworlds=16

The order of transit in this last world was:
exit (j2,j), (i2,i), c; enter: b, (p,p2), (q,q2).

Note that when a set member is exited, we exit the leafstate then always immediately follow

this by the set member, before moving on to the other member. So we never have an ordering

such as exit j2, exit i2, exit j, exit i. This would be too fine an

interleaving, and would exacerbate combinatorial explosion. We have bracketed tied

orderings such as (j2,j) in the above descriptions.

If event beta is now given, then there will be 64 worlds. If then we process event omega,

the variables are reset, and the number of worlds goes down from 64 to 1.

Although our model does not show it, set transit nondeterminism is applied at several levels in

the hierarchy if there are several sets at different hierarchical levels. Test model t6311

illustrates this, for which see [StCrTest].

4.5 Fired-event and multiple nondeterminism

Fired event nondeterminism is an indirect form of nondeterminism that occurs when an action

associated with a transition causes another event to be fired, and that other event itself gives

rise to some form of nondeterminism.

The following figure shows a model exhibiting fork, race, set-transit and fired-event

nondeterminism in concert. The action of the transition on event α is to fire event β. Event β

triggers three transitions, which are explicitly named t1, t2 and t3. These give rise to a fork

and race. The set of sequences produced is: {<t1,t2>, <t2,t1>, <t1,t3>, <t3,t1>}.

Transition t1 gives rise to set-transit nondeterminism on entering set b2. In one set of worlds

states p and p1 will be entered before states q and q1, and in another set of worlds this will

be the other way around. The net result of processing event α is therefore to generate 8

© Graham G. Thomason 2003-2004 37

worlds. The order in which transitions and set-member entry is done is recorded in the

variable v, since each assignment to this variable adds a unique digit to the end of the current

value.

Figure 38. Four kinds of nondeterminism in concert [model t5480]

An example world generated on event α is:

66 statechart sc

66 set s [sc] = OCC [] **

66 cluster a [s, sc] = OCC [] **

66 leafstate a1 [a, s, sc] = VAC []

66 leafstate a2 [a, s, sc] = OCC [] **

66 cluster b [s, sc] = OCC [] **

66 leafstate b1 [b, s, sc] = VAC []

66 set b2 [b, s, sc] = OCC [] **

66 cluster p [b2, b, s, sc] = OCC [] **

66 leafstate p1 [p, b2, b, s, sc] = OCC [] **

66 leafstate p2 [p, b2, b, s, sc] = VAC []

66 cluster q [b2, b, s, sc] = OCC [] **

66 leafstate q1 [q, b2, b, s, sc] = OCC [] **

66 leafstate q2 [q, b2, b, s, sc] = VAC []

66 cluster c [s, sc] = OCC [] **

66 leafstate c1 [c, s, sc] = VAC []

66 leafstate c2 [c, s, sc] = OCC [] **

66 leafstate c3 [c, s, sc] = VAC []

66 cluster z [s, sc] = OCC [] **

66 leafstate z1 [z, s, sc] = VAC []

a

β

b1

s

c

z

β
c1

c2

α->a2 {fire β;}
a1 a2

b

c3 β

b2

p q

q2

q1

p2

p1

enter($b.b2.p.p1)

z1
z2

z3 enter($c.c3)

v=v*10+7

v=v*10+6

v=v*10+4 v=v*10+5

v=v*10+2 v=v*10+3

v=v*10+1

γ

γ γ

γ

ω{v=0;}

t1

t2

t3

38 © Graham G. Thomason 2003-2004

66 leafstate z2 [z, s, sc] = OCC [] **

66 leafstate z3 [z, s, sc] = VAC []

66 VAR INTEGER v [sc] =612435

66 TRACE =[]

66 TREV [[gamma, [sc]], 0, [], []]

66 TREV [[omega, [sc]], 0, [], []]

The value of v (=612435) shows that transition t2 was chosen from the fork of t2 and t3,

and that it was executed before t1 in the race. This is corroborated by the occupancies of c2

and z2. The value of v shows that order of entering set b2 and its members is: b2, p, p1, q,

q1. The other seven worlds have values of v of 613524, 135246, 124356, 712435, 713524,

135247, and 124357, with the corresponding state occupancies of c2, c3, z2, and z3.

Permutations give rise to factorials, which are soon large numbers. In STATECRUNCHER, the

following options for limiting the number of permutations are offered:

 the basic sequence without permutation (1 sequence)

 forwards and backwards only (2 sequences)

 all cyclic and anticyclic permutations (2n sequences)

 all permutations (n! sequences)

Separate control of race and set permuting is offered.

4.6 Set-action nondeterminism

Processing a single transition may lead to actions taking place in several set members, even

though no set member may be entered or exited. This could be seen as a special case of set-

transit nondeterminism, but we consider it separately. The actions will be hierarchically

grouped (or bracketed) and permuted as for set-transit nondeterminism. The example below

contains a set of sets, and suffers from the beginnings of poor performance due to the many

permutations involved. For that reason, part of the model has been commented out.

© Graham G. Thomason 2003-2004 39

Figure 39. Set action nondeterminism [model t5412]

When event α is given, all the set members undergo a local transition. (There is actually a

race between them, but there is no difference in outcome whatever the race order, and we

ignore the race).

We could make all these set members transition back with another request to process event α.

As the set members transition back, they generate values of v that record the order in which it

happened. Each order generates a different value of v. There are 5! = 120 orderings.

Now event ω will do a similar thing in principle, although it is only attached to one transition.

But there is one difference in what happens: orderings will be hierarchically generated as

follows: the 3! =6 orderings within set a will be generated, and the 2! = 2 orderings within set

b will be generated. Then these 6 and 2 orderings will be regarded as single entities and

ordered in 2! =2 different ways. So the total number of orderings will be 3!.2!.2! =24. We call

this set-action nondeterminism.

4.7 Set-meta-event nondeterminism

This is similar to set-action nondeterminism. In our example below, we have a set containing

a set containing two more sets, and we are not surprised to see poor performance, which is

why part of the model has been commented out. Processing a single transition may lead to

broadcast meta-events taking place relating to several set members, even though no set

sy

i

 j l

k

a

n

m α,α_j

α,α_i

α,α_l

α,α_k

α,α_n

α,α_m

a1 a2 a3

p

 q s

r

b

u

t α,α_q

α,α_p

α,α_s

α,α_r

α,α_u

α,α_t

b1 b2 b3

ω

ω_race, ω1

ω_race, ω2

v=v*10+1 v=v*10+3 v=v*10+2

v=v*10+4 v=v*10+6 v=v*10+5

commented out for performance reasons

40 © Graham G. Thomason 2003-2004

member may be entered or exited. The meta-events will be hierarchically grouped (or

bracketed) and permuted as for set-transit nondeterminism. Example:

Figure 40. Set meta-event nondeterminism [model t5414]

After event α, any of events ω, ω_x, or ω_race will cause exiting of states, generating exit

meta-events, triggering transitions in cluster z. Note that the transitions on the meta events

respond from any state in cluster z, not just neutral. So all exit meta-events under

consideration are recorded, in order. Events ω and ω_x cause hierarchically grouped

orderings as with set action nondeterminism, producing in this case 3!.1!.2! =12 orderings.

Event ω_race will generate 12 worlds by a different mechanism: the transitions on this

event are sequenced in two orderings by race nondeterminism, and one of the transitions

produces 6 orderings by set nondeterminism. As it happens, ω_race is faster to process than

sy ω

ω_race, ω1

i

 j l

k

a

n

m α,α_j

α,α_i

α,α_l

α,α_k

α,α_n

α,α_m

a1 a c3

p

 q s

r

b

u

t α,α_q

α,α_p

α,α_s

α,α_r

α,α_u

α,α_t

b1 b2 b3

ω_race, ω2

ω_x x

z

exl

exn

exj

exs

exu

exq

neutral

ω_neutral

exit(x.a.a1.j) {v=v*10+1;}

exit(x.a.a1.l) {v=v*10+2;}

exit(x.a.a1.n) {v=v*10+3;}

exit(x.b.b1.q) {v=v*10+4;}

exit(x.b.b1.s) {v=v*10+5;}

exit(x.b.b1.u{v=v*10+6;})

commented out for performance reasons

© Graham G. Thomason 2003-2004 41

ω_x. If after event α, we again process event α, a similar reset to the initial states in sets a

and b occurs, but now all transitions race each other, and 4!=24 worlds are produced (when

all permutations are enabled, i.e. under high race), or under medium race, 8 worlds.

4.8 Effects of nondeterminism

We have seen six causes of nondeterminism (fork, race, set-transit, fired event, set-action and

set-meta-event). We now discuss the effects of nondeterminism, i.e. the ways in which it may

manifest itself.

4.8.1 State-occupancy nondeterminism

This is the most obvious form of nondeterminism, where different states are occupied after the

different transitions, and is naturally associated with fork nondeterminism.

Figure 41. State occupancy nondeterminism

4.8.2 Variable-value nondeterminism

If two statecharts have the same state occupancy, but with different variable values, the result

is that the worlds generated are distinct. The following example illustrates fork

nondeterminism resulting in different variable values.

Figure 42. Variable-value nondeterminism

4.8.3 Trace-value nondeterminism

Traces are by definition observable. They are written in by the trace() function. The

following example illustrates fork nondeterminism resulting in different trace values.

p α

d

a

α e

p α {v1=1;}

d a

α {v1=2;}

42 © Graham G. Thomason 2003-2004

Figure 43. Trace value nondeterminism

4.8.4 History nondeterminism

Just as variables can be the distinguishing factors in nondeterministic target states, so can

history. In the following example, a transition from state qb under event α will lead to the

same target state, c, as regards state occupancy, but history data distinguishes worlds and two

worlds would be generated. A return transition on β will return to state qb if history data is

present, or to state qa if history data has been cleared.

Figure 44. History nondeterminism

4.9 Worlds

As has been seen, under nondeterminism, STATECRUNCHER maintains several worlds. We

will look at this in a little more detail. Consider the following model:

Figure 45. Fork nondeterminism [model u5420], for description of worlds

The forks are emphasized as usual by the double ellipses. The first fork is on event β, where

the fork leads to two different target states. Then on event γ there is another fork, but with

m α {v=0;}

a

d2

d3

δ {v=v*10+1+1}

v=v*10+1

d4

v=v*10+4

δ

δ

δ {v=v*10+2}

δ {v=v*10+3}

b1

b2

β

β

c1

c2

c3

γ

γ

 γ

γ

p
α {trace(x);}

d a

α {trace(y);}

p
α {clear(q);}

qa

c

α

H

qb

q

β

γ

© Graham G. Thomason 2003-2004 43

two transitions from different source states (b1 and b2) converging on the same target state.

A duplicate world will be discarded, and there will be 3 resultant worlds. On event δ, two

worlds do not respond (those in states c1 and c3); these will be left intact. Departing from

the world where c2 is occupied, there are 5 transitions, but they only lead to 4 new worlds,

because two transitions lead to an identical world. In all, there are 6 worlds after event delta.

The model can effectively be reset by event alpha, which will be processed in all worlds,

but will take them to the same configuration, and duplicates will be removed, leaving one

world.

World numbers are arbitrary. Internally, the numbers are allocated sequentially as more and

more events, transitions and actions are processed, but some world numbers may never be

seen by the user as they are only used temporarily during processing (particularly when

actions are involved). Worlds are not necessarily presented in numerical order, and the order

is not significant.

After any events, internally, before the user sees them, the worlds produced are a bag. If any

worlds in the bag are identical, the bag is reduced to a set, as here; then they are presented to

the user. Merging is just a bag_to_set operation. As has been mentioned, for the worlds to be

identical, their state occupancy and history and all data (variable values) and their traces must

be identical.

World number 1 is special as it contains the initial data. This is kept as a save area to enable a

reset to be done. The initial action when a model is run is to clone world 1 into world 2 and

set that up as a starting point for further processing. On processing every event, new world-

numbers are created for every derivative world. So we might have the following situation:

 Process event β: worldbag immediately after processing this event = [3,4]

 Worldbag after reducing to a set = [3,4]

 Process event γ: worlds are [5,6,7,8]

 Worldbag after reducing to a set = [5,6,7].

 Process event δ: worlds are [6,7,9,10,11,12,13,14,15,16,17,18]

 Worldbag after reducing to a set = [6,7,10,12,14,18].

This may seem to be uneconomical use of world numbers – the first derivative world could

sometimes use its ancestor's number – but this scheme in simpler algorithmically and

facilitates debugging and tracing the progress of event processing. A log with a unique

reference to each world can be made. The figure below shows how worlds are generated as

events are processed.

44 © Graham G. Thomason 2003-2004

Figure 46. World generation and merging

4.10 Containment of combinatorial explosion

Statechart systems are subject to combinatorial explosion of state spaces, and when

nondeterminism is introduced, the problem is exacerbated. We address the combinatorial

explosion problem in this section.

There are various levels at which some form of state explosion can occur:

 Representation explosion. The representation of the state space may require explicitly

defining a large number of states. The use of statechart hierarchy and parallelism often

mitigates this problem. If that is not the case, such a situation would suggest that the

application being modelled is intrinsically complex or extensive.

 Effective state space explosion. Although there may be a compact representation of a

model, using statechart facilities, there may still be a vast number of distinct effective

states in the model. These would be explicit in a flattened (or unfolded) model.

 Coverage explosion. The testing technique may require visiting a large number of states,

or executing a vast number of transitions, in order to achieve certain coverage

requirements.

 World explosion. The number of nondeterministic worlds may become large.

The first of these, representation explosion appears to be an application-specific issue. We

briefly consider effective state space explosion and coverage explosion. The fourth level,

initial world = 2

world 3 world 4

world 5 world 6 world 7 world 8

bag_to_set

world 5 world 7

bag_to_set

world 3 world 4

process event

β in world 2

process event γ

in worlds 3,4

world 6 process event δ

 in worlds 5,6,7

world 5 world 9 world 7

bag_to_set

world 5 world 12 world 7

etcetera

world 18

world 10 world 18 world 14

© Graham G. Thomason 2003-2004 45

world explosion is very pertinent to STATECRUNCHER and we will describe in some detail the

ways in which the design of STATECRUNCHER addresses the issue.

4.10.1 Effective state space explosion

The effective number of states may be very large, even though the statechart representation is

compact. This is especially the case because the hierarchical structure allows for parallel state

machines, where the number of states in a flattened state space is the product of the number of

states in each parallel machine. This is only a problem if every state in the whole machine

needs to be visited, and if this really is the case the approach is to do it as efficiently as

possible. Techniques for compact storage of many states are binary decision diagrams (see

e.g. [Bérard, pp.51-58]), used in [SPIN]), and hashing algorithms (to record whether a state

has been visited). Minimizing the dynamic number of states generated is achieved by on-the-

fly (or adaptive) testing, as opposed to batch (or preset) testing. With adaptive testing, shorter

sequences of events can be used, because the feedback from the system under test to the test

generator enables it to apply some intelligence and prune search spaces.

Variables and state history adversely affect the number of states in the flattened state space,

since we must take the Cartesian product of states and variable values and state history values.

The modeller should take care to do equivalence partitioning (maybe using enumerated

values), rather than declaring an integer as, say, {0,...,10000}, as it explodes the

flattened state space.

4.10.2 Coverage explosion

Some test coverage criteria are:

 Reach every state of the flattened machine

 Take every transition arc in a flattened machine

Even though a state space is large, it may be acceptable to traverse it in a limited way. A

possibility is:

 Use Projected State Machine Coverage [Friedman, Farchi]. In this technique, states are

grouped into equivalence classes. Each equivalence class is a single state in the projected

machine.

Specific forms of projected state machine coverage would be to:

 Reach and vacate every leaf-state of the hierarchical statechart, i.e. to ensure that every

leafstate is occupied in some test, and that every leafstate is vacant in some test, whilst

remaining indifferent to which leafstates are occupied in combination with which other

ones (and to variable/history values).

 Take every transition arc in the hierarchical statechart, but again showing indifference to

the circumstances (occupancy of states in parallel parts of the machine etc.).

 To regard all leafstates in clusters as equivalent.

46 © Graham G. Thomason 2003-2004

More research is needed to ascertain whether these forms of limited coverage are useful in

practical testing. Useful ones will find (almost) as many faults as would have been found with

more exhaustive testing.

4.10.3 World explosion

In STATECRUNCHER, it is not a model that specifies its nondeterminism, but the transition

semantics that apply in principle to all STATECRUNCHER models. The number of dynamic

states per world is similar to what it would be without nondeterminism.

World explosion arises from large number of worlds that can be generated, as follows:

 There will be f worlds for a fork with f prongs

 There will be r! worlds for a race between r transitions

 There will be s! worlds for a set operation involving s set members.

It is the factorials that are especially troublesome; we consider ways of containing them. In

any case, race and set-transit (with its derivatives) nondeterminism are separately controllable

in STATECRUNCHER and can be switched off.

STATECRUNCHER offers the following containment features:

 A reasonable, not-too-fine granularity of interleavings in set nondeterminism, avoiding

micro-orderings of state entry/exit.

 Separate control of how many permutations are generated under race and set

nondeterminism.

 The ability to kill unwanted worlds, either as an explicit command, or in mid event

processing, by specifying the expected trace (i.e. what the implementation has already

given), so that worlds with a mismatching trace are pruned away quickly, nipping them in

the bud.

We explain these more detail below.

4.10.3.1 The granularity of set-transit nondeterminism

The number of worlds STATECRUNCHER generates on set-transit nondeterminism has been

kept within reasonable bounds by avoiding excessive orderings of transition steps. This is

illustrated using the figure below:

© Graham G. Thomason 2003-2004 47

Figure 47. Set-transit detail

On transition α, two interleavings of the on-entry actions are set up (assume v=0):

 enter c, enter i, enter i2, enter j, enter j2. Variable v will be set to 12435.

 enter c, enter j, enter j2, enter i, enter i2. Variable v will be set to 13524.

We do not generate the following interleavings (or any others):

 enter c, enter i, enter j, enter i2, enter j2. Variable v would be set to 12345.

 enter c, enter i, enter j, enter j2, enter i2. Variable v would be set to 12354.

 enter c, enter j, enter i, enter i2, enter j2. Variable v would be set to 13245.

 enter c, enter j, enter i, enter j2, enter i2. Variable v would be set to 13254.

The above interleavings show what is lost by the restrictions imposed. The interleavings

retained are analogous to a depth-first set-entering algorithm, and the ones discarded are

analogous to a breadth-first set-entering algorithm. Depth-first algorithms are much more

natural in most situations and in most programming languages, leading to the notion of a call

tree. This explains our choice.

In order to model a system which was capable of exhibiting the “breadth-first” orders of

execution, it would probably be best to switch set-transit nondeterminism off (which can be

done as an action in a model, or as an external command), and to manually supply separate

transitions with actions representing each possible ordering the system could generate. These

would then be processed as an explicit fork.

When a transition enters several sets, the permutations take place at each hierarchical level,

illustrated from Figure 48 below.

c

i j

j2

j1

i2

i1

v=v*10+4 v=v*10+5

v=v*10+1

a

v=v*10+2 v=v*10+3

β

β

α

ψ {v=0}

v=v*10+5 v=v*10+4

b

v=0

48 © Graham G. Thomason 2003-2004

Figure 48. Hierarchical set-transit (in outline)

The outer set members are A (with members a1 and a2) and B (with members b1, b2 and b3).

The following permutations will be generated:

 within S: <A,B> and <B,A>

 within A: <a1,a2> and <a2,a1>

 within B: <b1,b2,b3>, <b2,b3,b1>, <b3,b1,b2>, <b3,b2,b1>, <b2,b1,b3>, <b1,b3,b2>

The net orderings on leafstate entry are therefore:

 <a1,a2,b1,b2,b3>, <a1,a2,b2,b3,b1>, <a1,a2,b3,b1,b2>, <a1,a2,b3,b2,b1>,

<a1,a2,b2,b1,b3>, <a1,a2,b1,b3,b2>

 <a2,a1,b1,b2,b3>, <a2,a1,b2,b3,b1>, <a2,a1,b3,b1,b2>, <a2,a1,b3,b2,b1>,

<a2,a1,b2,b1,b3>, <a2,a1,b1,b3,b2>

 <b1,b2,b3,a1,a2>, <b2,b3,b1,a1,a2>, <b3,b1,b2,a1,a2>, <b3,b2,b1,a1,a2>,

<b2,b1,b3,a1,a2>, <b1,b3,b2,a1,a2>

 <b1,b2,b3,a2,a1>, <b2,b3,b1,a2,a1>, <b3,b1,b2,a2,a1>, <b3,b2,b1,a2,a1>,

<b2,b1,b3,a2,a1>, <b1,b3,b2,a2,a1>

This hierarchical permutation technique generates fewer permutations (here, 2!.2!.3!=24) than

flat member permutation (here, 5!=120), since a subset of flat member permutations is always

taken. This too is a form of containment of world explosion (assuming, as always, that we

have not excluded a mode of behaviour that the system under test might actually exhibit).

The orderings that are lost are ones such as <a1,b3,b1,a2,b2>. If they are required, they can be

simulated (as in the Figure 47 situation) by switching set-transit nondeterminism off and

manually supplying separate transitions with actions representing each possible ordering the

system could generate.

4.10.3.2 Limited permutation generation

Race condition nondeterminism and set-transit nondeterminism require, in principle, the

generation of all permutations of a set of transitions. Different orderings of transitions can

S
a

β
A B

b

a1

a2 b1 b2 b3

p1

q1

r1 p2

q2

s1

t1

s2

t2

s3

t3 u3

© Graham G. Thomason 2003-2004 49

lead to different resultant states or different values of variables. A sequence of assignments,

(each of which could be attached to separate transitions) such as

 v=v*10+1; v=v*10+2; v=v*10+3;

gives a different result for each order of execution of the three assignments.

The number of permutations of a sequence of length n is n!. For performance reasons, this

restricts the applicability of exhaustive permutation generation to low values of n. If several

cascaded permutations are involved, then the number of permutation sequences may be of the

order of (n!)2
or (n!)3

. The world-merging algorithm is not particularly efficient, and

experience shows that it is necessary to keep the number of worlds below about 100 in

practice, although this number will increase a little over time with the increasing power of

computers. The number of variables and states in the statechart is an additional factor in this

processing. The following table shows some powers of factorials:

n n! (n!)
2
 (n!)

3

4 24 576 13,824

5 120 14,400 1,728,000

7 5,040 25,401,600 1.2802 x 10
11

10 3,628,800 1.3168 x 10
13

 4.7784 x 10
19

Table 2. Factorial growth

We would like to find a weaker alternative to generating all permutations of elements of the

sets involved, but still retain some useful properties concerning the relative orderings of some

of the elements of a set. In particular, a subset of all the permutations which covered all

relative orderings of, say, any 3 elements of the set, would be useful.

Example: given a set of 4 elements {a,b,c,d}, there are 24 sequences representing all

permutations. However, if we only require that all relative orderings of any 3 elements are

represented in a subset of the permutations, then just the following 6 permutations will

suffice:
 1

 <a,b,c,d>, <a,d,c,b>, <b,d,c,a>, <c,b,a,d>, <c,d,a,b>, <d,b,a,c>

The reader can verify that whatever subset of 3 elements of {a,b,c,d} is taken, e.g. {a,c,d},

and whatever permutation of this subset is taken, e.g. <d,a,c>, then the relative ordering of

these 3 elements will be found in at least one of the above 6 permutations of the original set.

For our example, <d,a,c>, the last-mentioned permutation meets the requirement: <d,b,a,c>.

The [n,k] problem

The [n,k] problem is to find a (small) subset G of the permutations of a set S of n elements,

such that all permutations of any k elements of S are found with their relative ordering in

some element of G.

1
 This set was found by Alistair Willis.

50 © Graham G. Thomason 2003-2004

What we have shown above is a solution to the problem of selecting a subset G of the

permutation of a set of 4 elements, such that all permutations of 3 elements of the set retain

their relative ordering in some element of G. We call this a solution to the [4,3] problem.

We will now define some terminology, including the notion of embedding. Then we will

address the [n,2] problem (which is very simple) and the [n,3] problem.

Some terminology and context

Sets

All sets in the discussions that follow are assumed to be finite.

Power set

We denote the power set of a set S by P(S).

Sequences

Sequences contain elements in a particular order. In this discussion, sequences are assumed to

be finite and with distinct elements. We represent sequences using angle brackets to enclose

the elements. The head of the sequence is the first element; the tail of the sequence is the

sequence remaining after removing the head. Example:

 Q=<a,b,c,d>. Its head is ‘a’ and its tail is <b,c,d>.

Precedence

For a sequence

 A=<ai>i=1
k
 (k2) = <a1, a2, a3, ... ak>

ai precedes aj (in A) if i<j.

Embedding

In our example of a useful subset of permutations, we introduced the concept of the relative

ordering of elements in one sequence being maintained in another sequence. This is the

concept of one sequence embedding into another sequence.

To be more precise, for any sequences A and B

 A=<ai>i=1
k
 = <a1, a2, a3, ... ak>

 B=<bi>i=1
n
 = <b1, b2, b3, ... bn>

Sequence <ai> embeds into <bi> if

there is a strictly increasing function f:[1..k] [1..n] such that

 r ³ [1..n] × ar=bf(r)

Clearly |A| |B|; one sequence cannot embed into a smaller sequence.

© Graham G. Thomason 2003-2004 51

We use the notation A F B to denote that sequence A embeds into sequence B.

Example of embedding

<b,c,e> F <a,b,c,d,e,f>

The permutation function Perm

For any set X, we define Perm(X) to be the set of sequences representing all permuted

orderings of the elements of X.

Example of the permutation function

Perm ({a,b,c}) = {<a,b,c>,<b,c,a>,<c,a,b>,<c,b,a>,<b,a,c>,<a,c,b>}

Useful subsets of a permutation set

Given a set S of n elements, it is desirable to have a subset of Perm(S), which we call G, i.e.

G º Perm(S), such that our embedding property holds for all sequences derived from all

subsets of S of a certain size.

We first define the set S
k
, which is the set of subsets of S of size k,

 S
k
 = {s : P(S) | |s| = k × s}

i.e. the set of elements s of the power set of S such that the size of s is k.

The embedding property that must hold is:

 s : S
k
 × (p : Perm(s) × (g : G × pFg))

i.e. for all s in Sk it is the case that [for all p in Perm(s) it is the case that there exists a g in

G for which pFg].

That is, every permutation-sequence of every size-k-subset of S embeds into at least one

element of G.

For convenience, we denote the elements of S
k
, which are sets, by a single subscript: S

k
i

We denote the permutation sequences of S
k
i, Perm(S

k
i), using a second subscript: S

k
i,j

The subscripts i and j simply enumerate the elements.

Example of useful subsets of a permutation set

S= {a,b,c,d}

P= Perm(S) = {

 <a,b,c,d>, <a,b,d,c>, <a,c,b,d>, <a,c,d,b>, <a,d,b,c>, <a,d,c,b>,

 <b,a,c,d>, <b,a,d,c>, <b,c,a,d>, <b,c,d,a>, <b,d,a,c>, <b,d,c,a>,

 <c,a,b,d>, <c,a,d,b>, <c,b,a,d>, <c,b,d,a>, <c,d,a,b>, <c,d,b,a>,

52 © Graham G. Thomason 2003-2004

 <d,a,b,c>, <d,a,c,b>, <d,b,a,c>, <d,b,c,a>, <d,c,a,b>, <d,c,b,a>}

Subset G consists of the bold sequences above: G= {G1, G2, G3, G4, G5, G6} , where

 G1=<a,b,c,d>, G2=<a,d,c,b>, G3=<b,d,c,a>,

 G4=<c,b,a,d>, G5=<c,d,a,b>, G6=<d,b,a,c>

The set S
3
, (i.e. the set of subsets of S of size 3), is

 S
3

 = {{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}

The individual elements of S
3
 are:

 S
3

1 ={a,b,c} S
3

2={a,b,d} S
3

3={a,c,d} S
3

4={b,c,d}

The permutations of these subsets together with the element of G into which they embed are:

 S
3

1,1=<a,b,c>FG1 S
3

1,2=<a,c,b>FG2

 S
3

1,3=<b,a,c>FG6 S
3

1,4=<b,c,a>FG3

 S
3

1,5=<c,a,b>FG5 S
3

1,6=<c,b,a>FG4

 S
3

2,1=<a,b,d>FG1 S
3

2,2=<a,d,b>FG2

 S
3

2,3=<b,a,d>FG4 S
3

2,4=<b,d,a>FG3

 S
3

2,5=<d,a,b>FG5 S
3

2,6=<d,b,a>FG6

 S
3

3,1=<a,c,d>FG1 S
3

3,2=<a,d,c>FG2

 S
3

3,3=<c,a,d>FG4 S
3

3,4=<c,d,a>FG5

 S
3

3,5=<d,a,c>FG6 S
3

3,6=<d,c,a>FG3

 S
3

4,1=<b,c,d>FG1 S
3

4,2=<b,d,c>FG3

 S
3

4,3=<c,b,d>FG4 S
3

4,4=<c,d,b>FG5

 S
3

4,5=<d,b,c>FG6 S
3

4,6=<d,c,b>FG2

The above set G is optimal, i.e. there is no smaller set with the desired property. This can

easily be seen because G contains the same number of elements as Perm of an S
3

i set. G can

never have fewer elements, as no two permutations of elements the same S
3

i for any i can

embed into the same element of G.

Optimal solution to the [n,2] problem

Given a set S

 S = {si}i=1
n
 = {s1, s2, s3, ... sn}

We select G to be the set of two sequences of the elements: in one order and in its reverse:

 G = {G1,G2} = {<si>i=1
n
, <sj>j=n

1
} = {< s1, s2, s3, ... sn >, <sn, sn-1, sn-2, ... s1>}

© Graham G. Thomason 2003-2004 53

Theorem

For any set S, |S| 2, and set G as defined above:

 s : S
2
 × [p : Perm(s) × (g : G × pFg)]

This is the previously mentioned embedding property that must hold, for k=2.

Proof

All sequences S
2

u,v derived from S contain two distinct elements of S. For an arbitrary u and

v,

 S
2

u,v= <sp,sq>

Case 1: p<q. It is seen from the definition of G1 that <sp,sq>FG1

Case 2: p>q. It is seen from the definition of G2 that <sp,sq>FG2

Example:

S={a,b,c,d,e}

G1=<a,b,c,d,e>, G2=<e,d,c,b,a>

S
2

u,v = <d,b>, which embeds into G2.

Sub-optimal solution to the [n,3] problem (n3)

Although this solution is not optimal, it is linear with n, (|G|=2n), so it can be considered to be

fairly good.

Given a set S

 S = {si}i=1
n
 = {s1, s2, s3, ... sn}

and the permutation set P = Perm(S):

We select G to be the set of the following 2n sequences of the elements:

<si>i=1
n
 when i=1 (cyclic)

<sj>j=i
n
,j=1

i-1
 when i >1, i n (cyclic)

<si>i=n
1
 when i=n+1 (anticyclic)

<sj>j=2n+1-i
1
,j=n

2n+2-i
 when i >n+1, i 2n (anticyclic)

Examples of G

S={s1,s2,s3,s4,s5}

 G1=<s1,s2,s3,s4,s5> G2=<s2,s3,s4,s5,s1>

 G3=<s3,s4,s5,s1,s2> G4=<s4,s5,s1,s2,s3>

 G5=<s5,s1,s2,s4,s4>

 G6=<s5,s4,s3,s2,s1> G7=<s4,s3,s2,s1,s5>

 G8=<s3,s2,s1,s5,s4> G9=<s2,s1,s5,s4,s3>

 G10=<s1,s5,s4,s3,s2>

Gi= {

54 © Graham G. Thomason 2003-2004

S={a,b,c,d,e}

G1=<a,b,c,d,e>, G2=<b,c,d,e,a>, G3=<c,d,e,a,b>, G4=<d,e,a,b,c>, G5=<e,a,b,c,d>

G6=<e,d,c,b,a>, G7=<d,c,b,a,e>, G8=<c,b,a,e,d>, G9=<b,a,e,d,c>, G10=<a,e,d,c,b>

We call G1...Gn the cyclic elements of G, and Gn+1...G2n the anticyclic elements.

Theorem

For any set S, |S| 3, and G as defined generically above:

 s : S
3
 × [p : Perm(s) × (g : G × pFg)]

This is the previously mentioned embedding property that must hold, for k=3.

Proof

All sequences S
3

u,v derived from S contain three distinct elements of S. For an arbitrary u and

v,

 S
3

u,v= <sp,sq,sr>

Without loss of generality, we can see an element of G into which this will embed by writing

the elements of G in a form emphasizing the position of sp. We will use a form of arithmetic

modulo n with an offset of 1 such that

 if p=n, then p+11

 if p=1, then p-1n

It is not possible for both the above modulo adjustments to need to be made for the same p

(since p=1, p=n, n3 is false).

All cyclic elements of G are of the form

 <sp,sp+1, ... sp-1> (prior to explicit modulo adjustment)

Three cases come into view after making modulo adjustments:

 Gc-1: <sp,sp+1, ... sn,s1, ... sp-1> (pn ,p1)

 Gc-2: <sn,s1, ... sn-1> (p=n)

 Gc-3: <s1,s2, ... sn> (p=1)

All anticyclic elements of G are of the form

 <sp,sp-1, ... sp+1> (prior to explicit modulo adjustment)

Again, three cases come into view after making modulo adjustments:

 Ga-1: <sp,sp-1, ... s1,sn, ... sp+1> (pn ,p1)

 Ga-2: <sn,sn-1, ... s1> (p=n)

 Ga-3: <s1,sn, ... s2> (p=1)

There are 6 main cases of <sp,sq,sr> to consider:

Case 1: p<q, q<r, r>p. <sp,sq,sr> embeds into the cyclic case Gc-3

Case 2: p<q, q>r, r<p. <sp,sq,sr> embeds into the cyclic case Gc-1

Case 3: p>q, q<r, r<p. <sp,sq,sr> embeds into the cyclic case Gc-1 (pn) or Gc-2 (p=n)

Case 4: p>q, q>r, r<p. <sp,sq,sr> embeds into the anticyclic case Ga-2

© Graham G. Thomason 2003-2004 55

Case 5: p>q, q<r, r>p. <sp,sq,sr> embeds into the anticyclic case Ga-1

Case 6: p<q, q>r, r>p. <sp,sq,sr> embeds into the anticyclic case Ga-1 (p1) or Ga-3 (p=1)

Examples of values of p,q,r for these cases representing typical permutations of three

elements of a set of, say, 40 elements: {s1 ... s40}:

Case 1: p<q, q<r, r>p. p=10, q=20, r=30

Case 2: p<q, q>r, r<p. p=20, q=30, r=10

Case 3: p>q, q<r, r<p. p=30, q=10, r=20

Case 4: p>q, q>r, r<p. p=30, q=20, r=10

Case 5: p>q, q<r, r>p. p=20, q=10, r=30

Case 6: p<q, q>r, r>p. p=10, q=30, r=20

We can also see the above case selection as working as follows. There are two sequences

which start with any sp –a cyclic one and an anticyclic one. A sequence <sp,sq,sr> is a

candidate to embed into one of these. The tails of the two such sequences contain the

remaining sq,sr elements in opposite orders. So one or the other will always satisfy the relative

precedence requirement of sq and sr.

Application in STATECRUNCHER

STATECRUNCHER gives separate control over race and set nondeterminism, both from within

a model and as an external command.

For control of race nondeterminism:

function external command effect

no_race nr Only one ordering taken (forwards)

low_race lr Two orderings taken (forwards/reverse)

med_race mr 2n orderings taken (all cyclic, all anticyclic)

high_race hr All n! orderings of the permutation taken

Table 3. Control of race nondeterminism

For control of set nondeterminism:

function external command effect

no_set_tran nst Only one ordering taken (forwards)

low_set_tran lst Two orderings taken (forwards/reverse)

med_set_tran mst 2n orderings taken (all cyclic, all anticyclic)

high_set_tran hst All n! orderings of the permutation taken

Table 4. Control of set nondeterminism

56 © Graham G. Thomason 2003-2004

Set nondeterminism consists of set-transit nondeterminism, set-action nondeterminism and

set-meta-event nondeterminism; they are all controlled by the same setting (the suffix _tran

is a little misleading in this respect).

4.10.3.3 Pruning worlds based on traces

The commands to STATECRUNCHER include one to kill worlds, and this enables world

pruning to be done by the Primer/Driver, when it is seen that some worlds do not match the

IUT (Implementation Under Test) behaviour. The idea of optimising this process within

STATECRUNCHER processing was first put forward by Tim Trew. The idea is for the IUT to

produce its traces first, and for STATECRUNCHER to be given these and be asked to verify

them, pruning worlds whenever it can en route.

Non-matching worlds will be killed by STATECRUNCHER after processing any event, but also

in the routine that processes a transition in one world. This routine is called after a series of

reductions from the routine to process a set of transition sequences in many worlds, as

explained in section 7.6. It is a good point in mid-algorithm, just after new worlds have been

produced, to prune them, “nipping them in the bud”.

Figure 49. Reduction of task processing

process_task_in_worlds

(one task in many worlds)

process_task_in_world (client handler)

(one task in one world)

process_task_seq_in_worlds

(one task sequence in many worlds)

process_task_seqs_in_worlds

(many task sequences in many worlds)

 potential recursion, e.g. when a

 transition task fires a new event
 any worlds produced here that conflict

with the trace provided are killed

© Graham G. Thomason 2003-2004 57

Implementation in STATECRUNCHER Release 1.05

Abbrev.

Command

Command

 showing typical example and/or typical output

pe ... process event EVENT ?p=PARAMETERS ?t=EXPECTEDTRACE

 pe gamma p=[4,xy] (statechart scope assumed)

 pe [alpha,[sc]] p=1 t=[2,4]

 pe [alpha,[sc]]

Parameters can also be supplied in STATECRUNCHER internal form, e.g.

 p=[[ex_co,int,4],[ex_str,[120,121]]]

Table 5. STATECRUNCHER command to prune worlds given a trace

The idea is to process an event giving STATECRUNCHER a trace to expect. This would

typically be what a SUT has already revealed. Supplying the expected trace to

STATECRUNCHER serves two purposes:

 It may save the primer having to kill worlds

 It enables optimisations in STATECRUNCHER, because mismatching worlds can be nipped

in the bud.

Some traces are plain mismatches. But what should be done when STATECRUNCHER produces

too little trace (undertrace), or too much trace (overtrace) while not being in flagrant violation

of the expected trace? Examples (trace lists are read from right to left):

 undertrace: Expected-trace=[cd,ab], STATECRUNCHER-trace=[ab]

 overtrace: Expected-trace=[cd,ab], STATECRUNCHER-trace=[ef,cd,ab]

Which of these should be permitted?

Clearly, in mid-algorithm we must allow undertrace, as the rest of the algorithm may produce

the required remaining trace.

For the total algorithm, the requirement is not clear, and it depends on modelling philosophy.

An argument for allowing overtrace is that the SUT may “spontaneously” produce the

missing trace (e.g. by unsolicited notifications which have not been modelled as being

initiated by an event). But is this a good approach to modelling?

There is no clear argument for allowing undertrace. However, there may be ways of

modelling in which it is required.

STATECRUNCHER currently applies a very lenient strategy of allowing everything except a

flagrant trace violation. This can be changed if required.

58 © Graham G. Thomason 2003-2004

Test models t5550 t5555, t5560, t5565 (q.v. in [StCrTest]) can be used for

experimentation.

Application in test strategies

When black-box testing, worlds produced by STATECRUNCHER will be killed if their traces do

not match the IUT's traces. This can either be done using the above mentioned pruning

technique, or by explicit kill commands.

If after a test STATECRUNCHER has been left with no worlds, the test has given a failure. The

problem arises how to continue. It may be acceptable to fix the problem manually before

continuing with testing; if not, automatic recovery will involve either recreating a previous set

of worlds (which can be done by feeding world output back to STATECRUNCHER), from which

subsequent tests can continue, or by a reset to the initial world from which an independent

part of the test suite can run.

If after a test STATECRUNCHER has been left with one world, then the tests are running as

efficiently as possible.

4.10.4 The notification example - and containment approaches

A practical example shows that more is needed than the devices we have discussed so far.

The notification problem as discussed here was identified by Tim Trew [Trew 03], who also

proposed the basic technique of pruning worlds based on a supplied trace.

A notification is a message between asynchronous processes, e.g. after one function (a client

function) has called another (a server function) on a different thread. After the call, both

functions can proceed on their own thread. The server function can communicate with the

client function by sending messages to indicate progress, and ultimately, completion. (The

client may also communicate with the server, of course).

Figure 50. Notifications

client

function

server

function

initial call

progress notification

progress notification

completion notification

thread ends

thread starts

© Graham G. Thomason 2003-2004 59

A problem involving notifications is a good example of parallelism, two threads being active

in parallel. It has the added difficulty that notifications are events that are generated by the

system under test, rather than being events that are offered to the system under test. The result

is that the system behaves nondeterministically - the number of notification events that will be

generated is not known a priori by the state model. This is not a problem until the potential

number of notifications becomes large, which is exactly what happens in the example we

investigate: a TV program installation example. Program installation for one channel is a

process of searching for a station with the tuner, reporting with notifications that that the

search is in process. If a station is found, it will be registered. If no station can be found, the

TV remains untuned. The program installation process can be stopped at any time.

The state behaviour is (in part) represented by the following figure.

Figure 51. Notification example [model t4152]

On the start_tuning event, the TV searches for a station by tuning. During the search,

notifications are generated, representing “search in progress”. These notifications can be used

to fill a progress bar. From the above model STATECRUNCHER generates worlds containing

various numbers of notifications. When a station is found, the station_found event is

generated. A fuller model would allow for stopping the program installation, and for failure to

find a station.

prog_inst

idle

start_tuning/

fire

gen_notifs

n=4

tuned

gen_notifs /

 fire notif; n--; if (n>0) {fire gen_notifs;}

tuning

station_found

notif /

trace(notif_msg)

gen_notifs

fork nondeterminism

here, we stop

generating notifications

here, we generate more

notifications

60 © Graham G. Thomason 2003-2004

In a composite system of program installation and tuner as above, the start_tuning

event is under the tester's control, but the notif and station_found events are

generated internally to the IUT (Implementation Under Test), ultimately by hardware. The

problem arises that a large number of notifications could be generated. The above model

caters for up to 4 notification messages by using fork nondeterminism on event

gen_notifs to generate:

 a world with no notifications

 a world with 1 notification

 a world with 2 notifications

 a world with 3 notifications

 a world with 4 notifications

The STATECRUNCHER traces corresponding to this are:

4 TRACE =[]

9 TRACE =[notif_msg]

14 TRACE =[notif_msg, notif_msg]

19 TRACE =[notif_msg, notif_msg, notif_msg]

23 TRACE =[notif_msg, notif_msg, notif_msg, notif_msg]

In practice, over 800 notifications can be generated. This number of worlds is rather excessive

for STATECRUNCHER. What solutions can be found? One is to change our model of testing.

Up to now we have been treating the model and the IUT symmetrically (Figure 7, Figure 22),

giving them the same input and comparing their output. With white-box testing we can set

and observe states, but with black box testing, we are restricted to processing events and

observing trace output.

The following improvements in efficiency are possible:

 Allowing for repetitions

 Conversion of traces to pseudo-events.

They involve some degree of asymmetry between model and IUT. The first still allows for

simultaneous processing in IUT and model, but requires special interpretation of certain

model outputs. The second has the IUT precede the model in execution, and interprets IUT

output in determining how best to verify against the model.

A third technique is:

 Pruning worlds based on traces (section 4.10.3.3).

Repetitions

We allow the IUT time to produce several outputs before comparing them with the model's

output. We use an asterisk convention that the comparator should allow any number of

notif_msg traces from the IUT against a notif_msg* trace from the model.

© Graham G. Thomason 2003-2004 61

Figure 52. Repetition convention [model t4153]

After processing event start_tuning, we have a trace of

5 TRACE =[notif_msg*]

However, a problem arises if there can be several separate arbitrarily-interleaved notifications

from different servers. Although a convention could be elaborated to cater for this, allowing

for expressions with and and or operators, it would be rather cumbersome.

Conversion of IUT traces to model events

With this technique, we have a very simple model, as in Figure 53. In state tuning, we wait

to see what the output the IUT produces before processing an external event. (The driver may

have instructions to wait a certain time when it sees a transitionable conversion-type event,

which can be identified by its PCO). Every time the IUT produces an output of notif_msg,

we see whether the model allows a transitionable event named notif_msg, on a special

PCO (Pont of Control and Observation), indicating that the output can be converted to an

event. We use the PCO name pco_convert. If this is the case, we have two approaches:

 allow the output without further ado, i.e. without processing any event in the model

 convert the output to an event and feed that event back into STATECRUNCHER and check

that the actual trace produced matches the IUT output. This is shown by the optionally

with /trace("notif_msg") action in Figure 53.

The former of these may be adequate in many cases and is very efficient; the latter may give

extra flexibility, e.g. where a notification is parameterised, or where it causes a state change

itself, or where the number of notifications must be counted in the model.

prog_inst

idle

start_tuning/

fire

gen_notifs

tuned tuning

station_found

gen_notifs /

trace("notif_msg*")

62 © Graham G. Thomason 2003-2004

Figure 53. Conversion of traces to events

The number of worlds generated at any one time is kept to a minimum, because the

notifications are processed one by one, and they do not in themselves entail nondeterminism.

However, with the second option only, performance may be affected if the model is called a

very large number of times.

4.10.5 Summary of containment techniques

The following summarises the ways described for containing combinatorial explosion.

Compact representation of a large number of states and transitions

 The use of hierarchy and concurrency: STATECRUNCHER's clusters and sets

 Binary decision diagrams are efficient, and are used in SPIN.

Minimising the number of states

 Equivalence partitioning of numerical ranges; use an enumerated value per partition

 On-the-fly (adaptive) testing prunes away states that would have to be generated in batch

(preset) testing.

Limited state machine coverage in testing

 Projection coverage.

Nondeterministic restriction of world explosion

 Fork nondeterminism: not controllable except by excision of forks in model source code

 Race nondeterminism: A race with n competitors can be set to

- no race (1 interleaving)

- low race (2 interleavings)

- medium race (2n interleavings)

- high race (n! interleavings)

prog_inst

idle

start_tuning

tuned tuning

station_found

notif_msg @pco_convert

optionally with

/trace("notif_msg")

© Graham G. Thomason 2003-2004 63

 Set nondeterminism. Where there are n set member operations, the nondeterminism can

be set to

- no set tran (1 interleaving)

- low set tran (2 interleavings)

- medium set tran (2n interleavings)

- high set tran (n! interleavings)

Also

- The transition semantics avoid micro-orderings of set entry/exit

- The hierarchical permutation technique, applied to nested sets, reduces the number of

interleavings.

World pruning

 Kill invalid worlds after every test

 Mid-algorithm world pruning based on expected trace

 A special technique when testing against a deterministic IUT [Hierons 98].

Handling notifications

 Allow for repetitions of a notification in one pseudo-trace

 Conversion of traces to pseudo-events

4.11 Test generation under nondeterminism

Whilst it is not STATECRUNCHER's responsibility to generate test sequences, (but that of its

neighbour in the tool chain, the primer), we give some informal descriptions of some of the

issues and approaches involved. For precise descriptions, see [Hierons 98] and the other

publications referred to.

In section 3.2.4, we described some methods used in generating tests for deterministic finite

state machines. When the specification is nondeterministic, we wish to show that everything

the implementation can do is allowed by the specification. We do not need to show

equivalence between specification and implementation, because the specification may allow

certain aspects of behaviour whilst not insisting on them.

Various assumptions about the NFSM (Nondeterministic Finite State Machine) are generally

necessary, including the fact that it is observable, an ONFSM, i.e. that a unique target state on

a transition can be deduced from the output generated by the transition. A non-observable

NFSM can be converted to an equivalent observable NFSM, (though, of course, knowing the

state of the ONFSM does not imply uniquely knowing the state of the NFSM).

One definition of conformance of an implementation NFSM MI to a specification NFSM M, is

as follows. Define a language of an NFSM M with the symbols in its alphabet being input-

event/output-trace pairs. The language of an NFSM M, L(M), is the set of such symbol

sequences that can be produced by it. MI conforms to M if L(MI)L(M).

64 © Graham G. Thomason 2003-2004

Tretmans, in a presentation on Côte de Resyste [CdR], (where inputs and outputs are both

events, and traces are sequences of processed events, as in CSP) defines conformance of an

implementation i to a specification s as:

i ioco s =def σ Straces(s) : out(i after σ) out(s after σ)

Tretmans explains this as: i ioco-conforms to s iff

 if i produces output x after trace σ , then s can produce x after σ

 if i cannot produce any output after trace σ, then s cannot produce any output after σ,

(quiescence).

A test suite T is sound if i ioco s i passes T.

A test suite T is exhaustive if i passes T i ioco s.

Test sequence derivation algorithms for NFSMs are given by [Petrenko], who introduces the

concept of r-distinguishing sequences to distinguish states in an observable NFSM. [Hierons

98] addresses the issue of testing an implementation that is known to be deterministic against

a nondeterministic specification, introducing d-distinguishing sequences, that distinguish

states on this assumption. The paper also shows how adaptive testing is more efficient than

preset testing. [Hierons 03] addressing the same issue shows how a candidate can be used, a

deterministic FSM that is generated from the nondeterministic specification and the

implementation. It has the property that if the implementation conforms to the candidate, the

implementation conforms to the specification. Tests can then be derived from the candidate,

using test generation algorithms for deterministic FSMs. The references given cover more

issues and cite additional authors on this subject.

Although there are algorithms for the generation of very strong test suites, we note that

random testing is also very effective, and was used in the Côte de Resyste experiments [CdR],

[Du Bousquet].

4.12 Summary of this section

We have seen how STATECRUNCHER supports the following forms of nondeterminism in a

UML-like statechart: fork, race, set-transit, set-action, set-meta-event and fired-event

nondeterminism. Combinations of these forms of nondeterminism can be present at the same

time. For each outcome, STATECRUNCHER generates a world, and events are processed in all

worlds. Reference has been made to some approaches to test generation when a specification

is nondeterministic. We have considered how to contain combinatorial explosion of worlds.

STATECRUNCHER may be able to play a role in adaptive, on-the-fly testing, but this is a

subject for further consideration and research. STATECRUNCHER can certainly flatten UML-

style state spaces, and may be useful as a test oracle in adaptive testing too. For example, if

after a test STATECRUNCHER has been left with more than one world (all with the same trace,

but differing in internal state), and if it is known that the implementation is deterministic,

then there may be very efficient disambiguating sequences of events (d-distinguishing

sequences, [Hierons 98]) which could be applied to the IUT and STATECRUNCHER, after

© Graham G. Thomason 2003-2004 65

which STATECRUNCHER would be pruned to the matching world only. However, this does not

prune the underlying model, only the data it has produced. A future very advanced possibility

would be for STATECRUNCHER to allow for adaptation of its model, whereby states and

transitions can be created and destroyed.

Precise details of the language syntax, of design considerations, of the transition algorithm,

and of the implementation strategy have not yet been given. These are the subjects of the

ensuing chapters.

66 © Graham G. Thomason 2003-2004

5. STATECRUNCHER as a language

In this section we describe STATECRUNCHER primarily from a syntactic point of view. The

aspects of syntax and parsing fall into three main areas: declarations, expressions/operators

and the transition block.

5.1 General syntax

STATECRUNCHER syntax is an extension to that described in [CHSM] and [ECHSM]. The

distinguishing feature of STATECRUNCHER is primarily its semantics, with its handling of

nondeterminism, rather than its syntax.

Before the detailed syntax of states, clusters, sets and statecharts is described, some

introductory syntax descriptions and conventions are needed. Then we use the ‘railroad’

diagramming technique to describe the main syntax. The diagrams contain ‘reverse-flow’

arrows to represent repetitions; the syntax is actually implemented in PROLOG Definite

Clause Grammars (DCG's) – which requires a ‘forward-flow’ only description, using

recursion to obtain arbitrary repetition. For parsing details, including a forward-flow

description of the grammar, see [StCrGP4] and [StCrParsing].

5.1.1 General syntax conventions

This subsection covers aspects of syntax that could be applicable to any statement.

1. Statements currently must be written on a line of their own, and only on one line, except

that a continuation character, the backslash, "\", may be used at the end of a line to denote

continuation onto the next line. Use of the backslash may be repeated over many lines.

Avoid having anything (e.g. spaces, comments) following the continuation character on

the same line; it must be the last character of the line.

2. STATECRUNCHER syntax is case sensitive throughout. Language keywords must be

specified in the correct case. User-defined names (identifiers) must be consistent with

respect to case.

3. Identifiers are user-defined names of states, events, variables etc. The rules are:

- Identifiers must not be a language keyword, transition label or function name.

Language keywords are:

 bool clear cluster deep deep_clear

 else enter enum event exit

 false fire history if in

 is PCO set state statechart

© Graham G. Thomason 2003-2004 67

 true upon

Keywords reserved for transition labels are:

 cost name time utility

 lk_cost lk_name lk_time lk_utility

Function names are:

 abs cast format get_nworlds

 high_race high_set_tran length lower_case

 low_race low_set_tran maximum med_race

 med_set_tran minimum no_race no_set_tran

 upper_case

- Identifiers must begin with a letter (upper case or lower case) or an underscore. This

is optionally followed by a sequence containing upper or lowercase letters, decimal

digits and underscores.

4. Numbers are in accordance with their representation in C. Real numbers are not currently

supported in any STATECRUNCHER statement.

Examples of integer constants
1
:

0 -0 123 -123

013 (octal) 0X12f (hex) 0x12F (hex)

Examples of character constants:

'C' 'x' '\n' '\36' (decimal)

'\057' (octal) '\0x2F' (hex)

No distinction is made in STATECRUNCHER in practice between characters and integers.

5. White space, used to separate syntactic items, consists of a sequence containing the

following characters (with their decimal ASCII code)
2

 space (32) alert (7) backspace (8) horizontal tab (9)

 line feed (10) vertical tab (11) form feed (12)

1
 Additionally, the suffixes for long and unsigned or both may be appended, e.g. 123l(long)

123L(long) 123u(unsigned) 123U(unsigned) 123ul(unsigned long) 123UL(unsigned long).

123Lu(unsigned long) However, these do not alter the internal representation.
2
 For normal use the white space characters are space and horizontal tab. An embedded backspace

does not remove the preceding character. Line feed and/or carriage return may not be possible as

embedded characters as they may be absorbed in the line read process. DOS and Unix have different

end-of-line conventions. The user need not normally be concerned about this. Some text editors may

not allow embedding of some of these characters in a file.

68 © Graham G. Thomason 2003-2004

Comments (see below) also count as white space. White space can be omitted where that

does not lead to an erroneous tokenization or parse. For example, if there is no white

space between the keyword cluster and the identifier volume, a new identifier

clustervolume is formed, so white space is required. But after brackets, commas,

operators, semicolons etc., no white space is required.

6. Comments in STATECRUNCHER source can be in either of the following styles, or a

mixture of both:

- the 'C' and PROLOG convention: /*.....*/ The comment must be closed in the

statement which opened it.

- the 'C++' convention: //... (running to the end of the line)

The continuation line character, backslash, "\", retains its continuation function after 'C++'

style comments, and does not terminate a // comment.

5.2 STATECRUNCHER statements

A STATECRUNCHER model consists of statements. The figure below shows this top level of

the STATECRUNCHER grammar.

Figure 54. STATECRUNCHER statements

In the sections following, these statements are considered individually.

statement

null statement

statechart statement

type declaration statement

variable declaration statement

PCO declaration statement

event declaration statement

state statement

set, cluster or (leaf) state

© Graham G. Thomason 2003-2004 69

5.3 Basic syntax of statechart / cluster / set and (leaf-)states in a

hierarchy

We now show how to define hierarchical states in a STATECRUNCHER model. The grammar is

shown with reverse-flow for compactness; for the feed-forward transformation (which is not

difficult for this part), see [StCrParsing].

Figure 55. Basic syntax of statechart / cluster / set and (leaf-)states

The statenames block contains the names of the member states of the cluster or set. The

statements defining these member states must occur immediately after their parent. This gives

the entire hierarchy a depth-first structure, as will also be seen in the example that follows.

cluster

set

state

transition

block
history cluster

 name

state-

name
) (

identifier

transition

block

set

 name

state-

name
) (

transition

block

state

 name

state statement

statechart

 name

identifier

state-

name
) (statechart

identifier

statechart statement

;

identifier

identifier

identifier

,

identifier

dhistory

,

history

history

dhistory

deep history

dhistory

70 © Graham G. Thomason 2003-2004

If there is an error in defining the member states (because the child states announced in a

parent state do not actually occur, or do not occur in the right place), this is flagged as a

machine path error. The machine path is the hierarchical path from the statechart level down

the hierarchy to a state at some place in the hierarchy.

History and deep history are described in more detail here; their effect on the ‘transition

course’ is considered in detail in section 7.5.

The transition block is considered in section 5.8.

5.4 More about hierarchical states

5.4.1 Statecharts

A STATECRUNCHER model is wrapped in the highest (outermost) hierarchical level by a

‘statechart’. This formality does not offer any additional functionality, except to provide a

clear marker as to where one or more ‘statecharts’ starts in a source file (but currently only

one is supported).

5.4.2 Clusters

A cluster is a group of states (members of the cluster) such that at most one member state can

be occupied. If one member is occupied, the cluster is regarded as occupied. If all members

are vacant, the cluster is vacant. The members of a cluster can be other clusters, sets (to be

introduced) or leafstates.

The diagrammatic notation for a cluster is a rounded rectangle with its name at the top left.

One member of the cluster is designated the default member (symbol). This state is

entered:

 if the cluster is entered when the statechart is initially entered

 if the cluster is the target state of a transition (to be discussed in detail later), unless other

(history-related) factors come into play.

Transitions can have a cluster as their source state. They can also have a cluster as a target

state – details of this will be discussed later. This gives a compact way to express what would

otherwise be multiple transitions.

The following diagrams show by example how a cluster is equivalent to a flat state machine,

i.e. one without hierarchy.

© Graham G. Thomason 2003-2004 71

Figure 56. Cluster with transitions

Figure 57. Cluster - equivalent flattened state machine

5.4.3 History and deep history

A cluster can be marked with a history or deep history marker. The history data records the

member that was occupied when the cluster was last occupied.

On our diagrams, history is marked according to the following legend:

A cluster with a history marker, when it is targeted without a specific member being specified,

will enter the historical state. This assumes the history data is available – otherwise the default

state will be taken. Deep history indicates that historical data is to be used (assuming it is

available) on re-entering the cluster and all descendant clusters below the marked cluster. The

descendant clusters are entered under a deep history obligation – whether or not they have a

history marker. The deep history obligation is not applicable simply because a particular

cluster is below another one with a deep history marker. It must be the case that the cluster

with the deep history marker is actually entered in the course of the transition for the deep

history obligation to apply. ‘Low flying’ transitions will not ‘see’ the deep history marker.

In practice, history data is saved whenever a cluster is exited, and decisions are taken on

whether to use the data on cluster entry. The following statechart shows the basic use of

history.

δ

γ

ε

ζ

β

β
α β

a d

c b

N H D = no history (default) = (shallow) history = deep history

d c b a

δ α

β

γ

ε ζ

cluster_1

72 © Graham G. Thomason 2003-2004

Figure 58. History and deep history

We consider some transitions:

 The transition on τ1 causes cluster a to be exited. The transition on τ2 causes it to be re-

entered, and as cluster a has a deep history marker, it and all descendants will be assume

the previous occupancy (for example, states ab, abc and abcb, showing the

applicability of history in a cluster without a history marker).

 The transition on σ2 causes cluster aa to be exited. The transition on σ1 causes it to be

re-entered. The deep history marker in cluster a is not effective, as cluster a is not being

re-entered on this transition. Since cluster aa does not have a history marker, the default

member state is taken: this is state aaa.

 The transition on σ4 causes cluster ab to be exited. The transition on σ3 causes it to be

re-entered. The history marker in cluster ab indicates that the historical member is to be

entered. Suppose this is abc. Cluster abc is duly entered, followed by its default

member: state abca.

Notes:

 History data can be cleared (as an action - described later) using the functions

clear(state-expr) and deep_clear(state-expr).

 A set (to be described) cannot be marked with a history marker, but it can be marked with

a deep history marker.

 History also impinges on the ‘transition course’ under more complex circumstances –

such as transitions targeting a parent state of the source state – to be described later.

 STATECRUNCHER may be changed in the future to handle UML pseudo-states, where it is

the transition, not the cluster, that specifies how history is to be handled. But

STATECRUNCHER can simulate these, since all clusters can be marked with deep history,

and history can be cleared beforehand when the historical states are not required.

 b

 a

D

τ1

τ2

aab

 aa

N
aaa

α6

α1

α4

α5
α2

α4

abb

 ab

H
aba

β6

β1

β4

β5 β2

β3

acb

 ac

D
aca

acc

γ6
γ1

γ4

γ5 γ2
γ3

σ1

σ3

σ6
σ4

σ5

σ2

 az
aaca aacb

α7

α8

N
 aac

abca abcb

β7

β8

N
 abc

© Graham G. Thomason 2003-2004 73

5.4.4 Sets

A set is another way to group states hierarchically. If a set is occupied, all its members must

be occupied. If the set is vacant, all its members must be vacant. The members of a set can be

clusters, sets or leafstates. A set normally has at least two members, though it may have just

one (but, in STATECRUNCHER, not zero). This gives the statechart concurrency (i.e.

parallelism): several states can be occupied in parallel.

The notation for a set is a rounded rectangle with a tab. Members are separated by a dotted

line. If the member of a set is a cluster, no separate enclosing rectangle around the cluster is

required; the symbol in the member area indicates a cluster. The following figure shows how

members of sets can be designated.

Figure 59. Notation for members of sets

The following diagrams show how a set is equivalent to a flattened state machine:

Figure 60. Set with transitions

my_set

cl1 cl2

e d c a
δ

γ ε

ζ β

α

b

a
aa ab

s

d

c

dba dbb

dab daa

eab eaa

e
ea

member is a cluster (containing two leafstates)

Note symbol a in the member area

member is a leafstate. Note no symbol outside the leaf state

member is a set (containing two clusters, each of which

contains two leafstates)

member is a cluster (containing a cluster (containing two

leafstates))

bb ba b
alternative: member is a cluster (containing two leafstates)

Note no symbol outside the cluster

da

db

D A deep history marker is possible

74 © Graham G. Thomason 2003-2004

Figure 61. Set - equivalent flattened state machine

Transitions can have multiple targets so as to specify which states within set members are

entered. They can also effectively have multiple source states, indicating that the transition

requires all the source states to be occupied, but this must be modelled in STATECRUNCHER as

a transition from one of the source states with a condition attached, testing for occupancy of

the others. Conditions are described later.

Figure 62. Transitions with multiple source and multiple target states

Sets and history

A set cannot be marked with a history marker, since there is no choice as to which member to

enter – if the set is entered, all its members are entered. A set can be marked with a deep

history marker. This means that on entry into the set and then into the set members, a deep

history obligation will be passed on to all members of the set. Any clusters below the set in

the hierarchy will then be entered in their historical state, in the same way as was described

under cluster deep history.

5.4.5 Example of hierarchical states

In the figure below, default states are marked in bold font. The source code is shown

alongside.

a,c a,d

b,c a,e

b,e b,d

α

γ

β

γ

α

δ
ε

ε

δ
β

ζ

α

β

ζ

my_set

cl1 cl2

e d c a

δ

γ ε

ζ β

α

b

g

η

θ

f

© Graham G. Thomason 2003-2004 75

Figure 63. Example of hierarchical states [from model t6205, without aa prefixed]

5.5 Declarations and scoping

STATECRUNCHER supports the following declared items

 States

 PCOs: Points of Control and Observation

 Events

 Types

 Variables

In STATECRUNCHER it is not necessary for all items (states, PCOs, events and variables) to

have unique names. There can be global and local definitions of an item using the same name;

the items are then quite distinct. This is roughly equivalent to global and local variables in

‘C’. STATECRUNCHER uses scoping operators to ensure that all items are accessible

everywhere, if required.

The scope of an item is given by a machine path. This is a sequence of hierarchical states

starting at the statechart level and descending as far as some particular state. We denote the

sequence using a dot to link the states in the path, e.g. sc.p.q.r, or the internal

representation, a PROLOG list in reverse order, also used in STATECRUNCHER output:

[r,q,p,sc].

The way states are declared has already been seen. Other items (PCOs, events and variables)

can be declared straight after the statechart statement, in which case they are, in the

absence of scoping operators, global to the statechart, or they may be declared after any

a(set)

ab(cluster)

abb aba

aab
aaaa aaab

 aaa(cluster)

 aa(cluster)

ac(set)

aca acc

aaac

abc

acb

statechart sc(a)

set a(aa,ab,ac)

 cluster aa(aaa,aab)

 cluster aaa(aaaa,aaab,aaac)

 state aaaa;

 state aaab;

 state aaac;

 state aab ;

 cluster ab(aba,abb,abc)

 state aba ;

 state abb ;

 state abc ;

 set aaac(aca,acb,acc)

 state aca;

 state acb;

 state acc;

76 © Graham G. Thomason 2003-2004

state statement in the source code, in which case, in the absence of scoping operators, they

are local to some part of the statechart.

Figure 64. Scope of declarations - default

Scoping expressions allow a declaration or a reference to be made to a non-default scope,

which could be higher in the hierarchy, lower in the hierarchy, or across the hierarchy (e.g. in

a cousin relationship). Example operators are the $, which backs out one level in the

hierarchy, and the dot, which deepens the machine path by the operand following it. There are

more (described in section 5.6.2.2). These operators will probably only rarely be employed

directly by the user. However, statechart composition utilities may make copious use of them.

The use of scoping expressions means that, in the syntax which follows shortly, an expression

will be seen where just an identifier might have been expected. For example, an event can be

declared as

 event alpha;

but where alpha stands, an event-expression is allowed, modifying the scope of the defined

event. So we might see

 event $$alpha; // scope is more global than current machine path

or

 event a.b.alpha; // scope is more local than current machine path

The syntactic items PCO-expression, event-expression, tag-expression, var-expression are

scoped-name expressions. When evaluated, they return a name and a scope for that name.

The syntactic item expression is a more conventional expression, using arithmetic operators,

though scoping operators are also allowed. An expression evaluates to a value, not a name.

5.5.1 State declarations

States are declared and defined in the hierarchical way by the statements described in section

 5.4. The transition part of state statements is described in section 5.8.

t2

r

t1

p

s

t

q

statechart sc

q1 p1 r1 s1

Declarations here (straight after the state statement for cluster r) are

local to state r and its decendants. Machine path here = sc.p.q.r

© Graham G. Thomason 2003-2004 77

5.5.2 PCOs and events

PCOs (Points of Control and Observation) must be declared in order to be used (though they

need not be declared in a source line preceding their use). Events must similarly be declared

in order to be used. PCOs serve to classify events according to whether (and where) they are

externally controllable and observable or not – but use of them is a Primer (test generator)

affair, and all STATECRUNCHER does with them is to provide information on them in its

output. There can be several PCO and event declaration statements in a STATECRUNCHER

model.

Figure 65. PCO declarations

Examples:

 PCO pco1;

 PCO alf,bert,$$bert,charlie; // two berts (in different scopes)

Figure 66. Event declaration

Examples

 event alpha;

 event beta,$$gamma,delta@pco1;

 event $$epsilon,zeta@$$$$pco2;

pco-

expresssion

pco-expression ::= identifier or scoped name expression

; PCO

pco_declarations

in CAPITALS!

,

pco-expression ::= identifier or scoped name expression

event-expression ::= identifier or scoped name expression

event_declarations

event-

expression
; event pco-

expression
@

,

78 © Graham G. Thomason 2003-2004

Events are not declared with parameters, but, as will be seen, transitions can be labelled with

events and their parameters.

5.5.3 Types and variables

Variables in STATECRUNCHER are typed. The types are

 bool (boolean) – this is a built-in type

 user-typed using an integer range

 user-typed using integer enumeration by means of tagnames

 strings

Reals are not supported. They would make a finite state space infinite, (theoretically; in

practice, just very large), and the user when modelling a system should always partition reals

into equivalence classes and model these with integers.

Type declarations and variable declarations are separate statements.

Figure 67. Type declaration

Examples of type declarations

 enum channel {14,..,18};

 enum colour {red=6,blue,green=9};

 enum $$channels {90,..,99};

 enum $$colour {white,red=6,blue,green=9};

tag-

expression

tag-expression ::= identifier or scoped name expression

; enum

type declaration

enum body

enum body

}

integer { ,..,

integer

{ }

value-name

integer =

identifier

,

© Graham G. Thomason 2003-2004 79

Figure 68. Variable declaration

Examples of variable declarations

bool b1;

bool b1,b2=true,b3=false,b4=b2 && !b3;

bool $$b1=false;

channel fav_channel=15,your_channel=fav_channel+2;

$channel $favourite_channel=91;

colour tie_col, sock_col=maximum(red,green,blue);

colour $$tie_col, $$sock_col=$$red;

$$$colour $my_tie_col = $$colour_of_the_day;

5.5.4 PCOs, events and variables in diagrams

Since PCOs, events and variables can also have the same name in different scopes, it may be

desirable to show where they are declared. We do that with the , and symbols. In the

absence of any symbol, the names can be considered unique and in scope, though it is not

specified whether they are global or local.

var-expression ::= identifier or scoped name expression

expr ::= scoped arithmetic expression; includes fixed constants true and false

variable declaration

tag-

expression

var-

expression

expression =

; bool

,

expression must be type

compatible with tag-expression

80 © Graham G. Thomason 2003-2004

Figure 69. PCOs events and variables in diagrams

In the above figure, there are

 PCO declarations in scopes sc and sc.a

 event declarations in scopes sc, sc.a.aa, and sc.a.ab.

 variable declarations in scopes sc, sc.a, sc.a.aa, and sc.a.ab.

The effect of the event declarations is that the δ1,δ2 labels on transitions refer to different

events according to the scope of the transition source state. Similarly, there are two PCOs

called pco1, which must be distinguished. Similarly again, any expressions using variables

(not shown on the diagram) would address the appropriate variable v1.

5.6 Expressions, operators and functions

5.6.1 Expression parsing

Expression grammars can be represented in a feed-forward form and so that parsers can be

implemented using PROLOG Definite Clause Grammars (DCGs). For an early paper

illustrating the principle, with two operator precedences, (but dating from before the

PROLOG “->” DCG notation), see [Warren].

Expressions in different contexts can be allocated different operator sets, and parsed using the

GP4 parser – details of this are given in [StCrGP4]. We give a summary and a flavour of that

here, by showing a left-recursive grammar and its transformation into a feed-forward

grammar for expressions. The grammar terminals are tokens from a lexical pass performed by

GP4, which include constants, identifiers and strings, but not operators, which are identified

at expression parsing time. Expressions and terms are parameterized according to their

aaa

aab

a

ab aa

δ2

δ1

δ2

δ1

ε3 ε4

γ6

γ5

statechart sc

δ1,δ2 δ1,δ2 v1

v1

aba

abb

δ2

δ1

v1

v1

pco1 δ1,δ2

pco1

© Graham G. Thomason 2003-2004 81

precedence level, i.e. the level of operator precedence that is being parsed, with higher

precedence expressions forming terms at the lower level concerned. A few features that are

not pure syntax were introduced:

 Expression grammar rules are parameterized with a precedence level, which is the

precedence level of the operators used to combine terms in the grammar rule for the

expression at that level.

 Term sequences are also parameterized with an associativity parameter.

 Some small non-grammar operations are performed, indicated by .

Examples:

 to left associate, which basically transforms [a+b-c+d] into [[a+b]-c]+d]

 to test for a property, or assign a parameter (such as ASSOC=yfx).

Arity, position, and associativity are defined as follows in the grammar (analogously to a

PROLOG convention):

 fx monadic, prefix, non-associative

 fy monadic, prefix, right-associative

 xf monadic, postfix, non-associative

 yf monadic, postfix, left-associative

 xfy dyadic, infix, right-associative

 yfx dyadic, infix, left- associative

The diagrams below are not claimed to be an original exhibition of a general expression

grammar, but Figure 71, Figure 72 and Figure 73 were constructed from first principles by the

author from the left-recursive grammar of Figure 70, which is a variation of the expression

grammar for ‘C’ given in [Darnell]. (A moderate amount of searching and enquiry amongst

compiler colleagues failed to come up with anything explicitly similar, apart from the early

example of [Warren], though it could be argued that many parsers, though outwardly not

similar, effectively implement what is shown here). For that reason, the approach may have

some original aspects of some interest to others in a related field.

82 © Graham G. Thomason 2003-2004

Figure 70. Left recursive grammar (requiring transformation)

expression

expression

suf f ix expression

(monadic/dy adic)

monadic pref ix

operator
expression

 dy adic operatorexpression expression

expression expression expression

primary expression

identif ier

constant

string literal

expression()

suffix expression (monadic/dyadic)

primary

expression

triadic

operator B

triadic

operator A

expression

monadic suf f ix

operator

arglist

operator A

arglist

operator B

array dim

operator B

array dim

operator A

expression

,

© Graham G. Thomason 2003-2004 83

Figure 71. GP4 expressions - feed-forward grammar (1)

expression

expression(N) term(N) termseq(N,ASSOC)
associate

expression(0)

termseq(N,ASSOC) xf y seq(N)

ASSOC=xf y

y f xseq(N)

ASSOC=y f x

triseq(N)

ASSOC=none

ASSOC=xf xgy

xfyseq(N) op_xf y (N) term(N) xf y restseq(N)

xfyrestseq(N) xf y seq(N)

yfxseq(N) op_y f x(N) term(N) y f xrestseq(N)

yfxrestseq(N) y f xseq(N)

triseq(N) op_tri(N) A expression(N) op_tri(N) B expression(N)

term(N) term_pref ixes_only (N) suf f ix_list(N)
lef t associate

term_no_af f ixes(N)

term_pref ixes_only (N)pref ix_operator(N)term_prefixes_only(N)

84 © Graham G. Thomason 2003-2004

Figure 72. GP4 expressions - feed-forward grammar (2)

suffix_list(N) suf f ix_item(N)

expression(0)

monadic_suf f ix

operator(N)

arglist_open

operator(N)

arglist_close

operator(N)

array dim_close

operator(N)

array dim_open

operator(N)
suffix_item(N)

arglist

arglist expression(CommaPrec) rest_arglist

rest_arglist , arglist

primary_expression ex_identif ier

ex_constant

ex_string

expression(0)()

primary _expression

expression(N+1)term_no_affixes(N)

N<MAX,cut,f ail

suf f ix_list(N)

The cut,fail combination is reached if the input stream cannot be

parsed as expression(N+1).

If N=MAX, we ignore the N<MAX,cut,fail route and proceed to

look for a primary expression in the input stream.

If N<MAX, we execute the cut,fail combination. This means that

the syntactic item term_no_affixes(N) is considered to have failed

to parse and no further options for it are to be examined.

© Graham G. Thomason 2003-2004 85

Figure 73. GP4 expressions - feed-forward grammar - (3)

5.6.2 Operators

Operators are used to construct expressions – including the initialisation expressions in

variable declarations. The expression parser is supplied with a set of operators as a parameter

per expression, so that it can parse the various kinds of expressions required according to their

individual operator set.

STATECRUNCHER operators fall into two categories:

 Arithmetic operators, which return a value

 Scoping operators, whose action depends on the kind of expression in which they are

applied:

- In an arithmetic expression (sometimes just called an expression), they cause an

evaluation to be performed under a modified scope, and the expression ultimately

returns a value.

- In a state-expression, pco-expression, event-expression, tag-expression, or var-

expression, they return a name.

Most functions require that their parameters, (which are expressions) are evaluated to values.

Currently, all functions return a value. There are also some functions (e.g. ‘in’), described

later, which have special handlers, whereby the parameter is evaluated to a name.

These operators and functions can be mixed seamlessly in expressions.

Operators have the following attributes:

 A symbol, e.g. +, &&

 A name, used internally, which distinguishes between operators of like symbol, e.g.

mplus (monadic plus), dplus (dyadic plus).

ex_identifier p1_identif ier ex_opt_delim
not an operator key word

ex_constant p1_constant ex_opt_delim

ex_string p1_string ex_opt_delim

ex_opt_delim
(optional delimiter)

p1_delim

86 © Graham G. Thomason 2003-2004

 A precedence (also called priority). Higher precedence operators bind their arguments

before lower precedence ones. Note that this does not mean that they will necessarily be

evaluated sooner, although this is sometimes perforce the case. Example a-b+c*d+e =

a-b+(c*d)+e, since multiplication has a higher precedence than addition and

subtraction.

 A position. This can be

- prefix (as in -x)

- postfix (as in i++)

- dyadic infix (as in a+b)

- post-circumfix (as in the brackets of function call operator, e.g. maximum(a,b)).

Note how these operators come in two parts.

- triadic infix (as in a?b:c) –but this is not currently supported.

 An associativity. This can be

- left associative: a+b+c+d is equivalent to ((a+b)+c)+d

- right associative: a=b=c=d is equivalent to a=(b=(c=d))

 An arity. This gives the number of arguments to the operator. It can be

- monadic: -a

- dyadic: a+b

- triadic: a?b:c –but not currently supported.

 Some semantics. The STATECRUNCHER arithmetic and logical operators are commonly

known, being mainly compatible with ‘C’.

The tables below define the STATECRUNCHER operators. For their definition in GP4 format,

see [StCrParsing].

5.6.2.1 Arithmetic operators

The following operators are supported:

Operation Symbol Arity Precedence Associativity Position

Primary Suffixes

Array indexing [] dyadic 18 none circumfix

Function call () dyadic 17 none circumfix

Various monadic

plus + monadic 16 right prefix

minus - monadic 16 right prefix

logical not ! monadic 16 right prefix

post increment ++ monadic 16 left postfix

post decrement -- monadic 16 left postfix

pre increment ++ monadic 16 left postfix

pre decrement -- monadic 16 left postfix

© Graham G. Thomason 2003-2004 87

Multiplicative

multiplication * dyadic 15 left infix

division / dyadic 15 left infix

modulo % dyadic 15 left infix

Additive

addition + dyadic 14 left infix

subtraction - dyadic 14 left infix

Relational

less than or equal <= dyadic 12 left infix

greater than or equal >= dyadic 12 left infix

less than < dyadic 12 left infix

greater than > dyadic 12 left infix

equal == dyadic 12 left infix

not equal != dyadic 12 left infix

Logical

short-circuit and && dyadic 7 left infix

xor ^^ dyadic 6 left infix

equivalence !^^ dyadic 6 left infix

short-circuit or || dyadic 5 left infix

Assignment

assign = dyadic 2 right infix

multiply-assign *= dyadic 2 right infix

divide-assign /= dyadic 2 right infix

modulo-assign %= dyadic 2 right infix

add-assign += dyadic 2 right infix

subtract-assign -= dyadic 2 right infix

Table 6. Arithmetic operators

Notes:

 The logical operators work with a tri-valued logic, including the value unknown.

 The difference between logical equivalence (!^^) and arithmetic equality (==) is evident

from an example with variables a and b, say, with values 1 and 2. The expression a==b

is false, but a!^^b is true, since, as in "C", any nonzero value is counted as true.

88 © Graham G. Thomason 2003-2004

5.6.2.2 Scoping operators

The motivation for scoping operators is that they will be needed when composing models so

as to have a model of a system made by composing formal software components. The scoping

operators allow local items (events, variables etc) to remain local, but for global ones to be

made accessible to many components by renaming them with a scoping expression.

Scoping operators have been introduced summarily (section 5.5), mainly in the context of

declarations. They are also used to reference items (states, PCOs, events, tagnames and

variables) in other scopes than the current one, which can be regarded as a default scope.

Remember that a scope corresponds to a state in the hierarchy, and that it is represented by a

machine path. The scope in which an expression is evaluated (and so the default scope, i.e.

the scope of a plain identifier) is as follows:

 when referencing PCOs, events, tagnames and variables, it is the machine path of current

state.

 when referencing other states, it is the parent of the current state. This gives the most

natural representation of states.

The following figure illustrates how scoping operators are used to specify states by referring

to their precise position in the hierarchy. The operators in use here are:

 $ (back out one level and enter state named by right-hand argument)

 . (starting from scope of left-hand argument, descend into state named by right-hand

argument)

Two examples showing state referencing follow.

Figure 74. Scoping example - states (1)

In the above example, there are various states called ‘a’. The superscript serves to distinguish

them in this description – it is not part of the name.

How are the targets of the three transitions specified in STATECRUNCHER? They cannot all be

specified by

 event -> a

t2

r

a
1

p

s

t

q

statechart sc

a
3

a
2

t3

t2

t1

© Graham G. Thomason 2003-2004 89

as that does not distinguish the different targets.

The transitions are specified as part of the state b statement. They are specified by:

 (for t1): event -> a // references a sibling of state b

 (for t2): event -> $$a // backs out two levels in the hierarchy

 (for t3): event -> $$$$a // backs out four levels in the hierarchy

Where a target state is not masked by a more local target of the same name, the back-out

operator $ can be omitted. STATECRUNCHER will find the state by an outbound search from

the precise state specified. So if t1 and t2 were not present, t3 could be specified by just

 event -> a

The target will be found by looking for it in states t,s,r,q,p in that order.

With all three transitions present, transition t2 could be specified by just

 event ->$a

since that specifies ‘a’ in the scope of state s, and a
2
 is the nearest state of that name in state

s. Similarly transition t2 could be specified by just

 event ->$$$a

We now show how states in some other common relationships to a transition source state are

referenced:

Figure 75. Scoping example - basic specifications of states (2)

The statechart level is the outermost named level, and global PCOs, events, tagnames and

variables are declared in this scope by putting their declarations between the statechart

statement and the first state statement. More local PCOs, events, tagnames and variables are

declared either by putting their declarations immediately after the state statement of the

required scope, or by placing the declarations elsewhere, but applying scoping operators to

specify their effective scope.

statechart sc

g

ga gb

f

fa fb

to-cousin transition

to-nephew

transition

to-uncle transition

a

aa
ab

to-child transition

to-sibling transition

to-parent transition

1->a.aa

2->ab
3->$a

φ1->g.ga

φ2->$g.ga

φ3->$g

m

90 © Graham G. Thomason 2003-2004

Every state/PCO/event/tagname/variable that is declared is in scope to its descendants, unless

a descendant defines a new item of the same name, in which case the most local item is in

scope by default. Looking at this from the perspective of an item being referenced: the item

will be found by an outbound search, starting at the current scoping level, and, if the item is

not found to have been declared there, backing out one hierarchical level at a time until the

item is found. This means that scoping operators are not needed to address the most local

name.

When items need to be referenced which are more local than the current scope, scoping

operators must be used to ‘descend’ into the required scope to address the item.

We now discuss the scoping operators themselves, and then the application of them is

reviewed.

Design of scoping operators

There are four scoping operators:

 back-out one level and then evaluate the argument in this scope

 back-out to a named parent and then evaluate the argument in this scope

 back out to the outermost level and then evaluate the argument in this scope

 enter one named level and then evaluate the argument in this scope

These operators are composable into a scoping expression, and are compatible with arithmetic

operators. This is achieved by an appropriate selection of

 operator symbols

 operator precedence

 operator associativity

The operators are defined as follows:

Operation

Symbol Arity Precedence Associativity Position

parent scope $ monadic 19 right prefix

statechart scope :: monadic 19 right prefix

named child scope

(evaluate arg2 in child

arg1 scope).

. dyadic 20 right infix

named ancestor scope

(evaluate arg2 in ancestor

arg1 scope, backing out

one level anyway, and then

as far as the first

occurrence of arg1).

%% dyadic 20 right infix

Table 7. Scoping operators

© Graham G. Thomason 2003-2004 91

It is good to realise that there is a major difference in the way scoping operators work

compared with arithmetic operators. Arithmetic operators apply their own operation after

evaluating their arguments (which they do by a recursive call to the evaluator). For example, a

simplified
1
 PROLOG predicate to evaluate the monadic minus operation on a parameter P1

might be:

P1 is evaluated by a recursive call before the negation takes place (V is -VV).

Similarly for dyadic operations (simplified):

In these predicates, MPATH is the machine path (i.e. scope) in which the evaluation takes

place. Termination of the recursion takes place at a terminal item, such as an identifier (whose

value is then obtained from a ‘database’).

Now when it comes to scoping operators, they must perform their own operation – i.e.

changing the scope – before evaluating their arguments. It will be seen that this has

implications for the choice of precedence and associativity. Here is what the back-out

operator does:

The predicate first modifies the supplied machine path. It effectively removes the head of a

list describing the machine path [HMPATH|TMPATH], the head HMPATH being the most

local part of the path. Then it performs the recursive call to have its parameter, P1, evaluated

in the new scope.

1
 Various factors ignored here: error conditions, details of type and wrapping of data, and overloading

of the operator (i.e. different actions on different types of data).

 ev_expr(MPATH,[[ex_monadic,mminus],P1],V):-

 ev_expr(MPATH,P1,VV), /* evaluate argument */

 V is -VV, /* operator's own action */

 !.

ev_expr(MPATH,[[ex_dyadic,dminus],P1,P2],V):-

ev_expr(MPATH,P1,VV1), /* evaluate P1 */

ev_expr(MPATH,P2,VV2), /* evaluate P2 */

V is VV1-VV2, /* operator's own action */

!.

ev_expr([HMPATH|TMPATH],[[ex_monadic,mback],P1],V):-

ev_expr(TMPATH,P1,V), /* remove head of machine path */

!.

92 © Graham G. Thomason 2003-2004

Similarly for a dyadic scoping operator. The following operator evaluates its first argument

(P1), as a required addition to the machine path, so as to make the scope more local. The

second argument (P2) is then evaluated in the new scope.

The "." (descend) and "%%" (dparent) operators are right associative. This means that an

expression such as

 aa.bb.cc.dd

is equivalent to

 aa.(bb.(cc.dd))

At first sight, this might seem wrong. It appears that the term (cc.dd) will act first and add

element cc to the machine path first, whereas we want to add element aa to the machine path

first. But bearing in mind the reasoning about scoping operators performing their operation

before evaluating their arguments, the above expression will add element cc to the machine

path last, and behave as follows:

 add aa to the machine path, making it one level deeper than the caller's level

 add bb to the machine path, making it one level deeper than as above

 add cc to the machine path, making it one level deeper still

 evaluate dd in this new scope

Similarly

 aa%%bb%%cc%%dd

will evaluate dd in the scope that backs out to the first occurrence of aa (cutting blindly

through bb's and cc's if they occur), then backs out further to the next occurrence of bb

(cutting blindly through cc's if they occur), then backs out further to the first occurrence of

cc, and finally evaluates dd in this scope.

Similarly, the "::" (mscope) and monadic "$" (mback) operators are right associative. This

means that expressions consisting of multiple monadic operators can be composed simply:

 $$$aa

which is equivalent to

 $($($aa))

backs out three levels then evaluates aa.

The expression

 ::$aa

ev_com_expr(MPATH,[[ex_dyadic,descend],P1,P2],V):-

 ev_com_expr(MPATH,P1,V1),

 V1=[ID,_],

 MPATH2=[ID|MPATH],

 ev_com_expr(MPATH2,P2,V),

 !.

© Graham G. Thomason 2003-2004 93

backs out to the outermost shell, then backs out one more level, which in STATECRUNCHER is

admissible, as the "::" operator backs out to the statechart level, from which it is

possible to back out once more to the absolute level.

The expression

 $::aa

would normally be pointless, as it backs out one level before performing a global back-out

operation.

These monadic and dyadic operators combine with dyadic operations binding tighter, so that

 $$aa.bb.cc

which is equivalent to

 $($(aa.(bb.cc)))

means back out two levels, then enter aa then enter bb then enter cc. The rule is emerging

that the expression is to be interpreted as a sequence of actions in left-to-right reading

order.

One consideration is that dyadic operators have a higher precedence than monadic ones,

which is fine for expressions such as

 $$aa.bb.cc

but it means that brackets are needed for adjacent dyadic-monadic accumulations, e.g.

 cc%%($$dd.var2)

which is to be read as: back-out to parent cc, then back out twice more, then descend into dd,

then evaluate var2 in this scope.

Scoping operators have a higher precedence than non-scoping ones. An example of a

combined expression, extending the above example, is:

 var1 + cc%%($$dd.var2)

which is to be read as: evaluate var1, back-out to parent cc, then back out twice more, then

descend into dd, then evaluate var2 in this new scope, then finally add together with the

evaluation of var1.

5.6.2.3 The split operator

This operator is used to define multiple target states of transitions. STATECRUNCHER allows

transitions to specify targets in more than one member of a set. This can take place at various

hierarchical levels, so requiring a target state tree. This is illustrated in the figure below.

94 © Graham G. Thomason 2003-2004

Figure 76. Multiple target states

Note that the target state tree need not specify all targets in a set – defaults (or historical

states) will be taken where no specific target is specified.

The target state tree is specified using the split operator denoting "and co-member",

represented above by the symbol /\. The operator is available to target state expressions but

is not available in other state expressions.

The operator is specified (in the same notation as used for scoping operators) as follows

Operation

Symbol Arity Precedence Associativity Position

split /\ dyadic 14 left infix

Table 8. Split operator

This gives a lower binding precedence than the scoping operators (:: %% $.). It is a left

associative operator, (such as the + operator), so that

 a /\ b /\ c /\ d = ((a/\b)/\c)/\d.

A restriction

The left hand side of the "." and "%%" operators should not be a term which has already

been split, (although such a thing does make sense), since such a construction is unusual and

the evaluator does not currently support it. So, in the figure below, it would not be

permissible to write

a

s

ab

p

pba

pbb

pb

paa

pab

pa

q

aba

qbb

qb

qaa

qab

qa

tt

aa

t

α ->aa.(p.pb.pba/\t.q.(qa.qaa/\qb.qbb))

statechart sc

© Graham G. Thomason 2003-2004 95

 α->a.((aa/\ab).x)

Instead, the following should be used:

α->a.(aa.x/\ab.x)

Figure 77. Restriction in use of the split operator

Evaluation of the split operator

The evaluator for terms combined with this operator produces a list of lists representing the

target tree. Expressions are evaluated in an evaluation scope representing a state in hierarchy.

Typical evaluations are as follows:

 Evaluation

Scope
Expression Evaluation

1 [bb,aa] dd/\ee [[dd,bb,aa],

 [ee,bb,aa]]

2 [bb,aa] pp.dd/\ee [[dd,pp,bb,aa],

 [ee,bb,aa]]

3 [bb,aa] (pp.dd)/\ee [[dd,pp,bb,aa],

 [ee,bb,aa]]

4 [bb,aa] pp.(dd/\ee) [[dd,pp,bb,aa],

 [ee,pp,bb,aa]]

5 [bb,aa] pp.(dd/\(ee/\ff.gg)) [[dd,pp,bb,aa],

 [ee,pp,bb,aa],

 [gg,ff,pp,bb,aa]]

6 [bb,aa] pp.((dd/\ee)/\ff.gg) [[dd,pp,bb,aa],

 [ee,pp,bb,aa],

 [gg,ff,pp,bb,aa]]

7 [bb,aa] pp.((dd/\$ee)/\ff.gg) [[dd,pp,bb,aa],

 [ee,bb,aa],

 [gg,ff,pp,bb,aa]]

8 [bb,aa] pp.((dd/\ee)/\(ff.f2/\gg.hh)) [[dd,pp,bb,aa],

 [ee,pp,bb,aa],

 [f2,ff,pp,bb,aa],

 [hh,gg,pp,bb,aa]]

9 [bb,aa] pp.(dd/\ee)/\(ff.f2/\gg.hh) [[dd,pp,bb,aa],

 [ee,pp,bb,aa],

 [f2,ff,bb,aa],

 [hh,gg,bb,aa]]

10 [cc,bb,aa] $$pp.(dd.ee.ff/\$gg.hh.ii) [[ff,ee,dd,pp,aa],

 [ii,hh,gg,aa]]

11 [cc,bb,aa,sc] ::pp.(dd.ee.ff/\$gg.hh.ii) [[ff,ee,dd,pp,sc],

 [ii,hh,gg,sc]]

12 [cc,bb,aa,sc] ::$pp/\$$dd [[pp],

 [dd,aa,sc]]

a

acb

aca

aa ab ac

x

aba

x

aaa

b

α

96 © Graham G. Thomason 2003-2004

13 [cc,bb,x1,x2,

aa,sc]

aa%%pp/\$$dd [[pp,aa,sc],

 [ddx1,x2,aa,sc]]

14 [cc,bb,aa] (pp/\qq).rr // violates the

restriction mentioned above.

unknown

Table 9. Evaluation of the split operator

The target of transition α in Figure 76 is represented by

 aa.(p.pb.pba/\t.q.(qa.qaa/\qb.qbb))

 in evaluation scope

 [a,s,sc]

evaluating to

 [[pba,pb,p,aa,a,s,sc],

 [qaa,qa,q,t,aa,a,s,sc],

 [qbb,qb,q,t,aa,a,s,sc]]

5.6.3 Functions

5.6.3.1 Arithmetic functions

Arguments are a comma-separated list of expressions. P1, P2 refer to the first and second

parameter respectively. The return value is an integer (which may represent a boolean), or

string value. The value may be ignored. The functions are as follows:

Basic arithmetic

abs(P1) absolute value of a number

maximum(list) maximum of several numbers, e.g. i=maximum(v1,v2+1,v3)

minimum(list) minimum of several numbers, e.g. i=minimum(v1,v2+1,v3)

String related

format(P1,P2) Format integer expression P1 as text. P2 is the field width: -ve for left

justify, 0 for just fit, +ve for right justify.

length(P1) length of string

lower_case(P1) convert string to lower case

upper_case(P1) convert string to upper case

Casting

cast(P1) i=cast(j) allows an assignment that would otherwise be a type mismatch

Tracing

trace(list) add parameter(s) to the trace list

trace_clear() clear the trace list

System information

© Graham G. Thomason 2003-2004 97

get_nworlds(P1) get_nworlds() or get_nworlds(1) gets the number of worlds at the start of

event processing. get_nworlds(2) gets the dynamic number of worlds.

Nondeterminism control

no_race() turn race nondeterminism off

low_race() allows only two race permutations, forwards and backwards.

med_race() allows 2N race permutations. Allows distinction of all triplet orderings

high_race() allows all N! race permutations

no_set_tran() turn set (e.g. set-transit) nondeterminism off

low_set_tran() allows only two set permutations, forwards and backwards.

med_set_tran() allows 2N set permutations. Allows distinction of all triplet orderings

high_set_tran() allows all N! set permutations

Special functions taking a state-expression argument

in(P1) returns true (=1) if the state specified is occupied, else false (=0)

clear(P1) clear history of the state specified

deep_clear(P1) clear history of the state specified and its descendants

Table 10. Functions

5.6.3.2 Special functions

The evaluation of most functions proceeds as follows:

 evaluate the arguments (which can contain arithmetic and scoping operators) as values

 pass the evaluated parameters to the function

 return a value from the function

Certain functions are exceptions to this in that their parameters are evaluated to a name. These

functions are described in this section.

in

The function

 in(state-expression)

returns a boolean value: true if the specified state is occupied, false if it is not.

clear and deep_clear

The function

 clear(state-expression)

removes history data from the specified state.

The function

 deep_clear(state-expression)

98 © Graham G. Thomason 2003-2004

removes history data from the specified state and all its child states recursively down the

hierarchy.

trace

The function

 trace(expression)

writes the evaluation of its argument to a special location called the trace list. Traces model

black-box outputs of the Implementation Under Test. The trace list, along with state

occupancies, variable values and other information, is provided by STATECRUNCHER after

processing an event.

5.6.4 Type compatibility in expressions

A rigorously typed language would require exact type matching of terms in expressions, and

in left and right hand sides of assignments. It is felt that in STATECRUNCHER more freedom

should be allowed: certainly, a range-type variable should be compatible with raw integers.

Note that there is a type incompatibility if two types have the same name but due to scoping

considerations they refer to type definitions at different scoping levels.

Example

 $$$colour $$mycolour = $yourcolour;

There are two references to a type definition named colour.

1. the one found by an outward search starting from $$$<current machine path>

2. the one found by an outward search starting from $<current machine path>, to find the

definition of yourcolour, and the scope of its declared type, followed by another

outward search to find the scope of its actual type.

If these yield the same definition, the expression is type compatible, otherwise it is not.

In the current version of STATECRUNCHER, raw integers are compatible with all enum types.

5.6.5 Type compatibility in functions

STATECRUNCHER supports functions according to the GP4 implementation paradigm. For

simplicity in the current version (1.05) of STATECRUNCHER, functions are typeless. All

functions accept any type in their parameters and the return parameter will match any type.

This means that an identity function could act as a cast – such a function exists, and it is

called cast.

© Graham G. Thomason 2003-2004 99

5.7 Review of items parsed as expressions

Items (states/PCOs/events/tagnames/variables) in STATECRUNCHER occur once in their

declaration, and any number of times when used, (i.e. when referenced, whether read-

accessed or write-accessed).

As can be seen from the syntax diagrams, the following items are scoped expressions:

 States in usage (State scope on “declaration” is determined by the statement position in

the machine hierarchy)

 PCOs in declaration / usage

 Events in declaration / usage

 Tagnames in declaration (enum statement) / usage (variable declaration)

 Variables in declaration / usage (e.g. initialisation, condition, action, label)

This means that there is opportunity to access, and even declare, items in a scope other than

the current scope, whether more globally, more locally or in a different relation to the current

scope.

States, PCOs, events, tagnames, variables defined in a more global scope than the current

scope are implicitly in scope, unless masked by a more local homonym.

It is recommended that non-local scoping should be used sparingly, especially non-local

declarations. In any case exceptional scoping should not be used gratuitously (for readability

reasons), but only when composition of subsystem models requires it.

However, in compositions of components, scoping operators should be used. A useful

construction is to define a wrapper set for the composition (called, say, Composition) with

set members for the comprising components. An individual component model declares its

own inter-component events inside the confines of its source code as regards where the

statement is positioned, but outside its confines as regards its effective scope, specifying

Composition scope e.g. as follows:

 event Composition%%ReturnDropRequestAccepted;

The following (rather concocted) example shows the potential complexity of scoping

operators and the outbound search mechanism to find the nearest variable and its type in

scope.

100 © Graham G. Thomason 2003-2004

Figure 78. Complex tagname/variable scoping

statechart sc

r

p

s
t

q

u

tagname

refers

to here

but

defined

for this

scope

variable

actually

declared

here

but tag

defined

here

but

defined

for this

scope

variable

y usage

here

but

referring

to

here

v
w

x=$y+1; $$int1

$y=0;

enum

$int1

...

© Graham G. Thomason 2003-2004 101

5.8 Transition block

Transition blocks are part of state statements.

5.8.1 Transition block overview

Figure 79. Overview of transition block

enter

block
exit

block
transitions

meta-

events

con-

dition

route action

block

label

block

transition transition transition

upon

enter

action

block

action

block

upon

exit

state-

expression

enter

state-

expression

exit

event and

parameters

assignment

or function

event and

parameters

fire

(expre

ssion)

if action

block

else action

block

102 © Graham G. Thomason 2003-2004

5.8.2 Transition block syntax

Figure 80. Transition block syntax (1)

enter

block
}

transition block

{
exit

block

transition

enter block

upon enter action

block

exit block

upon exit
action

block

transition

;
label

block

action

block

route

condition
meta-

event

meta event

enter

event

expression

()
state

expression

exit ()
state

expression

,

if no route or action block, first square bracket must introduce a condition

(
parameter

list
)

© Graham G. Thomason 2003-2004 103

Transition block syntax continued:

Figure 81. Transition block syntax (2)

;

[]
boolean

expression

condition

->

TARGET STATE

state expression

allowing the split

operator, "/\"

->

ORBITAL STATE

state expression

disallowing the split

operator, "/\"

route

state

expression

state

expression

action block

label block

expression

statement

fire
event

expression

if (boolean

expression
) action

block

action

block
else

[]

label-name

expression =

identifier

,

{ }

(destination

parameter list
)

104 © Graham G. Thomason 2003-2004

5.8.3 Detailed examples of transition block functionality

Remark

In the state diagrams that follow, for compactness the transition labelling may not be the full

STATECRUNCHER syntax. We may exclude braces, destination states, and semicolons. So we

may have, e.g. β1{$v1+=2} rather than {β1->bb{$v1+=2;};}. To compensate for this,

we provide the full model source code of some examples in this section.

5.8.3.1 Specification of states (as transition targets) - further examples

Reminder

The scope in which an expression is evaluated is as follows:

 when referencing PCOs, events, tagnames and variables, it is the machine path of current

state.

 when referencing other states, it is the parent of the current state. This gives the most

natural representation of states.

The following figure shows some common examples of transitions. Self-transitions are

explained later in this section.

© Graham G. Thomason 2003-2004 105

Figure 82. Specification of states

statechart sc Notes: Exclamation marks on names are attention-drawing, not syntactical

Transitions are shown with explicit target state expressions
s

za zb

to-cousin transition

to-nephew transition

to-uncle transition

complex expression

 to denote destination

self transition of son

self transition of parent

z
ζ1->zb

ζ2->za

scoped event

Notes

1. The more local κ1 is found

by outbound search;

2. $$ is needed to reference

the outer κ1.

k

ka kb

κ1->kb

$$κ1->ka

m

maa mab
mba

mbb

mbb

ma mb

Notes:

1. Although some of the above transitions are illegal (they cross set
member boundaries), a means of referencing states in co-members is

needed under other circumstances: specifying a state for the in(...)

function, and in orbital transitions (e.g. the transition on μ2 would

be legal if it were orbital).

2. ma, mb, mc are clusters, denoted in alternative notations.

μ1->$mb

μ2->$mb.mbb

μ4->$ma.mab

μ3->mab

mc

mca

mbb

μ5->mc

y

d

da b!

e

e! eb

b

ba d!

g

ga gb

f

fa fb

to-child transition

to-sibling transition

b->d disambiguation

to-uncle transition

to-sibling transition

da->b disambiguation

external self-transitions

to-parent transition

to-child transition

e->e disambiguation

a

aa
ab

internal self transitions

to-child transition

to-sibling transition

to-parent transition

i

ia ib

1->a.aa

2->ab
3->$a

1->b.d

2->d

δ1->$b δ2->b

ε1->e

ε4->e.e

ε2->$e

ε3->e

φ1->g.ga

φ2->$g.ga

φ3->$g

γ1->g

γ2->ga ι1->y%%i.ib

ι2->::s.y.i.ia

5

4

κ1,κ2

κ1,κ2

106 © Graham G. Thomason 2003-2004

5.8.3.2 A model illustrating internal events

Internal events were introduced in Figure 13. Meta events include ordinary events and internal

events. In the figure below, the transitions on α cause various states (leafstates and

hierarchical states) to be exited / entered. Some of the corresponding enter and exit meta

events are used to trigger transitions in a parallel part of the statechart, in cluster b.

Figure 83. Meta event (state entry/exit) [model u5180]

Source code of the model

s

b

exit($a.a1)

a

b1

 a1

γ

α

p1

p2

exit($a.p)

enter($a.a1)

p
α

j2

j1

j3

j

q1

q2
q

α

β

β

β

β

statechart sc(s)

event alpha,beta,gamma;

set s(a,b)

 cluster a(a1,p,q)

 state a1 {alpha->p.p2;}

 cluster p(p1,p2) {alpha->q.q2;}

 state p1 {beta->p2;}

 state p2 {beta->p1;}

 cluster q(q1,q2) {alpha->a1;}

 state q1 {beta->q2;}

 state q2 {beta->q1;}

 cluster b(b1,j) {gamma->b.b1;}

 state b1 {exit ($a.a1)-> j.j1; \

 exit ($a.p) -> j.j2; \

 enter ($a.a1)-> j.j3; }

 cluster j(j1,j2,j3)

 state j1;

 state j2;

 state j3;

© Graham G. Thomason 2003-2004 107

5.8.3.3 Conditional transitions and conditional actions

In Figure 15 we saw a conditional transition, and in Figure 18 a conditional action. A

complete model illustrating some detail of this is given below. An action (conditional or

otherwise) can be triggered by an event without transitioning between states by using an

internal transition, such as the one on event setv in the diagram below (to be discussed in

more detail later).

Figure 84. Conditional transitions and actions, and the in() function [model u5190]

Points to note

 There is a conditional transition on α.

 There is a conditional action on the transition on β, and also on entering state a2.

 The transition on γ has an else part.

 The transition on δ has nested conditional actions.

 The conditional action of the transition on ε fires an event, putting cluster z in state z2.

 We can set the value of v (used in the conditions) using the setv event.

 We can reset variables and states using the η event.

s

z2
z

a

z1 ζ2 ζ1

setv(v)

conditional action with else action

γ if (v%2==1){w=w*10+2; w=w*10+3;}

 else {w=w*10+4; w=w*10+5;}

δ if (v%2==1) {AC1} else {AC2}

where
AC1= if (v==3) {w=w*10+1;} else {w=w*10+2;}

AC2= if (v==4) {w=w*10+3;} else {w=w*10+4;}

ε if (v%2==1){fire ζ2;}

a1

conditional transition
α [in($z.z2)&&v==0]

unconditional transition, conditional action

β if (in($z.z2)&&v==0){w=w*10+1;}

reset for next demo-transition

η {u=0; v=0; w=0;fire ζ1;}

a2

if v>5

 u=u*10+1

else

 u=u*10+2

u=0 v=0 w=0

108 © Graham G. Thomason 2003-2004

Source code of the above model:

5.8.3.4 Route; orbit; internal and external self-transitions

The transition route describes the target state(s) of the transition, and also which states must

be exited and entered en-route. The highest state in the route is called the orbit. The orbit is

optional – if omitted, no more states than necessary will be exited and entered en-route. The

whole route is also optional – if omitted, the transition is an internal self-transition. External

self transitions are transitions with the same source and target state. They may nevertheless

cause a transition between states. We illustrate these things in the next figure.

Internal self-transitions are drawn on the inside of the state and never cause transitions

between states. As with other transitions, they are valid for processing if the state to which

they are attached is occupied; if not, they are totally discounted.

 There is no difference between leafstate and non-leafstate internal self-transitions. If they

are valid and there is an action attached to them, the action is performed (see transitions

on ζ1 and ε1 below).

 Internal transitions cannot be orbital (the transition on ζ2 is unspecifiable).

statechart sc(s)

event alpha,beta,gamma,delta,epsilon,eta;

event setv;

event zeta1,zeta2;

enum int1 {0,..,10000};

int1 u=0,v=0,w=0;

set s(a,z)

 cluster a(a1,a2) {setv(v); eta->a.a1 {u=v=w=0; fire zeta1;}; }

 state a1 \

 {alpha [in($z.xxx.z2) && (v==0)]->a2; \

 beta-> a2 {if (in($z.z2) && (v==0)) {w=w*10+1;} }; \

 gamma-> a2 {if (v%2==1) {w=w*10+2;w=w*10+3;} \

 else {w=w*10+4;w=w*10+5;} }; \

 \

 delta-> a2 {if (v%2==1) \

 {if (v==3) {w=w*10+1;} else {w=w*10+2;}} \

 else \

 {if (v==4) {w=w*10+3;} else {w=w*10+4;}} }; \

 epsilon->a2 {if (v%2==1) {fire zeta2;}}; }

 state a2 {upon enter { if(v>5) {u=u*10+1;} else {u=u*10+2;}} }

 cluster z(z1,z2) {zeta2->z.z2; zeta1->z.z1;}

 state z1;

 state z2;

© Graham G. Thomason 2003-2004 109

External self-transitions are drawn outside the state.

 If they are on a nonleaf state, they can cause transitions to default states, (but not in

clusters with history, because the current state is counted as the historical state). This

applies to the self-transition on ε3 when state p2 is occupied below.

 If they are on a leafstate, nothing is exited or entered (unless the self-transition is orbital),

but actions are executed, and they behave like internal transitions (see transitions on ζ1

and ζ3).

 External self transitions can be orbital (to any height of orbit). In this case they always

cause exiting and entering to the height of the orbit (transitions on ζ4 and ε4).

 How is the transition on ε2 to be interpreted? As an internal orbital transition it is

undefined and unspecifiable in STATECRUNCHER. It can, however, be regarded as an

external transition, a shorthand for what might otherwise be drawn as the transition on

ε5. This is specifiable in STATECRUNCHER and the meaning is to exit from whatever

deeper states are occupied as far as the orbit, and to re-enter states according to the

transition course algorithm as described in section 7.5.

Internal orbital self-transitions (as on ζ2, and as on ε2 if it were to be regarded as internal)

are currently unspecifiable. However, they could be given a syntax such as

ε2 ->@shallow_internal

ε2 ->@deep_internal

and some semantics: execute the exit and entry actions on the current member state, either at

the current hierarchical level only, or at all occupied states in the hierarchy.

Self transitions can be parameterized, but we do not illustrate that in our example below.

Figure 85. Orbits and self-transitions, [model u5170b]

a

p1

p2

p

α

α

u=u*10+5

v=v*10+1

u=u*10+5

v=v*10+1

u=u*10+4

v=v*10+2

q1

q2

q

α

α

v=v*10+5

u=u*10+1

v=v*10+5

u=u*10+1

v=v*10+4

u=u*10+2

γ

δ{u*=10;v*=10;}

β

γ

v=v*10+3

u=u*10+3

ε1/w++;

β

{u*=10;

 v*=10;}

ω{u=0;v=0;w=0;}

ζ1/w++

ε2 see discussion
ε3/w++;

ε4/w++;

ζ2
ζ3/w++

ζ4/w++
unspecifiable

ε5 see discussion

110 © Graham G. Thomason 2003-2004

Source of this model

Points to note

 Variable v tracks a transition from p to q. Variable u tracks a transition from q to p. The

on-transition actions simply add digit 0 to u and v by multiplying by 10. This gives us a

complete record of the order of the actions that take place during a transition. The

variables can be reset without any transitioning by executing event ω.

 If there are upon enter actions and upon exit actions, the upon enter actions must be

specified first.

 An example of orbital notation is delta->$$sc->q. More detail is given later in this

section.

statechart sc(a)

event alpha,beta,gamma,delta;

event epsilon1,epsilon2,epsilon3,epsilon4;

event zeta1,zeta3,zeta4;

event omega;

enum int {0,..,10000};

int u=0,v=0,w=0;

 cluster a(p,q) {upon enter{u=u*10+3;} upon exit{v=v*10+3;} \

 omega{u=0;v=0;w=0;}; }

 cluster p(p1,p2) {upon enter{u=u*10+4;} upon exit{v=v*10+2;} \

 delta->$$sc->q{u*=10;v*=10;}; \

 beta->q{u*=10;v*=10;}; gamma->q.q2; \

 epsilon1{w++;}; epsilon2->p->p{w++;}; \

 epsilon3->p{w++;}; epsilon4->$a->p{w++;};}

 state p1 {upon enter{u=u*10+5;} upon exit{v=v*10+1;} \

 zeta1{w++;}; zeta3->p1{w++;}; \

 zeta4->$p->p1{w++;}; alpha->p2; }

 state p2 {upon enter{u=u*10+5;} upon exit{v=v*10+1;} \

 alpha->p1; }

 cluster q(q1,q2) {upon enter{v=v*10+4;} upon exit{u=u*10+2;} \

 beta->p; gamma->p.p2; }

 state q1 {upon enter{v=v*10+5;} upon exit{u=u*10+1;} \

 alpha->q2; }

 state q2 {upon enter{v=v*10+5;} upon exit{u=u*10+1;} \

 alpha->q1; }

© Graham G. Thomason 2003-2004 111

So far, we have been precise about the orbital state. Where states have unique names, the

operators can be omitted and the correct state will be found by the outbound search for the

nearest state in scope. So we can also specify the example as simply delta->sc->q.

More on orbital transitions

The feature of orbital transitions is that they exit and enter superstates up to a higher level

than a direct (non-orbital) transition. In so doing they generate additional enter and exit meta-

events, and can cause re-entered states with no history to revert to default occupancies.

We draw orbital transitions with a loop in the orbital state of the transition arc:

The transition notation specifies this with an extra arrow:

 event -> orbital_state -> target_state

Note that an orbital transition is not achieved by specifying the target state in any particular

way: a transition on event α1 in Figure 86 below might be specified as any of the following:

 α1 -> aab

 α1 -> $aa.aab

 α1 -> $$a.aa.aab

 α1 -> ::s.y.a.aa.aab

It is a state, not an operator sequence (such as $$), that is specified as the orbital state. The

evaluation scope for the expressions for the orbital state and target state is (as for target state

expressions) that of the parent of the source state.

Referring to Figure 86, note that it is possible to have an orbital from-superstate transition

(transition on event ε1).

It is possible to define orbital states that make little or no sense:

 because they are lower in the hierarchy than the highest point of the equivalent non-

orbital transition.

 because they specify a state that is not an ancestor of source or target.

Such orbital data is ignored by STATECRUNCHER.

112 © Graham G. Thomason 2003-2004

Figure 86. Orbital transitions [model t6260]

Useful rules on orbital states

 If the transition arc to an orbital state crosses n hierarchical layers, use (n+1) $ characters

in specifying it.

 If the transition arc to a target state crosses n hierarchical layers, use (n) $ characters in

specifying it.

 The hierarchical layers can be counted by counting the number of boxes crossed (but not

set member boundaries, i.e. the dotted line). Note, however, that a cluster member of a set

can be specified without drawing a box round it, so when counting boxes exited, allow for

an ‘invisible’ box in this case.

statechart sc

n=0 x=0

s

y

aa

aaa aab

α1->aab

α2->$$a->aab

ab

b

α3->$$$y->aab

α5->::$sc->aab orbit=[sc]

a

β1->$$y

->$a
β2->$y->a.aa

β3->

$a

γ4->$$y->aa.aab

 n=n*10+3

 x=x*10+3

 n=n*10+2

 x=x*10+2

za zb

z ζ1

ζ2

γ3->$$$y->$ab

β4->a.aa

γ2->aa.aab

γ1->$ab δ4->$$a->aaa

ε1->a->a.aa.aaa

 n=n*10+4

 x=x*10+4

n=n*10+5

x=x*10+5
α4->::s->aab

orbit=[s,sc]

applies to cluster y

ζ9->::$sc->$z.zb

n=n*10+1

x=x*10+1
n=n*10+1

x=x*10+1

δ2->aaa
δ1

δ3->$aa->aaa

© Graham G. Thomason 2003-2004 113

Notes

 Two examples of evaluated orbits are shown, for the transitions on α4 and α5. Evaluated

orbits are machine paths, here in PROLOG list notation, to be read from right to left when

descending in the hierarchy.

 To specify the very highest orbital level, the state expression ::$sc is used. The reason

for this is that ::arg evaluates arg in the statechart level (i.e. machine path sc), not at

an absolute root level (machine path []). This convention is convenient for statechart-

global declarations such as ::alpha, ::var1. But to specify an orbital state at

statechart level it is admittedly not so convenient. Since :: must take an argument, it will

be the statechart name, and the evaluation scope must be further back still, which is

effected by the $.

5.8.4 UML pseudo-states

In a future release, we hope to introduce UML pseudo states no_history, history and

deep_history which will give the user more flexible control over the issue. Figure 87

shows how transitions would be made to pseudo states and what the effective target state is

(by means of the dotted arrow). Multi-target transitions to a mixture of pseudo and real states

would have to be supported (not illustrated).

Figure 87. Pseudo-states (option for possible future implementation)

x

deep_
history

no_
history

history

y

β->x@history

α->x@no_history

γ->x@deep_history

p

a

q

j

historical state

k

historical state

various states

etc.

114 © Graham G. Thomason 2003-2004

5.8.5 Illegal transitions

The following figure illustrates some examples of illegal transitions

Figure 88. Illegal transitions

s statechart sc

bb

baa

bab

aba

abb

aaa

aab

a

ba ab

b
β1

β2
β3

β4

β5

β6

β7

β8

β9

β10
β11

α2

α1

α4

α3

α5

β12

x

aa

y

β13->$b->$b.ba.bab (not orbital enough to be legal)

ca
cb

ea

eb

γ3->c.cb->d.db

γ2->$d.da->d.db

c e

da

db

d

γ1->$d->e.eb

p g

gc
gb

ga
f

φ->g.(ga/\gc)

© Graham G. Thomason 2003-2004 115

Categories of (potentially) illegal transitions

 Set member to co-member: the transitions on β1 etc. Such transitions can be legalized by

raising the orbit.

 Illegal route: the transitions on γ1, γ2, γ3 do not have a straight-out straight-in route.

 Multiple target states include cluster co-members: the transition on φ.

Detection of illegal transitions

It is possible to detect before executing a transition whether it is legal or not, at least for cases

where the transition is always illegal. The STATECRUNCHER validator could do this; it is an

option for an extension. Hong provides rules for how this could be done [Hong] (though these

do not allow for orbital transitions).

Assuming that the worst thing that can happen with an illegal transition is that the state

machine is left in an illegal state, there is a simpler way to check for illegal transitions. It is to

execute the transition anyway, and examine the resulting state for integrity. Integrity means

that

 the statechart machine as a whole is in an occupied state

 exactly one member of every occupied cluster is occupied; the rest are vacant

 all members of every occupied set are occupied.

 all members of a vacant set or cluster are vacant

Integrity checking is used in the test suite for STATECRUNCHER, but it is slow, and has not

been included in normal use of the product. The user bears responsibility not to specify illegal

transitions.

5.8.6 Actions

Actions occur in upon-enter and upon-exit blocks and in transition blocks. The kinds of action

have already been seen, and are as follows

 expressions

 firing of events

 conditional actions containing any of these three kinds of action in the if and optional

else part.

Expressions can contain function calls, and might only consist of a function call, and need not

return a value.

Under the current semantics (discussed in section 6), actions in one action block take place

sequentially.

116 © Graham G. Thomason 2003-2004

Knock-on effects of fired event actions

Anticipating the discussion on semantics, we show in the following model that actions as

currently implemented can have knock-on effects. Use will be made of this in composing

models (section 6.5).

Figure 89. Knock-on effects of fired event actions

5.8.7 Labels

Labels can be used to provide extra information about transitions. Specific labels have not

currently been finalized, but candidates are:

 the execution time taken in performing a transition. It could be based on an actual

measurement. This enables transition tour algorithms to optimize test cases against

execution time.

 the probability of a transition in the case of fork nondeterminism. This could make some

optimizations in testing strategy possible; see [Zhang].

statechart sc s

x

y

a

aa ab

α01->ab{fire α11}

α02->aa

z

Chain of broadcasts

a

aa ab

α11->ab{fire α21}

α12->aa

a

aa ab

α21->ab

α22->aa

One cycle

b

ba bb

β01->bb{fire β11}

β02->ba

b

ba bb

β11->bb{fire β21}

β12->ba

b

ba bb

β21->bb{fire β02}

β22->ba

c

ca cb

γ01->cb

γ02->ca

Upon enter

broadcast chain
immediately circular

d

da db

δ01->db{fire δ02}

δ02->da

c

ca cb

γ11->cb

γ12->ca

fire

γ11

c

ca cb

γ21->cb

γ22->ca

d

da db

δ11->db

δ12->da

circular on entry

Note: the arrow

symbol is used here to

show knock-on

effects.

fire

γ21

fire

δ12

© Graham G. Thomason 2003-2004 117

 the cost of a transition, if there are factors other than execution time that make a transition

expensive (or cheap). Any transition requiring manual intervention or observation would

probably be classed as very expensive.

 a name for the transition

 a usefulness factor indicating how important it is felt that such a transition should be

taken in a test suite.

If it turns out that there is a need to provide a selection from various options of distinct

transition semantics for some transitions, a label could be used to identify the semantics

required in each case.

118 © Graham G. Thomason 2003-2004

6. Algorithmic sequencing

There are many different approaches that can be taken as to how a transition algorithm should

be designed, with the decisions taken affecting the possible features and semantics of the

statechart system as a whole. The characteristics of various state machine systems in the

literature, including that of [Harel], have been compared in a paper by [von der Beeck]. In

[StCrBiblRef], where we annotate that reference, we characterize STATECRUNCHER according

von der Beeck's criteria.

Here, we first consider how steps in the algorithm can be sequenced, this being a key area for

exploration and evaluation of alternatives. Then, having motivated and taken the main

decisions, we describe the transition algorithm in detail (chapter 7).

The relationship between aspects of the transition algorithm and process algebras (or process

calculusses) such as CCS and CSP is rather complex, and we approach our transition

algorithm design from an algorithmic rather than an algebraic perspective. However, having

arrived at a satisfactory transition algorithm, accommodating composition and interaction of

statecharts, we are able to make a comparison with the CCS and CSP approaches. For that, we

refer the reader to our appendices [StCrSemComp], [StCrDistArb] and to the dining

philosophers problem discussed in section 9.4. In addition, we have taken an example Z

specification, for the game of Nim, and implemented it in STATECRUNCHER, showing the

relationship between the two formalisms.

This section addresses the (potentially conflicting) requirements of:

 Allowing repeated cycling through a sequence of transitions - though Lucas and von der

Beeck consider this undesirable [CHSM, section 1.4.2.2].

 Ensuring machine integrity (i.e. ensuring that the rules for occupancy of states according

to their kinds and their parent-child relationships are not violated).

Sequencing issues concern:

 When conditions on transitions are evaluated.

 The use of an original or current value of a variable.

 The ordering of processing of on-transition actions.

 The ordering of processing of upon-exit actions.

 The ordering of processing of upon-enter actions.

 The ordering of generation and processing internal meta-events.

© Graham G. Thomason 2003-2004 119

The design of algorithms to meet the requirements is a matter of identifying the micro-steps of

the transition algorithm and sequencing them in the right order. Some algorithms introduce

extra restrictions on transitions, e.g. blocking them when other transitions are in certain

phases of execution, but our final choice of algorithm does not require any special restrictions.

6.1 Cycling

Consider the transitions of the figure below:

Figure 90. Cycling

Starting with the transition on α, a cycle is seen: effectively (via the transitions and their

actions) α fires β, β fires γ, γ fires δ and δ fires α again. Clearly, this machine as it stands is

unsuitable, at least for testing purposes. However, if there were extra conditions and actions

on the transitions, the cycling might be terminated at some point, as follows:

Figure 91. Cycling with termination

Here, a variable v is initially set to a value of 6. The start of the cycle has a guard on it, v>1.

The cycle decrements v on the transition on β, so the loop will terminate. It is possible that

certain systems should be modeled this way. For example, if v is the volume of a television, it

might be that a client module needs to reduce the volume step by step to the minimum

volume, but that the actual decrementing is done in a separate server module. Another

application of cycling to generate interleavings of system-under-test-internal events (over

which the environment has no control, such a notifications), with user-generated events. This

might be done with self-transitions cycling a number of times, generating the required events,

using nondeterminism to generate different interleavings. The problem is addressed in

[Trew 03].

s

δ{fire α;}

a2 b1 b2 a1

a b
α{fire β;} β{fire γ;}

γ{fire δ;}

δ{fire α;}

a2 b1 b2 a1

a b

s

α[v>1]{fire β;} β{v=v-1;fire γ;}

γ{fire δ;}

v=6

120 © Graham G. Thomason 2003-2004

We note that CHSM prevents cycling by ‘marking’ transitions [CHSM]. CHSM processes

fired (‘broadcast’) events after exiting all states on the initiating transition, but before entering

any states. Every time a transition is ‘taken’, it is excluded from further participation in the

processing ensuing from the initiating transition.

An alternative way to prevent cycling is to block states involved in the initiating and

subsequent transitions as they are taken. This is considered below in the context of

maintaining machine integrity. But, in the STATECRUNCHER system, we ultimately opt for an

algorithm that allows cycling and does not require marking transitions as taken or blocking

states.

Prevention of infinite cycling

If no protection is built into a system to prevent infinite cycling, then the system will probably

crash on a heap or stack overflow condition, though it is conceivable that some kinds of

infinite loops will run indefinitely without consuming memory. Given that we do not mark

transitions as taken, or block states, infinite cycling could be prevented by recognising that a

configuration of state occupancies, state histories, variable values and traces has been seen

before in the cycle. However, this is computationally expensive, as it involves comparing the

configuration of a machine (which may be quite extensive) with a number of recorded

configurations (which may be quite high). A weakened version of this is to evaluate a hash

function of the full state, and to store and compare against that instead. If the co-domain of the

hash function is effectively a set of say 2
64

 (10
20

) pseudo-random numbers, then the

probability of a false positive match compares favourably with the probability of the user

being struck by lightning in a year (10
-8.5

). A weaker method still is to count transitions

executed within the compass of an initiating transition, and to put a maximum, say 100, on the

number of ensuing transitions. The initial version of STATECRUNCHER for simplicity will not

contain protection against cycling, thus leaving the responsibility with the user (as with

looping in conventional programming languages).

6.2 Maintaining machine integrity

During a transition, there are five sources of new events (which can, of course, entail new

transitions). A major design issue in the transition algorithm is when to perform them. We

first review them:

▪ exit meta-events

These are meta-events that are generated when a state is exited. Other transitions

may be triggered by this event.

© Graham G. Thomason 2003-2004 121

Figure 92. Review of exit meta-events

▪ upon exit actions

These are specified as part of a state's transition block, but they belong rather to

the state than any one transition. They are the actions that are executed when the

state is exited, and can contain events to be fired.

Figure 93. Review of upon-exit actions

▪ transition actions, which may consist of firing new events

Figure 94. Review of transition actions

ab aa

ba bb

α -> ab

exit($a.aa)->bb

s

a

b

ab aa

ba bb

α -> ab

β -> bb

s

a

b

{fire β;}

ab aa

ba bb

α->ab{fire β;}

β -> bb

s

a

b

122 © Graham G. Thomason 2003-2004

▪ upon enter actions, analogous to upon exit actions

Figure 95. Review of upon enter actions

▪ enter meta-events, analogous to exit meta events

Figure 96. Review of enter meta-events

A major algorithm design issue is when to process these processing steps. As will become

apparent, it is not a good idea to execute any of these actions as they occur. Instead, it is better

to collect the actions first, and execute at some other time. This gives us various possibilities

as to exactly when to execute them, and what other precautions need to be taken.

What we do not do is to regard differing execution strategies as differing nondeterministic

interpretations that must be catered for. This would lead to excessive generation of ‘worlds’ as

combinatorial explosion took place. Instead, these processing steps must follow a prescribed

sequence. The modeller should be aware of this sequence, and if, exceptionally, alternative

orderings are required, they should be modelled manually using existing STATECRUNCHER

constructs.

In addition to the ordering of transition actions and meta-events, two more issues arise. They

concern:

 When conditions on transitions are evaluated.

 The use of an original or current value of a variable.

We first acquaint ourselves with situations leading to potential breakdown of machine

integrity.

 Figure 97 shows one way in which, unless precautions are taken, performing transition

actions too early can lead to breakdown of the statechart integrity. Suppose state aaa is

ab aa

ba bb

α -> ab

enter($a.ab)->bb

s

a

b

ab aa

ba bb

α -> ab

β -> bb

s

a

b

{fire β;}

© Graham G. Thomason 2003-2004 123

occupied. On event α, state aaa is exited. If we immediately process the exit(aaa) meta-

event (and so exit state aa and enter state ab), and then return to the transition on α, we also

end up in state ac, and so break the cluster rule that only one member can be occupied.

Figure 97. Integrity threat (1)

One option in avoiding integrity breakdown would be to cancel state ab as an occupied state

when entering state ac. However, this leads to other problems: what if there were actions on

enter(ab)? It would be most inelegant to have to undo them.

Other solutions are in two basic categories, depending on whether the transition actions are

performed in-flight or after-landing of the transition. In-flight means that the actions are

performed after the transition has performed all its state exit duties, but before its state entry

duties, and with some precautions in place. After-landing means that the transition actions are

executed after the target states have been entered.

Figure 98. In flight and after landing

A simple test for whether a statechart system uses an in-flight or after-landing approach, is as

follows:

α

aaa

a

ab

ac

aab
aa

exit(aa.aaa)

α{actions}

a1

x

b2

b1 a2

a b

after landing: actions are executed

when target states have been entered

in-flight: actions are executed while the

transition is at its highest point

124 © Graham G. Thomason 2003-2004

Figure 99. Distinguishing in-flight and after-landing

If the system uses an in-flight transition algorithm, then the event β will have no effect (unless

the algorithm is adapted in some way). If the after-landing approach is taken, then fired event

β will trigger a knock-on transition.

6.3 An in-flight approach

6.3.1 In-flight state blocking

Although the in-flight approach will be laid aside in favour of the after-landing approach, we

consider it in detail since it is an intuitive approach, is applicable for some purposes, and

(with many variations possible) is present in the literature: see [von der Beeck]. Many issues

that are raised in the in-flight descriptions that follow are also applicable to the after-landing

approach.

Consider Figure 97 again. We postpone consideration of execution of exit(aaa) until the

transition on α has reached its outermost point, and block the exited states from further

participation in the transition algorithm. By the time we consider exit(aaa), state aa is in

a blocked state, which we will call shadow-vacant. The exit(aaa) meta-event becomes

inapplicable and integrity is preserved.

We introduce the concept of shadow-exiting and shadow-entering a state. The states that will

be exited and entered are first collected (or acquired) on traversing a transition route, so as to

acquire exit(...) and enter(...) broadcast events and upon exit and upon

enter actions. As they are collected, these states are set to a state which is neither occupied

nor vacant: shadow occupied or shadow vacant. These shadow states are temporary internal

states that can be regarded as blocked states, since they block further transitioning on them. If

the source state or any target state of a transition is blocked, the whole transition is

inapplicable. Shadow states are set to a real vacant and occupied state towards the end of the

algorithm.

However, a little more is needed. Consider the following situation:

α{fire β;}

a1

x

b1
a2

a β

© Graham G. Thomason 2003-2004 125

Figure 100. Integrity threat (2)

Suppose in the above machine, the transition t1 on α takes place. When state d1 is exited,

transition t3 from b to c will potentially be triggered. Although this transition could be

executed after processing the original transition on α (which would take us to state c1), we

would opt to block it. It ‘interferes’ with the incomplete originating transition t1 on α in the

sense that the transition is robbed of its target state. A way we could prevent this kind of

transition is by blocking all non-shadow-exited or shadow-entered ancestral states up the

hierarchy from d1 as far as the statechart level, (so only leaving non-ancestral set co-

members unblocked). If there are no sets, then all states will be blocked. If there are multiple

target states, we apply the blocking technique to the relevant ancestors of all these target

states.

States which need blocking but are not shadow-exited or shadow-entered are given a simple

blocked state until the end of the transition, when they are necessarily restored to occupied

(since if they are not shadow exited, they must remain occupied).

The example below shows an elaboration of the previous example where some set-co-

members remain unblocked.

Figure 101. Integrity threat (3)

a

b

c

b1 a1 c1

exit(b.c.d.d1) d

d1

d2 α t1 t3

a

b c

s

 z

z1 z2

b1 a1 c1

exit($a.b.c.d.d1.d11)

exit

(b.c.d.d1.d11)

t4

d1

d11

d12
α exit($d1.d11)

d

d2

d21
d22

t1
t2

t3

126 © Graham G. Thomason 2003-2004

On processing transition t1, the whole of member a of set s will be blocked except set

member d2. There is no blocking of member z, so the transition there (transition t4, on

exiting d11) can take place. Nor does it affect state d2, as it is not an ancestor of the source

or target state of our original transition t1 on α. So the transition t2 from d21 to d22 can in

principle be triggered. Transition t3 is invalid in this situation.

Orbital transitions

An orbital transition is blocked if its orbital level takes it to a blocked state. In the figure

below, as transition t1 takes place, transition t2 becomes blocked, because state d becomes

blocked, so it cannot be exited or entered.

Figure 102. Blocking of orbital transitions

Unblocking of states

Each transition causes its own set of states to be blocked. In the example below, processing

the transition on α will block states d11, d12, d1 and d; the transition on β will block d21,

d22, d2 and d. As the processing of β completes, the states that were blocked by processing

of β only will be unblocked, i.e. d21, d22 and d2.

Figure 103. Unblocking example

History

The history setting is only relevant on entering a vacant cluster. Since, under an in-flight

approach, a vacated cluster cannot be re-entered as a consequence of the one initiating event,

it is not critical when history is set. History can conveniently be set when a state is really

vacated.

The record of a historically occupied child can conveniently always be set whether or not the

History/Deep History markers indicate that it is required. The issue of whether to make use of

d1

d11 d12

α{fire β} β

d

d2

d21 d22

d1

d11 d12

α exit($d1.d11)

d

d2

d21
d22 t1

t2

© Graham G. Thomason 2003-2004 127

this data is resolved on cluster entry. This policy is robust in the event of changes to the

algorithm.

6.3.2 When should the conditions associated with transitions/actions be

evaluated?

Under ‘the conditions’ we understand

 the requirement that a source state is occupied

 the requirement that the boolean condition expression, (or guard), evaluates to true.

The options are:

 at collection time only

 at execution time only

 on both occasions

The choice will depend on either what is necessary to ensure machine integrity, or what is

expedient, in giving the most desirable behaviour. We consider a number of typical situations,

and the consequences of each strategy in each case.

The issues revolve around race-nondeterministic situations. The key question is: if two or

more transitions on the same event are eligible at collection time, can the consequences of

starting or completing one invalidate the other?

In the following figure, at transition collection time, two transitions on α are valid. This gives

rise to race nondeterminism, so that transition sequences <t1,t2> and <t2,t1> will be

prepared. If the condition [v==0] is re-evaluated at execution time, then in the world which

processes <t1,t2>, transition t2 will not take place.

Figure 104. Race with arithmetic transition condition

The following figure shows that there is a need for condition re-evaluation, at least as regards

the occupancy requirement. There is race nondeterminism. However, owing to statechart

integrity considerations, one transition must invalidate the other. This can be achieved by in-

flight blocking or execution time re-evaluation of the conditions (including the source state

occupancy). Under nondeterministic processing, a world will be generated in which c is the

b a

α->b {v=2}

s

x

y

d c

α[v==0]->d

t1

t2

v=0

128 © Graham G. Thomason 2003-2004

final occupied state and a world will be generated in which d is final occupied state. It is

simply not possible to proceed on the basis that (perhaps just in some world) both transitions

must take place.

Figure 105. Race with occupancy requirement

In the Figure 106, it might be argued that (whatever the nondeterministic world being

considered), both transitions should take place. However, it can also be argued that one

transition does invalidate the other, as in the previous figure.

It will furthermore be argued that if a transition sequence, as produced by nondeterministic

processing, such as <t5,t6> is to be processed as a sequence, then the second transition in

the sequence must take into consideration the effects of the first.

Figure 106. Race with in(..) transition condition

The following figure shows that collection of transitions is a one-off process. Suppose event β

occurs when state e is occupied. Although transition t8 becomes eligible for processing, it

must not be processed on the same occurrence of event β that triggered t7, because when β

occurs, state f is vacant.

Figure 107. Collection is a one-off process

Conclusion on condition evaluation

In view of the threats to machine integrity in race condition situations, we opt for condition

evaluation at collection and execution time.

a
α

s

x

y
b

t3

d

c

t4
α

c1

b a

α[in$y.c]->b

s

x

y

d c

α[in$x.a]->d

t5

t6

v=0

c1

f g

β->f β->g

t7 t8
e

© Graham G. Thomason 2003-2004 129

6.3.3 Mutual order of actions and meta-events

We consider the best order in which to process transition actions and meta-events relative to

each other, the categories being:

 exit meta-events

 upon exit actions

 transition actions

 enter meta-events

 upon enter actions

The order is relevant, because

 Variables are always referenced in the latest context – not, say, the context just prior to

the transition. So if a variable is modified by one collected action, a subsequent collected

action will see the modified value.

 States are also referenced in the latest context, and may become occupied or vacant

through a certain action, so that subsequent fired or generated events do not trigger a

transition which they would otherwise have triggered.

Within the context of one transition, each action, however ordered, will be completed before

the next one is executed, so it will never be the case that one action causes new blocked states

to come into effect and be ‘seen’ by subsequent actions in the list of collected actions. Note,

however, that knock-on actions, (actions associated with transitions triggered by events that

were fired as an action of an original transition) will typically see more blocked states.

It is clear that upon exit actions should precede upon enter actions and that these should take

place in the order in which they were generated. Similarly upon exit meta-events should

precede upon enter meta-events.

Where in the sequence should the transition actions be executed? Candidate orderings are:

(1) 1
st
 transition actions, 2

nd
 exit and upon exit actions, 3

rd
 enter and upon enter actions

(2) 1
st
 exit and upon exit actions, 2

nd
 transition actions, 3

rd
 enter and upon enter actions

(3) 1
st exit and upon exit actions, 2

nd
 enter and upon enter actions, 3

rd
 transition actions

Option (2) has an intuitive feel to it. Note that actually entering the target state can never be

invalidated by earlier actions, because it has already shadow-taken-place. One disadvantage is

that transition actions cannot override on-enter actions. This would be useful, as on-entry

actions are generic to many transitions. So if an on-entry action is v=v%3, (the modulo

function) but for a specific transition we would like v to be set to 5, we cannot do it this way.

A work-around is to cancel the on-entry actions and re-write all relevant transition actions to

include the appropriate assignment to v. This argument lends support to option 3.

However, we feel that user-intuitiveness is important, and provisionally choose option (2).

130 © Graham G. Thomason 2003-2004

As to the question of the order of exit meta-events versus upon exit actions, we choose to do

the upon exit actions first. Similarly concerning the order of enter meta-events versus upon

enter actions, we choose to do the upon enter actions first.

Where a hierarchy is exited, the exit meta-event and upon exit actions for one level are

performed before those of the next level up. Similarly where a hierarchy is entered the enter

meta-event and upon enter actions for one level are performed before those of the next level

down.

The ordering of all aspects of transition processing for the in-flight approach is therefore:

(1) shadow exit (all relevant states), collecting exit meta-events and upon exit actions

(2) shadow enter (all relevant states) collecting enter meta-events and upon enter actions

(3) block ancestors

(4) execute upon exit actions (loop with next step)

(5) execute exit meta-events (inner loop to previous step for each hierarchical level)

(6) execute transition actions

(7) execute upon enter actions(loop with next step)

(8) execute enter meta-event (inner loop to previous step for each hierarchical level)

(9) unblock ancestors

(10) execute real exit (loop with next step)

(11) set history (inner loop to previous step for each hierarchical level)

(12) execute real enter (all relevant states)

We illustrate this with an example:

Figure 108. Order of actions on hierarchical entry/exit

The ordering, with bracketed reference to the above numbering, will be:

1. (1a) shadow exit ab

2. (1b) shadow exit a

3. (2a) shadow enter b

4. (2b) shadow enter ba

5. (3a) execute upon exit(ab) action (fire ζ1)

6. (4a) execute meta-event exit(ab)

7. (3b) execute upon exit(a) action (fire ζ2)

8. (4b) execute meta-event exit(a)

ab

a

ba

b
α -> $b.ba{fire β;}

fire ζ1 fire ζ4

fire ζ2 fire ζ3

© Graham G. Thomason 2003-2004 131

9. (6) execute on-transition action (fire β)

10. (7a) execute upon enter(b) action (fire ζ3)

11. (8a) execute meta-event enter(b)

12. (7b) execute upon enter(ba) action (fire ζ4)

13. (8b) execute meta-event enter(ba)

14. (10a) real exit ab

15. (10b) real exit a

16. (11b) set history of a

17. (12a) real enter b

18. (12b) real enter ba

Major disadvantages of the in-flight approach

The problems with the in-flight approach are that by blocking states:

 it prevents cycling. The fact that this is so can be seen by reference to Figure 90. The

transition on α fires β, which triggers a transition involving states which will not be

blocked, so that transition can take place, However, the transition on γ will not take place

because its source and target states are blocked. Cycling has been found to be useful in

generating a number of interleaved traces.

 it may prevent knock-on transitions as in Figure 99. In-flight approaches that do not

prevent (all) knock-on effects may be possible. It will be seen that knock-on transitions

are essential to composition of models (section 6.5)

Given that the ability to cycle under well-constructed circumstances is desirable, and the

relative complexity of blocking and unblocking states, we examine an alternative approach (in

the next sub-section), which we will adopt.

6.4 An after-landing approach

6.4.1 After landing ordering

In this approach, the transition actions are executed after the initiating transition has actually

entered the target states. Fired events (and other actions, and meta-events) are processed after

completion of exit and enter processing of the transition that fired them. Processing them may

be done by an in-line call at the end of processing the original transition, or by placing the

new event as a job in a buffer, which we could call a joblist, for a read-execute loop.

The actual implementation in STATECRUNCHER is an in-line call, elaborated on in Figure

140, (p.170).

132 © Graham G. Thomason 2003-2004

The net effect in either case is that, referring to Figure 108 again, we have a new ordering

such as the following:

1. real exit ab

2. real exit a

3. set history of a

4. real enter b

5. real enter ba

6. execute upon exit(ab) action (fire ζ1)

7. execute meta-event exit(ab)

8. execute upon exit(a) action (fire ζ2)

9. execute meta-event exit(a)

10. execute on-transition action (fire β)

11. execute upon enter(b) action (fire ζ3)

12. execute meta-event enter(b)

13. execute upon enter(ba) action (fire ζ4)

14. execute meta-event enter(ba)

In Figure 109, the transition on α will be processed to completion, while its action (fire β)

will be collected and executed afterwards.

Figure 109. After-landing equivalence

A more complex example shows how multiple fired events and their consequent actions are

sequenced:

Joblist:

 process α

 process β

processing α is

equivalent to

processing α and β

on the right

a2

a1

a

s

α{fire β;}

b2

b1

β
b

a2

a1

a

s

α

b2

b1

β
b

or

process(α)

 ...

 process(β)

return

© Graham G. Thomason 2003-2004 133

Figure 110. Multiple fired events

Note that the list of events to be processed is built up by depth-first traversal of the nested

fired events, but that all are processed at a top-level after completion of the previous one –

there is never anything to be re-visited for a previous event. For the processing order to

actually make a difference in our example, there would have to be more detail in the model,

such as variable assignments on the self-transitions, but we keep the example simple.

6.4.2 Condition evaluation

The discussions under the in-flight approach on race conditions apply equally well to the

after-landing approach, as they are not concerned with fired events. The conclusion there, that

conditions on transitions processed in transition sequences must be re-evaluated at execution

time, applies to the after-landing approach too. An example is given illustrating the time

reference of the in() function below.

The after-landing approach views transitions such as the one on β in Figure 111 from the

point in time of completion of the transition on α. The transition on β will be accepted. This

may or may not correspond to the user's instinctive idea of when conditions are evaluated.

Figure 111. Time reference of the in() function

6.5 Client-server composition and PCOs

In this section, we see how the after-landing approach enables us to model one software

component or function calling another using fired events.

α{fire β}

a1 b1
a2

a β[in(a.a2)]

processing α

is

equivalent to

processing α

β δ γ

on the right

a2

a1

a

s

α{fire β;

 fire γ;}

b2

b1

β{fire δ;}

b

a2

a1

a

s

α

b2

b1

β

b

γ δ
γ δ

134 © Graham G. Thomason 2003-2004

Figure 112. Component composition

Points to note

 STATECRUNCHER's composition paradigm is closely analogous to the function call and

return of imperative languages such as ‘C’.

 The making of the function call is modeled by a fired event

 The response to this is modeled by a transition on the event that was fired

 The return statement is modeled by fired return event

 The response to this is modeled by a transition on the return event that was fired.

If there are many such calling sequences in a model, return names can be made unique to

a server function by affixing the function name to the event (e.g. return_max) or by

putting the return event in a sufficiently local scope (using STATECRUNCHER's scoping

capabilities).

 The client can be seen as an independent state machine, which can be driven through its

cycle with events α and return. It does not care who it is that responds to its firing of β,

nor who it is that provides the return event. A different server to the one shown might

be connected to the client, e.g. with more states and transitions between its initial and

final states (S1 and S2). Similarly, the server is independent of its client, except for the

agreed interface of β and return.

 Event α is supplied externally to the client and server. Events β and return are part of

the agreed interface between the client and server. We indicate this by putting the events

on different PCOs. STATECRUNCHER's output will reveal the PCOs so that a test generator

program can distinguish, and if required, restrict itself to certain PCOs only. We put α on

pco_ext (for external) and β on pco_cmp (for composition). If we had more events

local to the server only, say, we could put them on pco_serv and so on, but we have

kept this model to the basics.

 The scheme would not work with the in-flight approach, because the return event would

not be eligible when needed.

C1 C2 C3

return α{fire β;}

comp

client

S1 S2

β{fire return;} server

pco_ext pco_comp

© Graham G. Thomason 2003-2004 135

For a discussion of these semantics in relation to the process algebras CSP and CCS, see

[StCrSemComp].

6.6 Conclusions on the sequencing in the transition algorithm

Given a requirement to allow cycling and composition between parallel machines, the

conclusions for the best approach to the transition algorithm are:

 An after-landing approach

 Condition re-evaluation for transitions at the time they are executed.

136 © Graham G. Thomason 2003-2004

7. The transition algorithm

7.1 The formal statechart and the nondeterministic transition

function

Finite state machines (FSMs) are often formally described without reference to the

hierarchical structures of a Harel or UML or STATECRUNCHER statechart (Harel's AND- and

XOR-states; in UML's concurrent and non-concurrent composite states; STATECRUNCHER's

sets and clusters). This is because the hierarchical structure is just a convenient way of

expressing a mathematically equivalent flattened state space. When the hierarchy is

introduced, the terminology changes from FSMs to statecharts, but the two are equivalent. A

state in the flattened state space is an element of the Cartesian product of parallel states in the

statechart. Only statechart leafstates need be considered, because the occupancy of their

ancestors is a derivative of that of the leafstates. If the statechart contains history, variables

and traces, then these must also present as terms in the Cartesian product in defining flattened

states.

Just as the hierarchical states of a statechart offer convenience in representing the state space,

so the structured forms of nondeterminism offer convenience in representing what is

equivalent to FSM nondeterminism in the flattened state space. STATECRUNCHER simply

structures the nondeterminism into various categories that are easy to visualize in a statechart.

As has been seen, STATECRUNCHER supports the following forms of structured

nondeterminism, all equivalent to fork nondeterminism in the flattened state space.

 fork

 race

 set-transit

 set action

 set meta-event

 fired event (or broadcast event) nondeterminism.

We gave an example of flattened race nondeterminism in Figure 35.

After processing an event STATECRUNCHER produces a world per distinct state configuration,

which, in flattened state space terms, is equivalent to a world for every possible resultant

flattened state.

© Graham G. Thomason 2003-2004 137

We develop the notion of a world more formally, working from the definition of a NFSM

(Nondeterministic Finite State Machine) given by [Hierons 98]:

An NFSM M is defined by a tuple (S, s1, h, X, Y) in which

 S is a set of states

 s1 is the initial state

 h is the state transition function

 X is the input alphabet

 Y is the output alphabet

Given an NFSM M, SM shall denote the state set of M. When M receives an input value

x ³ X, while in state s ³ S, a transition is executed producing an output value y ³ Y

and moving M to some state s' ³ S. The function h gives the possible transitions and has

the type S×X→P(S×Y) where P denotes the power set operator. ... An NFSM M is

completely specified if, for each s ³ S and x ³ X, |h(s,x)|ä1. M is deterministic if for each

s ³ S and x ³ X, |h(s,x)| ≤ 1.

What in Hierons' description is the notion of M being in state s, is to STATECRUNCHER having

an occupancy configuration s, and other dynamic properties, where an occupancy

configuration gives the occupancy (occupied or vacant) of every state. Several states can be

occupied, due to parallelism (modelled by a STATECRUNCHER set), and hierarchy (the fact

that a parent of an occupied state is also an occupied state). Remark: the occupancy of non-

leaf states can be derived from that of their child states (by the set and cluster rules), so, given

the hierarchical structure, the occupancy configuration need only explicitly comprise the set

of occupied leaf states.

The ‘other dynamic properties’ which s must comprise are cluster history and variable values.

In our definitions below, we define G(A×B) º P(A×B) to be the set of all functions from A to

B.

A STATECRUNCHER statechart is therefore (C, V, P, s1, v1, p1, X, Y, h) where

 C is a hierarchy of states (sets, clusters and leafstates), from which we can easily

derive

 S, the set of all states

 P, the set of all clusters, P ¹ S

 V is a set of variables. We assume the range of values is finite - it is determined by

practical limitations.

 s1 is the initial state

 v1 is a function giving the initial variable values, V→Z, where Z is the set of integers

 p1 is a function giving the initial history values per cluster, P→S

 X is the input alphabet (a set of events in STATECRUNCHER)

 Y is the output alphabet (a set of trace elements in STATECRUNCHER)

 h is the state transition function

h : [S× G(V×Z) × G(P×S)]×X→P([S× G(V×Z) × G(P×S)]×Y), where

138 © Graham G. Thomason 2003-2004

 the G(V×Z) term represents all the variables with their values

 the G(P×S) term represents all the clusters with their histories

 the [...] bracketing on the LHS and RHS is introduced because of the

commonality of these terms; they are the STATECRUNCHER worlds, which we can

denote by W. There may be no worlds in existence.

We could add to this definition

 Q the set of PCOs

 A the set of actions

and a way of attaching them to other components of the statechart, but PCOs are effectively a

simple attribute to events, and actions can be absorbed into the transition function, since they

occur on transitions and influence the final configurations.

The domain and range of h can be represented as

domain (h) : [S × G(V×Z) × G(P×S)] × Y = W×X

range(h) :P([S × G(V×Z) × G(P×S)] × Y) = P(W×Y)

When an event is processed in many worlds, a new set of worlds is produced.

To represent this, we define a multi-input-world transition function:

H: P(W×X) → P(W×Y)

H(A)=¿B³A h(B)

In a practical situation, the elements of the domain of H will all contain the same event in all

the Cartesian product terms.

Remark: in the actual STATECRUNCHER implementation, traces also distinguish worlds, so we

should strictly say that the dynamic configuration d of a statechart is of type

S × G(V×Z)× G(P×S)×Y*

where Y* is the set of strings consisting of elements of Y, (including the empty sequence). So

this could be considered to be the actual type of the range of the transition function h.

However, the most efficient mode of operation is to clear traces and merge worlds between

processing events; if this is not done, old and new traces are concatenated. Traces do not

impinge on the transition algorithm. With this understanding, we discount the traces in a

dynamic state; in this way we more closely map to the description given by Hierons.

Unfortunately, the term state is overloaded, since it can mean either of

 a part of a statechart: a set, cluster or leafstate. We may also call this a state-machine or

just a machine.

 an occupancy configuration of a state-machine.

However, the word state is so much more natural than, say, machine and occupancy that it is

often retained, with clarification where needed.

© Graham G. Thomason 2003-2004 139

7.2 Statechart properties

The following definitions are available in expressing various properties of a statechart:

source(t): the source state of a transition t

orbit(t): the orbital state of a transition t

targets(t): the set of target states of a transition t

cond(t): the condition on transition t, (dynamically true or false)

actions(t): the sequence of actions attached to transition t

sources(T): the set of source states of a set of transitions T

 sources(T) = { source(t) | t T}

parent(s) : the set of parent states of state s (or for a top level state)

ancestors(s): the set of ancestor states (superstates) of state s (or for top level states)

children(s): the set of child states of state s (or for leafstates)

descendants(s): the set of descendant states (substates) of state s

enter_actions(s): the set of on-enter actions attached to state s

exit_actions(s): the set of on-exit actions attached to state s

Machine states S are partitioned into state-types {clusters, sets, leafstates}.

We also define

 nonleafs = clusters sets = S \ leafstates

For convenience, we write “s is a cluster” to mean “s clusters” etc.

Furthermore, the arrangement of states is a tree-like hierarchy:

 The set of top-level states is the set of states which are no state's descendant:

toplevels = {sS | parents(s)= }

 There is only one top-level state
1
.

| toplevels | = 1

 Clusters and sets must have at least one member (=child)
2
:

s nonleafs |children(s)| 1

1
 One could imagine allowing more than one top-level state, e.g. so as to have two totally independent

machines in one source or object file. However, this has little value, and would complicate the

descriptions.
2
 One could imagine allowing sets and clusters that contain no children. This would introduce a

partition of cluster and sets into {empties,nonempties}. However, an empty set or cluster has little

benefit (a leafstate will serve as a replacement). To allow empty sets and clusters would only

complicate the properties of a statechart.

140 © Graham G. Thomason 2003-2004

 Leafstates do not have children

s leafstates |children(s)| = 0

 States have at most one parent

s S |parent(s)| 1

 If a state has children, then the parent of those children is the original state

s children(p) parent(s) = p

 Ancestors are parents, or parents of ancestors; to express this nonrecursively:

a ancestor(s) iff some sequence (p1,p2,..pn) where p1=a, pn=s

such that i [1,n-1] pi = parent(pi+1)

 Descendants are child states or descendants of child states:

d descendant(s) iff some sequence (p1,p2,..pn) where p1=d, pn=s

such that i [1,n-1] pi children(pi+1)

7.2.1 Dynamic aspects of a statechart

Each state has occupancy; it can be occupied or vacant. States also have a history indication,

although it is only relevant to clusters.

States have a history attribute, but for sets and leafstates it is none. For clusters it is either

none or the child state that was last occupied.

A third dynamic aspect of a statechart is the value of the variables. We assume the range of

values is finite – it is determined by practical limitations.

A full configuration of a statechart contains the occupancies of all states, all state history, and

all variable values. An occupancy configuration F comprises a tuple

 {occs, vacs }
1

where occs is the set of state that are occupied, and vacs is the set of states that are vacant.

1
 For an in-flight algorithm, this would be {occs, vacs, shadow_occs, shadow_vacs, blockeds}

© Graham G. Thomason 2003-2004 141

The function H maps a machine state in a configuration to its history.

 H: FS{none} S

 if for any H(f,s) = xS

then

s is a cluster

and

x children(s)

The function V maps a variable in a configuration to its (integral) value. Z is the set of integers

(within some practical limits)
1

 V: FVZ

Configuration sets
2

As discussed in section 4.9, nondeterminism is handled by creating worlds to represent the

various alternative outcomes when an event is processed. Worlds contain the dynamic data

associated with a statechart (state occupancy, state history and variable values). In other

words, each world corresponds to a configuration.

A configuration set is a set of worlds W containing state data of a particular statechart. At

specific intermediate phases of the transition algorithm, the configuration-set-to-be will in

general be a bag of worlds rather than a set, though this will be converted to a set on

completion of a transition.

Properties of a valid configuration of a statechart

1. The statechart as a whole is occupied. This means that all top-level states (although

we only allow one) are occupied:

toplevels occs

2. Every state is occupied or vacant but not both

{occs ,vacs} becomes a partition

3. For every occupied cluster, the number of occupied children is 1

 sclusters occs | children(s) occs | = 1

4. For every vacant cluster, no children are occupied

 sclusters vacs children(s) vacs

1
 Later additions are strings and arrays. Array elements can be counted as scalar variables, and the

concatenated ASCII values in strings can be considered as integers.
2
 Another term that was considered to express this, but which is too imprecise, is state vectors.

142 © Graham G. Thomason 2003-2004

5. For every occupied set, all children are occupied

 ssets occs children(s) occs

6. For every vacant set, no children are occupied

 ssets vacs children(s) vacs

7.3 Transition selection

We consider a statechart in configuration f under some event α

Tα is the set of all transitions on event α, (whatever their condition and whatever the

configuration-state of the statechart).

Tf,α,true is the set of all transitions where the associated source/orbit/target pre-requisites and

transition conditions are true. The default condition is true. The source pre-requisite is

that the source state is occupied. No orbit or target pre-requisite is needed in after-

landing semantics. (Otherwise, these states must not be blocked in any way).

Tf,α,true= {t : tTα,

 cond(t)=true

 source(t) occs

 targets(t) occs vacs

 (orbit(t) occs vacs orbit(t) =) }

Tf,α,false is the set of all transitions where the associated pre-requisites and conditions are

false.

Tf,α,false= Tα \ Tf,α,true

Sf,α,true is the set of source states of transitions on the event under consideration for

which at least one associated transition condition is true:

Sf,α,true = sources(Tf,α,true)

T
s
f,α,true is the set of transitions from source state s where the associated pre-requisites and

conditions are true:

T
s
f,α,true = { t Tf,α,true | source(t)=s }

Sf,α,qual is the set of source states of transitions on the event under consideration for which

at least one associated transition condition is true, and for which the source state

qualifies under the hierarchy prioritisation algorithm. A state qualifies if there is

no transition with a true condition (on the same event) having a source state

hierarchically below
1
 it.

1
 In an alternative prioritsation: above

© Graham G. Thomason 2003-2004 143

Sf,α,qual ={ s Sf,α,true | descendants
1
(s) Sf,α,true= }

Tf,α,qual is the set of all transitions where the associated pre-requisites and conditions are

true and which qualify under the hierarchy prioritisation algorithm

Tf,α,qual = { t Tf,α,true | source(t) Sf,α,qual}

Tf,α,disq is the set of all transitions where the associated pre-requisites and conditions are

true but which are disqualified by the hierarchy prioritisation algorithm

Tf,α,disq = Tf,α,true \ Tf,α,qual

Qualifying transitions come from the outermost statechart layer(s) containing true transitions.

This could be regarded as an exercise to

 Find the innermost
2
 layer of the hierarchy that has at least one true transition

 All true transitions from this layer are qualifying

 All true transitions above
3
 this layer are disqualified

T
s
f,α,qual is the set of all transitions from source state s where the associated pre-requisites

and conditions are true and which qualify under the hierarchy prioritisation

algorithm

 T
s
f,α,qual = {t Tf,α,qual | source(t)=s}

T
*

f,α,qual is the set of sets T
s
f,α,qual, for all states s in Sf,α,qual. Each member set contains all

qualifying transitions from the same qualifying source state.

T
*

f,α,qual = { T
s
f,α,qual | s Sf,α,qual}

Since different elements of T
*
f,α,qual contain transitions from different source

states, they are disjoint:

Õ T1, T2 T
*

f,α,qual × T1 ¾ T2 =

T

f,α,qual is the set of sets where each element of T

f,α,qual is formed by taking one element

from each element of T
*
f,α,qual. (It is rather like a distributed cartesian product, but

it is a set of sets, not a set of tuples). Each element of T

f,α,qual contains a

qualifying transition from each qualifying source-state. There is as yet no notion

of orderings of transitions. These elements represent fork nondeterminism.

T

f,α,qual = { T PTf,α,qual | (ÕT1T, ÕT2T
*

f,α,qual × #(T1 ¾ T2) =1) }

Here, # is used to denote the size of a set.

Tf,α,exec is the set of sequences formed by replacing each set in T

f,α,qual by sequences

covering every permutation (i.e. ordering) of the replaced set. So each sequence

1
 In the alternative prioritisation: ancestors

2
 In the alternative prioritisation: outermost

3
 In the alternative prioritisation: below

144 © Graham G. Thomason 2003-2004

contains an ordering of a qualifying transition from each qualifying source-state.

These sequences represent fork and race nondeterminism.

Tf,α,exec = { seqi Perm(tupj) | tupj T

f,α,qual }

Set transit nondeterminism is not part of transition selection; it is handled within the transition

processing algorithm.

Figure 113. Transition derivatives example (similar to test model t6240)

Notes:

1. There is just one event α - the superscript identifies transitions on α .

2. [t] stands for a true condition, [f] for a false one.

3. To illustrate the alternative prioritisation scheme, we would have α
9
[t], α

2
[f].

As an example, given the statechart in Figure 113, assuming leafstates a5b and baa are

occupied, event α leads to the following quantities:

 b

s

bb

bc

α
10
{v2=v2*10+1;}

α
11
{v2=v2*10+2;}

ω_ba

ba

bab

baa

α
12
{v2=v2*10+3;}

α
13
{v2=v2*10+4;}

t10

t11

t12

t13 bac

a1

a4

a5a

a5b

b2

ω_a5b

a2

a3

α
1
[f]{v1=v1*10+1;}

α
2
[t]{v1=v1*10+2;}

α
3
[f]{v1=v1*10+3;}

α
6
[f]{v1=v1*10+6;}

α
5
[t]{v1=v1*10+5;}

α
7
[t]{v1=v1*10+7;}

α
4
[f]{v1=v1*10+4;}

α
8
[f]{v1=v1*10+8;}

α
9
[f]{v1=v1*10+9;}

ω_a5a

t1

t2

t3

t4

t5

t6

t7

t8

t9

© Graham G. Thomason 2003-2004 145

Tα {t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13}

Tf,α,true {t2,t5,t7,t10,t11,t12,t13}

Tf,α,false {t1,t3,t4,t6,t8,t9}

Sf,α,true {a2,a4,ba,baa}

T
a2

f,α,true {t2}

T
a4

f,α,true {t5,t7}

T
ba

f,α,true {t10,t11}

T
baa

f,α,true {t12,t13}

Sf,α,qual {a4,baa}

Tf,α,qual {t5,t7,t12,t13}

Tf,α,disq {t2,t10,t11}

T
a4

f,α,qual {t5,t7}

T
baa

f,α,qual {t12,t13}

T
*

f,α,qual { {t5,t7}, {t12,t13} }

T

f,α,qual { {t5,t12}, {t5,t13}, {t7,t12}, {t7,t13} }

Tf,α,exec {t5,t12,t12,t5, t5,t13, t13,t5,

t7,t12, t12,t7, t7,t13, t13,t7}

STATECRUNCHER's transition selection algorithm is to select all transition sequences in

Tf,α,exec.

For each sequence, a new world (or more than one) can result after execution of the sequence.

As will be seen, worlds are not created in advance of processing each sequence, but rather are

created deeper in the algorithm where each individual transition is processed when it needs to

change the configuration.

7.4 Discussion of hierarchical fork nondeterminism

As mentioned, when there are transitions on the same event at different hierarchical levels,

STATECRUNCHER applied the UML-conformant policy of specialisation, whereby inner

transitions take precedence over outer ones. We consider here what procedure would best be

followed if hierarchical prioritisation is replaced by fork nondeterminism across different

hierarchical levels, which we call hierarchical fork nondeterminism.

It must first be decided what is meant by event α in the figure below.

146 © Graham G. Thomason 2003-2004

Figure 114. Hierarchical ambiguity (1)

The nondeterminism lies in choosing either (α
1
 and α

2
) or just α

3
 (with set-transit

consequences). We do not allow combinations such as α
1
 and α

3.2
 in Figure 115 below

(where α
3.2

 is considered a logical component of α
3
).

Figure 115. Hierarchical ambiguity (2)

For more general state structures containing many nested clusters and sets, we organize

transitions into groups originating from source states which are members of the same cluster

or set and groups which stand in hierarchical relationship to one another. We wrap and mark

sibling source states in a set with a from-each tag, indicating that a transition must be taken

from each source state. We wrap and mark source states in a hierarchical relationship with a

from-one tag. Sometimes there will only be one state in a from-each or from-one package,

making the issue irrelevant, but in the examples, we show the tag anyway.

We create a quantity Sf,α,true to represent this; for Figure 114 above, this would be

 [from-one,

 [from-each,baaa,baba],

 [from-one,ba]].

As a more extensive example, we take the following model, which is similar to the previous

one, but with more depth of hierarchy.

bb
α

3

ba

baab baaa baa α
1

babb baba
α

2
 bab

bb α
3.1

ba

baab baaa baa
α

1

babb baba
α

2
 bab α

3.2

bold font in a leafstate name indicates an occupied state

α
3

© Graham G. Thomason 2003-2004 147

Figure 116. Model to illustrate hierarchical fork nondeterminism

Hierarchical fork nondeterminism, as a variation on hierarchical prioritisation, will generate a

new Sf,α,qual set, from which a new Tf,α,qual and Tf,α,exec set can be constructed analogously to the

previous algorithm.

Sf,α,true =

 [from-each,

 [from-one,a2,a4],

 [from-one,

 [from-one,ba],

 [from-each,baaa,baba]]]

s

bb

bc

α
10
{v2=v2*10+1;}

α
11
{v2=v2*10+2;}

t10

t11

 b

ω_ba

ba

bacb

baca

bac

babb

baba

bab

baab

baaa

baa

α
12
{v2=

v2*10+3;}

α
13
{v2=

v2*10+4;}

t12 t13

a1

a4

a5a

a5b

b2

ω_a5b

a2

a3

α
1
[f]{v1=v1*10+1;}

α
2
[t]{v1=v1*10+2;}

α
3
[f]{v1=v1*10+3;}

α
6
[f]{v1=v1*10+6;}

α
5
[t]{v1=v1*10+5;}

α
7
[t]{v1=v1*10+7;}

α
4
[f]{v1=v1*10+4;}

α
8
[f]{v1=v1*10+8;}

α
9
[f]{v1=v1*10+9;}

ω_a5a

t1

t2

t3

t4

t5

t6

t7

t8

t9

148 © Graham G. Thomason 2003-2004

Next, per source state, we substitute all transitions from it, with a from-one tag, giving

T
*

f,α,true =

 [from-each,

 [from-one, [from-one,α2
], [from-one, α5

 ,α
7
]],

 [from-one,

 [from-one,α10
,α

11
],

 [from-each,[from-one,α12
],[from-one,α13

]]]]

This tree can be walked according to the tagged instruction, with example PROLOG code

shown following.

PROLOG code for an each-one walker

/* Each/One-walker data */

eodata1(X):-

 X= [from_each,

 [from_one,

 [from_one,a2],

 [from_one,a5,a7]],

 [from_one,

 [from_one,a10,a11],

 [from_each,

 [from_one,a12],

 [from_one,a13]]]].

/* Each/One Walker */

eowalk(X,X):-

 atom(X).

eowalk([from_one|T],X):-

 gn_member(M,T),

 eowalk(M,X).

eowalk([from_each|T],X):-

 eowalks(T,X).

eowalks([],[]).

eowalks([H|T],[LH|LT]):-

 eowalk(H,LH),

 eowalks(T,LT).

/* Walk the example data */

go_eo:-

 eodata1(X),

 eowalk(X,Y),

 gn_flatten(Y,W),

 write(W),nl,

 fail.

© Graham G. Thomason 2003-2004 149

The output of running go_eo is:

This corresponds to:

T

f,α,qual =

 { {a2,a10},

{a2,a11},

{a2,a12,a13},

{a5,a10},

{a5,a11},

{a5,a12,a13},

{a7,a10},

{a7,a11},

{a7,a12,a13}}

Permuting the transitions, we obtain the sequences we wish to execute:

Tf,α,exec =

{

t2,t10t10,t2

t2,t11t11,t2

t2,t12,t13t2,t13,t12t12,t2,t13t12,t13,t2t13,t2,t13t13,t12,t2

t5,t10t10,t5

t7,t11t11,t7

t5,t12,t13t5,t13,t12t12,t5,t13t12,t13,t5t13,t5,t13t13,t12,t5

t7,t10t10,t7

t7,t11t11,t7

t7,t12,t13t7,t13,t12t12,t7,t13t12,t13,t7t13,t7,t12t13,t12,t7

}

[a2,a10]

[a2,a11]

[a2,a12,a13]

[a5,a10]

[a5,a11]

[a5,a12,a13]

[a7,a10]

[a7,a11]

[a7,a12,a13]

150 © Graham G. Thomason 2003-2004

7.5 Transition course

7.5.1 Effective transitions

A transition arc (including bifurcations) indicates one source state and one or more target

states. In general, the transition arc does not indicate leafstates at either end, and these must be

determined by some algorithm. The transition course is the actual sequence of states exited

and entered, and can be indicated by an effective transition arc, which we show by a dotted

line in the figures below. A requirement is that, in the absence of orbital transitions, the

transition should be as “low flying” as possible, i.e. it should not exit and enter any states

unnecessarily.

The algorithm to find the effective transition arc basically involves:

 Determining the enter tree scope and exit tree scope. These are sometimes (but not

always), identical, and might be the common ancestor of the source and target states of

the transition. The reason these scopes are needed is given below.

 Constructing an intermediate exit tree to the exit tree scope level.

 Constructing an intermediate enter tree to the enter tree scope level.

 Removing common states between the enter and exit trees, (but not necessarily so when

the transition is orbital). The reason for this operation is that effective transitions are as

low flying as possible, which means that the exit and enter trees must not take the

transition to an unnecessary height. An example of a low-flying transition with higher

level intermediate exit and enter trees is the transition on α1 in Figure 120, (given the

occupancy configuration shown in the figure). After common state removal, the highest

level remaining is called the altitude of the transition. The residual exit and enter trees are

called the definitive exit tree and the definitive entry tree.

The algorithm is explained in more detail in this section.

The scopes are needed, because without them, we would have to exit to statechart level, and

we could then be exiting set members that are not involved in the transition. Constructing the

enter tree would then be more difficult, because we would have to re-enter states that really

never should have been considered for exit, when we want to concentrate on entering states

because the transition demands it. Moreover, we would have to ensure that such states are

never actually exited and re-entered. It would also be inefficient to work with exit and entry

trees to statechart level if this is not necessary.

 Figure 117 below indicates how a transition on event α might effectively correspond to the

transition marked by α1. The tail and tip of the transition arc explicitly give states to be exited

and entered.

© Graham G. Thomason 2003-2004 151

Figure 117. Transition arc and effective transition

Deep History

The effect of deep history is to ensure that when a decision must be taken as to which

member to enter of a cluster that is under deep history, the member that was last occupied is

entered. We call this the historical member. If no member has ever been entered, or the record

of the history has been cleared, the default member is taken. If the cluster is already occupied,

the currently occupied member is regarded as the target member.

A cluster member is liable to be “under deep history” if there is an ancestor set or cluster that

has a deep history marker. We shall see that there are nevertheless circumstances when we do

not regard a transition entry step as being under the dominion of an ancestral deep history

marker.

Deep history ensures that after an ‘excursion’ from a cluster, such as the excursion from t to

c and back again in Figure 118 below, defined by the transitions on α and β, the original

cluster is back in its original state.

However, a transition such as the one on event γ below does not ‘see’ the deep history, since

no member of the cluster with the deep history marker, t, undergoes an enter operation. This

is the behaviour we want; the local behaviour in clusters a, c and d should not be altered by

an outer wrapper such as t.

The orbital transition on δ, however, does see deep history, because it actually enters cluster

t, which is marked with deep history, since cluster t is below its orbital level.

a

c2

c1

c
d2

d1

d
e2

e1

e
f2

f1

f
α->$b.e

s

b

α1

152 © Graham G. Thomason 2003-2004

Figure 118. Deep history illustration

Figure 119. Deep history illustrations - effective transitions (1)

Figure 120. Deep history illustrations - effective transitions (2)

Figure 121. Deep history illustrations - effective transitions (3)

p2

p1

q2

q1

b D

historical

state

p q
occupied

state

β6

4

β1

Deep history is only

“seen” if the effective

transition arc actually

enters the deep history

cluster.

a

c2

c1

c
d2

d1

d
e2

e1

e

f1

f

α->c

s

b

f2
c

t

β->t

D

γ->d

δ -> $$$s ->$b

In STATECRUNCHER, history is

recorded on cluster exit. So it is

still present on subsequent

cluster entry.

We therefore take the current

cluster to act as a more recent

equivalent to history than the

formal historical cluster, when

dealing with a target cluster

that is already occupied.

p2

p1

q2

q1

a D

historical
state

p q

occupied
state

α3

α1

α1eff

α2

α3eff

historical

cluster

p3
historical

state

α2eff

p2

p1

q2

q1

k D

historical

state

p q

occupied
state

κ3

κ1

κ2eff

κ2

κ3eff

historical

cluster

p3
historical

state

κ1eff

© Graham G. Thomason 2003-2004 153

Now the issue in finding the transition course in a statechart with deep history appears at first

sight to be a chicken and egg problem:

 to find the transition course, we need, amongst other things, the enter tree

 constructing the enter tree depends on knowing when to apply deep history

 knowing when to apply deep history depends on knowing whether a particular cluster will

actually be entered in the effective transition

 knowing whether a particular cluster will actually be entered depends on knowing the

transition course.

Despite the apparent circular reasoning, it is possible to find a satisfactory algorithm.

The algorithm parameters available to control the transition course are as follows:

 Exit/enter tree scope logic is based on transition source and transition target states, and

orbital state

 Enter tree construction logic is based on explicit target states, history markers, target

occupancy, and the orbital state.

The intermediate exit tree is created by (recursively) exiting the highest level in the exit tree

scope then the child of each state exited. When a member of a set is exited, sibling set

members are also exited.

The intermediate entry tree is more difficult to construct; details follow in Section 7.5.3.

7.5.2 Logic for exit and enter tree scopes

Terminology for the decision logic

Given a transition, with its source state, orbit and target states, we may refer to:

 the transition common ancestor, TnCA (the common ancestor of the source state and all

target states)

 the target common ancestor, TgCA (the common ancestor of all target states)

 the source-side child of transition common ancestor

 the target-side child of transition common ancestor

 the source-side child of orbit

 the target-side child of orbit

Not all conceivable algorithms require all these terms. Examples of the terms are given with

reference to Figure 122.

154 © Graham G. Thomason 2003-2004

Figure 122. Model for reference to transition common ancestor and related concepts

For the transition on α:

 the transition common ancestor is the common ancestor of cluster d, cluster e and

leafstate f1, which is cluster s

 the target common ancestor is the common ancestor of cluster e and leafstate f1, which

is set b

For the transition on β:

 the transition common ancestor is the common ancestor of cluster d and cluster a,

which is cluster a

For the transition on γ:

 the transition common ancestor is the common ancestor of leafstate c1 and leafstate

d1, which is cluster a

 the source side child of transition common ancestor is cluster c

 the target side child of transition common ancestor is cluster d

 the orbit is cluster a

 the source side child of orbit is cluster c

 the target side child of orbit is cluster d

The logic for the scope of the intermediate exit and enter trees is given in Figure 123. Legend

for that figure (not all terms necessarily used in the current algorithm):

 Sor = Source state of transition

 Tar = Target state of transition, or common ancestor of target states if there are several

 TnCA = Transition common ancestor

 orb = orbital state

 A > B reads "A is a strict ancestor of B." [A is greater in age, as it were].

 A < B reads "A is a strict descendant of B."

 A / B reads "A and B are not in a direct ancestral line."

 A-1 reads "a child of A".

 A-1
s
 reads "the child of A on the source side of the transition, i.e. the active child of A.

 A-1
t
 reads "the child of A on the target side".

a

c2

c1

c
d2

d1

d
e2

e1

e
f2

f1

f
α

s

b1
b

b2 β γ

© Graham G. Thomason 2003-2004 155

Figure 123. Decision logic for scopes

Notes

1. By target scope, we mean the common ancestor of all targets.

2. The above logic could be exhibited in a more condensed form, but as it stands, it brings

out separate cases more explicitly, making it easier to review the logic. In particular, cases

1,3,5,7 (orbital cases) condense, as do cases 4,6,8 (line-of-descent cases).

3. For all orbital cases, the enter and exit trees have exit and enter scope of orbit-1
s
 and

orbit-1
t
 respectively. Where the source and target are in the same line of descent, the enter

and exit scope given will necessarily be the same for each.

4. In case 2 we have TnCA-1
s
 and TnCA-1

t
, and that we do not attempt to remove any

common tree, because we know there is no common tree.

5. Where there is a low orbit, it will have the effect of limiting the amount of common tree

removal. Where there is no orbit, the maximum amount possible of common tree removal

will take place.

exit-

scope=

enter-

scope=

orbit-1s

Sor>Tar

Relationship

Source-Target

START

Sor=Tar Sor<Tar

orbit-TnCA orbit-TnCA orbit-TnCA

orb>

TnCA

(high

orbit)

orb

TnCA

or no

orbit

orb>

TnCA

(high

orbit)

orb

TnCA

or no

orbit

orb>

TnCA

(high

orbit)

orb

TnCA

or no

orbit

case 3 4 5 6 7 8

orbit-1t

orbit-1s

orbit-1t

TnCA

TnCA

TnCA

TnCA

orbit-1s

orbit-1t

TnCA

TnCA

attempt
common
tree
removal?

no no yes

yes

no yes

β γ

no

Sor/Tar

orbit-TnCA

orb>

TnCA

(high

orbit)

orb

TnCA

or no

orbit

1 2

orbit-1s

orbit-1t

TnCA-1s

TnCA-1t

no

α δ
event

naming in

example

156 © Graham G. Thomason 2003-2004

Figure 124. Scope of enter/exit trees

Notes

1. All the above transitions terminate on state c.

2. The α1/β1/γ1/δ1 events are high orbital, the α2/β2/γ2/δ2 events are lower orbital, and the

α3/β3/γ3/δ3 events are non-orbital.

statechart sc

x

a

α3->$$a.b.c

α1->::x->::x.y.a.b.c orbit=[x,sc]

y

f

b

c

d

p

q

r

s

γ3->c

β3->a.b.c

δ3->$$c

tα1

tγ3

tβ3

tδ3

tα3

α2->::x.y.a->::x.y.a.b.c orbit=[y,x,sc]

tα2

e

β2->a->a.b.c
orbit=[a,y,x,sc]

tβ2

tγ1
γ1->$b->c orbit=[b,a,y,x,sc]

γ2->c->c orbit=[c,b,a,y,x,sc] tγ2

tδ2

tδ1 δ1->$$$b->$$c orbit=[b,a,y,x,sc]

δ2->$$c->$$c orbit=[c,b,a,y,x,sc]

β1->$y->a.b.c orbit=[y,x,sc]

tβ1

t

© Graham G. Thomason 2003-2004 157

Examples from the above figure:

C
a

se

T
r
a
n

si
ti

o
n

O
rb

it

T
n

C
A

K
ey

P
r
o
p

er
ti

es

In
te

rm
ed

.
e
x
it

sc

o
p

e

In
te

rm
ed

.
e
n

te
r

sc
o
p

e

A
tt

e
m

p
t

c
o
m

m
o
n

 t
r
ee

r
em

o
v
a

l?

 Remarks

1 tα1 x y Sor/Tar

orbit>TnCA

(high orbit)

orbit-1
s

= x-1
s

= y

orbit-1
t

= x-1
t

 = y

No Orbit above common ancestor

Orbit-child scopes

No common tree removal.

1 tα2 y y Sor/Tar

orbit=TnCA

(high orbit)

TnCA-1
s

y-1
s

=p

TnCA-1
t

y-1
t

=a

No Orbit at common ancestor

Common tree removal would fail if

attempted

2 tα3 - y Sor/Tar

no orbit

TnCA-1
s

y-1
s

=p

TnCA-1
t

y-1
t

=a

No Common tree removal would fail if

attempted

3 tβ1 y a Sor/Tar

orbit>TnCA

(high orbit)

orbit-1
s

= y-1
s

= a

orbit-1
t

= y-1
t

 = a

No Orbit above common ancestor

Orbit-child scopes

No common tree removal.

4 tβ2 a a Sor>Tar

orbit<TnCA

(low orbit)

TnCA

=a

TnCA

=a

Yes,

but...

Orbit at common ancestor

Transition common ancestor scope

ORBIT will restrict common tree removal

4 tβ3 - a Sor>Tar

no orbit

TnCA

= a

TnCA

=a

Yes Transition common ancestor scope

Common tree will remove c (at least)

Note that c's history marker will be seen.

5 tγ1 b c Sor=Tar

orbit>TnCA

(high orbit)

orbit-1
s

= b-1
s

= c

orbit-1
t

= b-1
t

= c

No Orbit above common ancestor

Orbit-child scopes

No common tree removal

6 tγ2 c c Sor=Tar

orbit=TnCA

(low orbit)

TnCA

= c

TnCA

= c

Yes,

but...

Orbit at common ancestor

Transition common ancestor scope

ORBIT will restrict common tree removal

6 tγ3 - c Sor=Tar

no orbit

TnCA

= c

TnCA

= c

Yes Transition common ancestor scope

Common tree will remove c (at least)

Note that c's history marker will be seen.

7 tδ1 b c Sor<Tar

orbit>TnCA

high orbit

orbit-1
s

= b-1
s

= c

orbit-1
t

= b-1
t

= c

No Orbit above common ancestor

Orbit-child scopes

No common tree removal

8 tδ2 c c Sor<Tar

orbit=TnCA

low orbit

TnCA

=c

TnCA

=c

Yes

but...

Orbit at common ancestor

Transition common ancestor scope

ORBIT will restrict common tree removal

8 tδ3 - c Sor<Tar

no orbit

TnCA

=c

TnCA

=c

Yes Transition common ancestor scope

Common tree will remove c (at least)

Note that c's history marker will be seen.

Table 11. Exit and enter tree scope examples

158 © Graham G. Thomason 2003-2004

7.5.3 Entry tree construction

Entry of a cluster

We first introduce the terminology guide-mode and orbitality.

Figure 125. Guide mode and orbitality

The transition on α in Figure 125 is specified as coming from cluster b, but this is a non-

leafstate; the effective transition source could be various leafstates within cluster b: j, k, c2,

or b2 (but not a2, which is not within cluster b). The target state is also specified at non-

leafstate level, (cluster d), the effective target state always being in fact j. The transition

arrow is not entirely an explicit guide for determining the effective transition. If the transition

actually comes from state b2, (because state b2 is the occupied leafstate) it is clear from the

transition arrow that clusters c and d must be entered. This is guided entry. If this transition

comes from state c2, then cluster d will be entered as guided entry. But the final part of

determining the actual transition target (leafstate j) is not explicit in the transition arrow, and

will be performed as unguided entry.

The transition on β illustrates orbitality:

 Cluster b is at-orbit

 Cluster a is above the orbit, i.e. super-orbital

 Clusters c and d and leafstate k are below the orbit, i.e. sub-orbital

 Note that for the transition on α all states in the hierarchy are qualified as no-orbit

The dependency factors for entering a cluster are:

 whether the cluster is entered in guide-mode = guided or unguided

 whether the cluster history-attribute = deep history or history or no history

 whether the cluster history-availability = available or unavailable

 whether the cluster is entered under a dho = deep-history-obligation (on statechart entry

set to false) or not. This means that the historical member must be (recursively) entered if

possible, due to a deep history marker having set this up in a preceding part of the

transition course.

b

d

j

k

c

c2 b2 a2

α β
a

αeff

possibilities

shown by

dashed arcs

(depending on

the occupancy

configuration)

© Graham G. Thomason 2003-2004 159

 whether the cluster orbitality = suborbital (i.e. at a level at-or-below orbital level) or

superorbital or no-orbit.

 whether the target state occupancy = occupied or vacant

Entry of a set

This is basically as for a cluster, except that

 all members are entered

 there are typically several guides, prescribing entry into various set members.

An illustrative example is given at Figure 128.

The following figures show flow diagrams that specify which member of a cluster is entered

using the above factors.

Figure 126. Entry tree for clusters (1)

Rationale for the above

As these are all the guided entry mode cases, the cluster member entered will certainly be the

one specified by the guide. The remaining issue is whether or not to impose a deep history

obligation (dho) on the member state that is entered, for its (or its descendants’) use when the

guided

guide mode

history mark

in current cluster?

target

occupancy

occupied vacant

or D H N

orbitality
no-orbit

or at-orbit

 or super-

orbital

sub-

orbital

target

occupancy

occupied vacant

orbitality

A next diagram

unguided

START

1.

follow guide

dho:=false

2.

follow guide

dho:=true

3.

follow guide

dho:=true

4.

follow guide

dho:=false

5.

follow guide

dho:=no chg

6.

follow guide

dho:=no chg

the diagram applies to having

entered the current cluster,

and to selecting which

member state to enter next

no-orbit

or at-orbit

 or super-

orbital

sub-

orbital

160 © Graham G. Thomason 2003-2004

guide ceases. The dho is imposed when a cluster is entered with a deep history marker, but it

can be cancelled. Cancellation takes place (cases 1 and 4 in Figure 126) when a cluster is

entered which has the property that both source and target state belong to it (the transition

being local to the cluster, and the deep history being inapplicable) – providing there is no orbit

that takes the transition above the cluster being entered. An example of cancellation of the

dho taking place is the transition on α1 in Figure 120.

If a cluster is entered which is vacant, or which is occupied but sub-orbital, then it is known

that this entry step will form part of the effective transition, as the transition cannot be more

local. In these cases, a deep history marker will set up a dho, and an existing dho will be

imposed on the member cluster.

Unguided entry:

Figure 127. Entry tree for clusters (2)

Rationale for the above

The first issue is to determine which member state is to be entered. We first determine

whether history is applicable: this is the case if there is a (D) or (H) history marker, or if a

history mark

in current cluster

cluster

occupancy

occupied vacant

D H N

orbitality

A
from previous

page
(unguided)

dho

< history is

 not applicable>

< history is applicable>

member history

data available

avail-

able

unavail-

able

yes no

11.

take default

dho= no chg

 (=false)

7.

take occupied

dho:=false

8.

take occupied

dho=

 (D) true

 (H,N) no chg

9.

take historical

dho=

 (D) true

 (H,N) no chg

10.

take default

dho=

 (D) true

 (H,N) no chg

no-orbit

or at-orbit

 or super-

orbital

sub-

orbital

© Graham G. Thomason 2003-2004 161

deep history obligation (dho) has been imposed. Having established applicability of history,

we regard a currently occupied member state as the intended target, i.e. the present as

overriding history, or to put it another way, the currently occupied state is the last entered

state and so is the historical state.

This is the correct choice of member state whether or not the effective transition passes

through this hierarchical level. If it does, then the entry step will be reflected in the effective

transition. If it does not, then the transition is at a local level in the cluster we are entering, so

the enter-tree must reflect this; it will be eliminated when the intersection of the entry tree and

exit tree is taken to form the common tree.

To apply history to a vacant cluster requires that history data is also available. If it is, we take

the historical state; if not, we take the default state. If history is not even applicable, we

ignore historical state information and take the default state (even if another member is

currently occupied). In this last situation, there is no dho, and this is maintained that way. The

fact that the cluster is vacant implies it will be entered in the effective transition too.

The second issue is the deep history obligation (dho) setting. The dho is imposed, maintained

or cancelled employing the same considerations as those given under guided entry relating to

 Figure 126.

162 © Graham G. Thomason 2003-2004

Example for a set

Figure 128. Example course for sets

The rules as given for a cluster apply, but with the following extra provisions:

 If any member of a set is exited, the entire set must be exited. So if the transition altitude

would otherwise be a member of a set, the whole set must be exited recursively upwards

in the hierarchy until a non-set state is found (cluster or statechart).

 There can be multiple target states. Construction of the entry tree involves following all

multiple target states (as far as they go), then relying on history and default settings. If

any one member of a set is entered, all members must of course be entered, be it guided

by a target state or relying on history and default states.

When members of a set (or a member of a cluster) are entered under guided entry, all

elements of the guide-list that can be consumed, must be consumed as entry takes place. The

guide list will be supplied to each member entered, and irrelevant elements in it for each

particular member can be discarded. Sometimes (when we are about to commence unguided

entry) an entry may be reduced to the empty list; such entries can also be discarded. An

example of this is the guide-path as far as y3 in the figure above. The paths of the target of

the transition on ξ above, as the entry progresses, would be

Initial guide-paths, in set x, as we are about to enter members x1 and y1

statechart st x

p5

q5

x1

x2

x3

x4 y4

x5

y5

y1

y2

y3
p2

q2

p3

q3

p1

q1

ξ->x1.(x2.(y3/\x3.y4.q5)/\y2.p2)

evaluated in MPATH= [x,st], this evaluates to:

 [[y3,x2,x1,x,st],

 [q5,y4,x3,x2,x1,x,st],

 [p2,y2,x1,x,st]]

Note: the guide path to

y3 is unnecessary, but

harmless

© Graham G. Thomason 2003-2004 163

 [[y3,x2,x1], [q5,y4,x3,x2,x1], [p2,y2,x1]]

After entering member x1 the guide-paths are:

 [[y3,x2], [q5,y4,x3,x2], [p2,y2]]

In parallel, member y1 is entered, but the guide paths do not apply, and will be ignored or

effaced.

From set x1, members x2 (a set), and y2 (a cluster) must be entered.

After entering set x2, this set retains guide paths as follows (irrelevant ones struck through)

 [[y3], [q5,y4,x3], [p2,y2]]

From x2 we enter x3 and y3.

In x3, we retain one guide path in the list which is as follows.

 [[q5,y4]]

In y3, which we must enter anyway, we retain an empty path, which can be effaced from the

list

 [[]]

leaving no guide paths, represented by the empty list:

 []

The remaining guide-path in to y4 and q5 is followed through, being consumed as entry steps

are taken.

7.5.4 Common tree removal

An exit or enter tree is a nested structure of states, e.g. (simplified) [a,[b,[c]]], with the

outermost layer representing the highest part of the statechart hierarchy in the tree. The

process of removing common states is to examine the top of each tree for a match and if

found, to peel off the outer layer from each structure (giving in our example [b,[c]]) and

to repeat the operation until a difference is found. An intermediate enter tree of

[a,[b,[c,[d]]]] and an intermediate exit tree of [a,[b,[e,[f]]]] would yield

definitive trees of [c,[d]] and [e,[f]] respectively.

If the trees are identical, all states are removed, and the transition is effectively a self-

transition.

Some nesting layers may represent sets, giving e.g. [a,[b,[c,d,e]]]. Where the two

trees contain several top-level elements, representing set members, the set members are

subjected to common tree removal by a recursive call for each member. This can only occur

when their parents have just been removed, so guaranteeing that the enter and exit trees

contain the same set members at this stage. The exit-tree and enter-tree orderings of set

164 © Graham G. Thomason 2003-2004

members correspond to enable this (set members are ordered in their declaration order). As

soon as the exit and enter trees differ, the removal process is complete and they become the

definitive exit and enter trees.

Throughout the process, an orbital level (if present) is used in a check so that the process can

terminate prematurely, as it were, if the enter and exit trees have reached the level at which no

more common tree removal is permitted.

The enter and exit trees actually contain permutation markers on set members so as to support

set nondeterminism (section 7.6.5), but this does not affect the test for commonality or the

removal of common states.

© Graham G. Thomason 2003-2004 165

7.6 Task processing

7.6.1 Introduction to event processing and generalisation to tasks

The algorithm presented here for processing an event, taking account of all forms of

nondeterminism (as discussed) involves extensive mutual recursion at many processing

levels. We take a top-down approach to event processing, generalising to a task, and leading

to a highly general top-level call, which effectively abstracts away many details which are

best considered at a lower level.

The main function of the machine engine is to process a single event. The first event is

normally processed on the initial state, which is unique and so is represented by just one

world. However, apart from special situations, an event is typically processed in each of

several worlds. This is because the previous event (which may entail broadcast events, i.e.

fired events and internally generated meta-events) will in general produce many worlds.

When one event has been processed, the resulting worlds will be needed for subsequent event

processing. Any worlds representing an earlier situation can be destroyed, unless a record of

them is required for some reason, in which case they can be retained, but they will not

participate in any world merging during event processing.

When an event is processed, the transition selection algorithm produces a set of transition

sequences. This is the input to the transition execution algorithm. We generalize a transition

into a task. The most general internal STATECRUNCHER call is a call to process a set of

sequences of tasks in a set of worlds. We also generalize events and actions into tasks. The

outer layer of our algorithm for processing sets of sequences of tasks in many worlds will be

applicable to any kind of task. When we come to process one task in one world, we will

identify the task and handle it with a specific handler, (a client handler to the more general

routines).

The world merging symbol

In the diagrams, the following symbol is used to indicate world merging:

Figure 129. World merging diagram

worlds
before
merging

worlds
after
merging

worlds

worlds

worlds

166 © Graham G. Thomason 2003-2004

Processing a sequence

We represent sequences of items, and sets of items, as lists. As is conventional in PROLOG

and elsewhere, we call the first element the head, and the remainder, which is a list, the tail.

The tail may contain many elements, or just one, or none at all (in which case it is a null list).

Typical recursive processing of a given list is as follows:

 Process the head using a different, lower level routine, which knows how to process

the one item

 Process the tail by a recursive call to the same routine that is handling the given list

 Combine results of the processed head, and processed tail

 The termination condition of the recursion is to process the null list, and return a null

list as the processed output.

The example code for processing a task sequence in worlds, given later in this section,

illustrates this.

An issue for any processing routine:

 In typical parallel world head/tail processing, where we are not concerned with a specific

sequence, the processing order (of head and tail) may be reversed. As long as there are no

side effects in the two calls, these are equivalent.

Figure 130. Process task in worlds (i)

Figure 131. Process task in worlds (ii)

process task in worlds

process task in (head) world

process task in (tail) worlds

worlds

worlds

worlds

recursion

process task in worlds

process task in (head) world

process task in (tail) worlds

worlds

worlds

worlds

recursion

© Graham G. Thomason 2003-2004 167

 Totally different is the serial (or feed-forward) case, used for sequences, where the output

worlds of head processing feed into the tail processing.
1

Figure 132. Process task sequence in world

7.6.2 The specific routines

We now consider what routines are needed when an event is to be processed in many worlds.

In the section following this one, we will generalize these routines to tasks.

Process event in worlds

Figure 133. Process event in worlds

Process event in world

Figure 134. Process event in world

1
 If the sequence ordering convention is reversed, then the output of tail processing feeds into the head

processing.

process event in world

select_transitions

process transition sequences in world worlds

see below

process event in worlds

process (same) event in (head) world

process (same) event in (tail) worlds

each world will generate something completely

unrelated to what is generated in the other worlds

worlds

worlds

worlds

recursion

recursive

see below

process task sequence in world

process (head) task in world

process (tail) task sequence in (above) worlds worlds

worlds

indirect recursion

168 © Graham G. Thomason 2003-2004

Process transition sequences in world

Figure 135. Process transition sequences in world

Process transition sequence in world

Figure 136. Process transition sequence in world

Process transition sequence in worlds: Algorithm A - outer loop on worlds

Figure 137. Process transition sequence in worlds (A)

process transition sequences in world

process (head) transition sequence in world

process (tail) transition sequences in (same) world

process each sequence in an

identical clone of the world given

worlds

worlds

recursion

worlds

recursive

see below

process transition sequence in worlds

process transition sequence in (head) world

process transition sequence in (tail) worlds

worlds

worlds

worlds

recursion outer loop on worlds

recursive

see above

process transition sequence in world

process (head) transition in world

process (tail) transition sequence in (above) worlds

each transition will produce many worlds -

through set transit nondeterminism or

broadcast event nondeterminism

worlds

see below

see below

(this is new) indirect recursion

worlds

© Graham G. Thomason 2003-2004 169

Process transition sequence in worlds: Algorithm B - outer loop on transitions

Figure 138. Process transition sequence in worlds (B)

Process transition in worlds

This is required by the algorithm B approach to process transition sequence in worlds

Figure 139. Process transition in worlds

process transition in worlds

process (same) transition in (head) world

process (same) transition in (tail) worlds

each world will generate something completely

unrelated to what is generated in the other worlds

worlds

worlds

worlds

recursion

recursive

see below

process transition sequence in worlds

process (head) transition in worlds

process (tail) transition sequence in (above) worlds worlds

recursion outer loop on transitions

recursive

see below
worlds

170 © Graham G. Thomason 2003-2004

Process transition in world

Figure 140. Process transition in world

Housekeeping exit and enter tasks

These are the simple state occupancy changes without execution of any actions.

Figure 141. Process housekeeping task sequence in world

process h-keep task sequence in world

process (head) h-keep task in world

process (tail) h-keep task sequence in (above) world

all executed in current world

no clone needed as caller clones

recursion

elementary operation

no world

generation

recursion

There are many different exit

and enter orderings due to set-
transit nondeterminism.

These exit and enter sequences,

as housekeeping (simple

exit/enter occupancy setting)
exercises, will all produce the

same effect, since ordering has

no consequence. So we may as
well just do any one sequence

(the first).

 Only when actions and meta-

events are executed do
differences appear.

To correspond precisely to the

sequencing described in

section 6, meta-event exit

sequences and upon-exit

sequences should alternate

hierarchical level by

hierarchical level but in

Release 1.06 are simply as

shown. Similar ordering

applies to enter sequences.

process transition in world

worlds

worlds

worlds

worlds

worlds

process first housekeeping exit sequence in (cloned) world

process first housekeeping enter sequence in (cloned) world

process meta-event exit sequences in (this) world

process upon exit action sequences in worlds

process transition action sequence in worlds

process meta-event enter sequences in worlds

process upon enter action sequences in worlds

prepare all "tasks" (from the exit and enter tree)

world clone world (and apply subsequent operations to it)

© Graham G. Thomason 2003-2004 171

Process meta-event sequences in worlds: Algorithm A - outer loop on worlds

Figure 142. Process meta-event sequences in worlds (A)

Process meta-event sequences in worlds: Algorithm B - outer loop on meta-event sequences

Figure 143. Process meta-event sequences in worlds (B)

We opt for algorithm B (see the dependency analysis below in this section).

Process meta-event sequences in world

[Required by the algorithm A approach to process meta-event sequences in worlds]

Figure 144. Process meta-event sequences in world

Process meta-event sequences in world

process (head) meta-event sequence in world

process (tail) meta-event sequences in (same) world worlds

worlds

recursive

see below

worlds

recursion

process meta-event sequences in worlds

process meta-event sequences in (head) world

process meta-event sequences in (tail) worlds

worlds

worlds

worlds

recursion outer loop on worlds

recursive

see below

process meta-event sequences in worlds

 process (head) meta-event sequence in worlds

process (tail) meta-event sequences in (same) worlds

worlds

worlds

worlds

recursion outer loop on meta-event sequences

recursive

see below

172 © Graham G. Thomason 2003-2004

Process meta-event sequence in worlds - Algorithm A - outer loop on worlds

Figure 145. Process meta-event sequence in worlds (A)

Process meta-event sequence in worlds - Algorithm B outer loop on meta-events

Figure 146. Process meta-event sequence in worlds (B)

Process meta-event sequence in world

Figure 147. Process meta-event sequence in world

process meta-event sequence in world

process (head) meta-event in world

process (tail) meta-event sequence in (above) worlds

worlds

worlds

indirect recursion
indirect recursion - see above

see below

process meta-event sequence in worlds

process meta-event sequence in (head) world

process meta-event sequence in (tail) worlds

worlds

worlds

worlds

recursion outer loop on worlds

recursive

see above

Process meta-event sequence in worlds

process (head) meta-event in worlds

process (tail) meta-event sequence in (above) worlds

worlds

worlds

recursion outer loop on meta-events

recursive

see below

© Graham G. Thomason 2003-2004 173

Process action in world (1): Clone-world action type

Figure 148. Clone-world action type

The clone world action type applies to assignments (including function calls).

Process action in world (2): Delegated action types

Figure 149. Delegated action types

Delegated action types are:

 fire event

 conditional action

These action types do not clone directly.

7.6.3 Task generalisation

Generalisation is possible across different kinds of task as long as such tasks are wrapped up

in a similar way, with a tag to identify the actual task when it comes to be processed at a low

level.

We have the following routines and their generalisation, with the following classification of

world mode:

 serial mode, as previously explained

Process action in world

process event in world worlds

action=

event

process action in world worlds

conditional action

condition
true?

return input world world

indirect recursion

no

yes

could be local or delegated action

Process action in world

(cloned) world

clone world

actual processing of action (in clone)

174 © Graham G. Thomason 2003-2004

 parallel mode, as previously explained

 specific mode, where one task is to be processed in one given world, i.e. we are at a client

handler level for processing the task. The task will be identified (as an event, transition,

action etc.), and handled accordingly. Responsibility is taken for cloning if any changes

are to be made to the world, and the changed world (or indirectly generated worlds) are

the output. If cloning responsibility has been taken care of by the caller, the routine is free

to make alterations in the world given. This mode is used for making direct state

occupancy changes.

Specific Generalized

D
ir

ec
t

C
lo

n
in

g

W
o

rl
d

m
o

d
e

process event in world specific client handler no specific

process event in worlds process task in worlds no parallel

process transition seq in world process task seq in world no serial

process transition seqs in world process task seqs in world no parallel

process transition seq in worlds

process task seq in worlds alg A/B

 Alg. A - outer loop over worlds

 Alg. B - outer loop over tasks

no

no

parallel

serial

process transition in world specific client handler yes specific

process hkeep exit seqs in world

process hkeep enter seqs in world

process task seqs in world no

parallel

process hkeep exit task in world

process hkeep enter task in world

specific client handler

no

specific

process meta-event seqs in worlds process task seqs in worlds alg A/B

 Alg. A - outer loop over worlds

 Alg. B - outer loop over seqs

no

no

parallel

parallel

process meta-event seqs in world process task seqs in world no parallel

process meta-event seq in worlds process task seq in worlds alg A/B

 Alg. A - outer loop over worlds

 Alg. B - outer loop over tasks

no

no

parallel

serial

process meta-event seq in world process task seq in world no serial

process meta-event in world specific client handler no specific

process action seqs in world process task seqs in world no parallel

process action seq in worlds process task seqs in worlds no parallel

process action seq in world process task seq in world no serial

process action in world specific client handler some specific

Table 12. Task generalisation

© Graham G. Thomason 2003-2004 175

The actions mentioned in the above table could be upon-exit actions, on-transition actions, or

upon-enter actions. Some actions clone a world directly (e.g. an assignment); others may

cause world generation indirectly (e.g. firing an event).

Having generalized, we regard the general routines as a task-processing server, serving client

handlers that handle single tasks in a single world.

A dependency analysis shows that if we select the algorithm-B options, a minimal set of

processing routines will suffice. Shaded routines are not required.

Figure 150. Task processing dependency diagram

event in worlds

event in world

task sequences in world

task sequences in world - options

task sequences in worlds algA task sequences in worlds algB

task sequences in worlds - options

task sequence in worlds - options

task sequence in worlds algA task sequence in worlds algB

task in worlds

task in world (CLIENT HANDLER)

task sequence in world

 process event as task in worlds, see below

wrap the world in a list or

or

(task sequences in worlds)

on a transition

or

client handler. Gives rise to a set of

transition (=task) sequences.

176 © Graham G. Thomason 2003-2004

7.6.4 Further descriptions of task processing routines

These descriptions complement those of the previous section, including some additional

world generation diagrams and actual STATECRUNCHER PROLOG-code (which is remarkably

compact for the functionality it gives).

Various equivalent names are used in the descriptions that precede and follow, e.g.

 Process task sequences in worlds a descriptive name

 process_task_seqs_in_worlds a pseudo-code name

 me_process_task_seqs_in_worlds_algB a specific actual code example

The prefix “me_” is the machine engine module naming prefix.

The hierarchy of routines derived from the dependency diagram (see previous section) can be

represented as follows.

Figure 151. Hierarchy of transition-processing routines

Process task sequences in worlds

In Algorithm A we turn the Process task sequences in worlds call into Process task

sequences in world calls. This algorithm was not chosen.

In Algorithm B we turn the Process task sequences in worlds call into Process task

sequence in worlds calls. This algorithm was chosen.

process_task_in_worlds

(one task in many worlds)

process_task_in_world (client handler)

(one task in one world)

process_task_seq_in_worlds

(one task sequence in many worlds)

process_task_seqs_in_worlds

(many task sequences in many worlds)

 potential recursion, e.g. when a

 transition task fires a new event

© Graham G. Thomason 2003-2004 177

PROLOG code for process task sequences in worlds (Algorithm B)

Process task sequence in worlds

There are two possible approaches, which we discuss and illustrate in figures following:

1. Algorithm A: Outer loop over worlds, inner loop over tasks, requiring an intermediate

routine process_task_seq_in_world

2. Algorithm B: Outer loop over tasks, inner loop over worlds, requiring an intermediate

routine process_task_in_worlds

The second of these options is probably better in general, as it probably involves merging of

one small worldbag with one large worldbag. (We use the term worldbag for consistency with

the STATECRUNCHER code - during processing it is often a bag, but to the user it is always a

set, because the user is never confronted with intermediate results). The smaller worldbag is

the result of processing just one task since the previous world merge.

We have the option of processing the worlds in head first or tail first order, though in

Algorithm B this is determined at a lower level, in process_task_in_worlds. The diagrams

following illustrate world generation:

 according to algorithm A, with head world first

 according to algorithm B, with head world first

 according to algorithm B, with tail worlds first.

Process task sequences in worlds

/*---*/

/* no sequences, OUTWORLDS:=INWORLDS */

/*---*/

me_process_task_seqs_in_worlds_algB([],INWORLDS,INWORLDS):-

 me_set_world_and_bag(INWORLDS),

 !.

/*---*/

/* one sequence, many worlds */

/*---*/

me_process_task_seqs_in_worlds_algB([TSEQ],INWORLDS,OUTWORLDS):-

 !, /* this must be the ONLY way to handle one sequence, many worlds */

 me_process_task_seq_in_worlds(TSEQ, INWORLDS,OUTWORLDS),

 me_set_world_and_bag(OUTWORLDS),

 !.

/*---*/

/* many sequences, many worlds */

/*---*/

me_process_task_seqs_in_worlds_algB([H_TSEQ|T_TSEQS],INWORLDS,OUTWORLDS):-

 me_process_task_seqs_in_worlds_algB(T_TSEQS,INWORLDS,OUTWORLDS1),

 me_process_task_seq_in_worlds(H_TSEQ,INWORLDS,OUTWORLDS2),

/*care,INWORLDS!*/

 me_merge_worlds(OUTWORLDS1,OUTWORLDS2,OUTWORLDS),

 me_set_world_and_bag(OUTWORLDS),

 !.

178 © Graham G. Thomason 2003-2004

Figure 152. Process task sequence in worlds - Alg. A with head world first

Figure 153. Process task sequence in worlds - Alg. B with head world first

initial
worlds

w1 w2 w3

tasks: 1 2 3

w1

1

w2

w3

2

w111

w112

w122

1 2 3 similarly

 w11

w12

w13

 w111

w112

w113

 w121

w122

 w131

w132

w111

w112

w122

3
 w1111

w1112

w1113

 w1211

w1212

w1111

w1112

w1212

 w1221

w1223

w1227

w1111

w1112

w1212

w1223

w1227

 w2111

w2522

w2742

w1111

w1112

w1212

w1223

w1227

w2522

w2742

 w3111

w3122

w1111

w1112

w1212

w1223

w1227

w2522

w2742

w3111
1 2 3 similarly

Note head first

worlds 1 and 2

are merged first

initial
worlds

w1 w2 w3

tasks: 1 2 3

w1

1

2

w11

w12

w13

w2

 w21

w22

w11

w12

w22

w3

w11

w12

w111

w112

w113

w121

w122

w123

w111

w112

w122

w221

w222

w223

w111

3

w1111

w1112

w1113

w1121

w1122

w1123

w1111

w1112

w1122

w1221

w1222

w1223

w1111

w1112

w1122

w122

w112

w31

w32

w33

w22

Note head first -

worlds 1 and 2

are merged first

© Graham G. Thomason 2003-2004 179

Figure 154. Process task sequence in worlds - Alg. B with tail worlds first

N.B. The example diagrams taken do not correspond to the same state behaviour as this

would not be practical in the limited diagram width.

initial
worlds

w1 w2 w3

tasks

1 2 3

w1

1

2

w11

w12

w13

w2

 w21

w22

w21

w22

w32 w3

w111

w112

w113

w121

w122

w123

 w121

w122

w221

w221

w222

w223

3

w1111

w1112

w1113

w1121

w1122

w1123

 w1121

w1122

w1221

w1221

w1222

w1223

w1111

w1112

w1122

w122

w112

w31

w32

w33

w11

w12

w111

Note tail first -

world 1 is

merged in last

w22

180 © Graham G. Thomason 2003-2004

The Process task sequence in worlds Algorithm B routine processes the sequence of tasks in

each world in the worldbag. The first task is processed in the worldbag which obtains on

calling the routine. Subsequent tasks are processed in the subsequent worldbags resulting

from processing the previous task.

PROLOG code for process task sequence in worlds
1

1
 By convention in the implementation, the tasks are in tail first order (head of list is the last task).

Process task sequence in worlds

/*---*/

/* no tasks, OUTWORLDS:=INWORLDS */

/*---*/

me_process_task_seq_in_worlds_algB([],INWORLDS,INWORLDS):-

 me_set_world_and_bag(INWORLDS),

 !.

/*---*/

/* one task, many worlds */

/*---*/

me_process_task_seq_in_worlds_algB([TASK],INWORLDS,OUTWORLDS):-

 !, /* this must be the ONLY way to handle one task, many worlds */

 me_process_task_in_worlds(TASK, INWORLDS,OUTWORLDS),

 me_set_world_and_bag(OUTWORLDS),

 !.

/*---*/

/* many tasks, many worlds */

/*---*/

me_process_task_seq_in_worlds_algB([H_TASK|T_TASKS],INWORLDS,OUTWORLDS):-

 me_process_task_seq_in_worlds_algB(T_TASKS,INWORLDS,OUTWORLDS1),

 me_process_task_in_worlds(H_TASK,OUTWORLDS1,OUTWORLDS2),

 me_merge_worlds(OUTWORLDS2,OUTWORLDS),

 me_set_world_and_bag(OUTWORLDS),

 !.

© Graham G. Thomason 2003-2004 181

Process task in worlds

This routine calls Process task in world, which is regarded as a client routine to the task

processing service. Client Process task in world routines will be written for event

processing, transition processing, action processing etc.

It is seen that all client handlers are of signature

me_process_task_in_world(TASK,WORLD,OUTWORLDS)

and that by conforming to this, routines which really are hardly aware of nondeterminism are

embeddable in a scheme for handling highly nondeterministic tasks.

PROLOG code for process task in worlds

7.6.5 Set-transit nondeterminism; permutable sequences and trees

We are nearly ready to review the individual task client handlers. But first we illustrate exit

and enter trees, and task permutations derived from them, as needed in Process transition in

world, where we process set nondeterminism. In this section, we will denote sequences using

square brackets, for compatibility with illustrative PROLOG examples.

The following model gives rise to set-transit nondeterminism:

Process task in worlds

/*--------------------*/

/* no worlds */

/*--------------------*/

me_process_task_in_worlds(_,[],[]):-

 !.

/*--------------------*/

/* one world */

/*--------------------*/

me_process_task_in_worlds(TASK,[WORLD],OUTWORLDS):-

 !, /* this must be the ONLY way to handle one task, one world */

 da_write_world(WORLD),

 me_process_task_in_world(TASK,WORLD,OUTWORLDS), /* calls client handler */

 me_set_world_and_bag(OUTWORLDS),

 !.

/*--------------------*/

/* many worlds */

/*--------------------*/

me_process_task_in_worlds(TASK,[H_INWORLD|T_INWORLDS],OUTWORLDS):-

 me_process_task_in_worlds(TASK,T_INWORLDS,OUTWORLDS1),

 da_write_world(H_INWORLD),

 me_process_task_in_world(TASK,H_INWORLD,OUTWORLDS2),/*calls client handler*/

 me_merge_worlds(OUTWORLDS1,OUTWORLDS2,OUTWORLDS),

 me_set_world_and_bag(OUTWORLDS),

 !.

182 © Graham G. Thomason 2003-2004

Figure 155. Effect of set-transit nondeterminism (cf. Figure 113)

We ignore the fork on transitions α
10

 and α
11

, and any races with any others (α
1
 - α

9
), since

these will have been abstracted away by the time one transition is to be processed in one

world. We take the exiting part of α
10

 as our example. In general an exit tree is produced, in

our example as follows:

Figure 156. Exit tree

Each node will give rise to a permutation of its branches. The exit sequences are equivalent to

the paths (from right to left) through the diagram below.

exit ba

exit baaa

exit bab exit baa

exit baab exit baba exit babb

exit baaaa exit baaba exit babaa exit babba exit baaab exit baabb exit babab exit babbb

a1

 b

s

bb

bc

α
10
{v2=v2*10+1;}

α
11
{v2=v2*10+2;}

ω_ba

ba

baaab

baa

baaaa

baaa

baabb baaba

baab

babab

bab

babaa

baba

babbb babba

babb

(t)

Option: an extra

cluster layer is

introduced in a variant

model. This layer is

not considered present

in the descriptions.

α
1
, α

2
, α

3
, α

4
, α

5
, α

6
, α

7
, α

8
, α

9
 various states and transitions:

© Graham G. Thomason 2003-2004 183

Figure 157. Exit sequences

Notice that we do not permute all lowest-level exit tasks in one big permutation. We permute

on a level by level basis, retaining orderings imposed by a previous level. So we do not

permute the lower level exit tasks from one set member with any exit tasks of a different

member. The total number of paths through the above figure is 2
7
 = 128 (being less than the

number of permutations of all 8 leafstates to be exited, which is 8! = 40320).

The above tree happens to be a binary one, because our sets have just two members, but that

is of course not the case in general. If there had been an intervening cluster in the exit tree, it

would not give rise to any extra permutations, as it would be at a node with one branch, and

would not be marked for permutation. Such a cluster is shown in dotted outline in Figure 155.

Permutation handling

Permutable sequences need to be able to represent parts of the sequence being permuted and

parts not. This must apply across different nesting levels. Two elements,

[A,B]

may form a permutable subsequence, so requiring expansion into

[A,B] and [B,A].

One of these elements, say A, may itself be a subsequence, say [a1,a2], that is to be

permuted. The other may be a subsequence [b1,b2] that is not to be permuted. The

required generated subsequences from

[A,B] = [[a1,a2],[b1,b2]]

if flattened are then

[a1,a2,b1,b2], [a2,a1,b1,b2], [b1,b2,a1,a2], [b1,b2,a2,a1].

It may be that [b1,b2] should be treated as a single element, so that we must generate

[a1,a2,[b1,b2]], [a2,a1,[b1,b2]], [[b1,b2],a1,a2], [[b1,b2],a2,a1].

ba

bab

baba

babb

babb

babba

babbb

baba

babba

babbb

babaa

babab

baa

baaa

baab

baaaa

baaab

baab

baaba

baabb

baaa

babaa

babab

baa

baaa

baab

baab

baaba

baabb

baaa

baaba

baabb

baaaa

baaab

bab

baba

babb

babaa

babab

babb

babba

babbb

baba

baaaa

baaab

baaab

baaaa

baabb

baabb

babab

babaa

babbb

babba

baaba

baabb

baaaa

baaab

babbb

babba

babab

babaa

babaa

babab

baabb

baaba

baaaa

baaab

babba

babbb

babba

babbb

babaa

babab

baaba

baabb

baaaa

baaab

babbb

babba

babab

babaa

baabb

baaba

baaab

baaaa

184 © Graham G. Thomason 2003-2004

In general, we will need control over what is to be permuted, and what is not, and what is to

be flattened and what is not. Certain elements of a sequence are likely to be nested lists in

themselves, and as such they must neither be permuted nor flattened.

We can represent all our requirements in a PROLOG-compatible way using the following

indicators in a list

 leading element $pm_y (‘permute-yes’) means generate all permutations of this list. The

$ is to avoid clashes with user symbols, and in PROLOG code this needs quoting,

'$pm_y'. Each permutation generated will substitute $pm_d (‘permute-done’) for

$pm_y. Also, all sublists will be walked for further permutation indications. The $pm_d

's can be removed later. A nonleading $pm_y element is not recognized as an indicator.

 for any other leading element, the list will be not be permuted at this level, but it will be

walked looking for permutations at lower levels.

When a permuted list is flattened, that all sublists starting with $pm_d are raised up a level.

If the user wishes to effect a permutation on certain chunks of a list monolithically (but with

possible sublist permutations as well), then the user will need to wrap the chunks as sublists.

Automatic unwrapping of such chunks can be performed if the user supplies an extra $pm_d

element at the head of such chunks.

The following examples show this in action. They show sequences wrapped as permutations.

Wrapped sequence Equivalent straight sequences after flattening

[a,[b,c]] [a,[b,c]]

no permutation because no indicator

['$pm_y',a,b,c]

[a,b,c]

[a,c,b]

[b,a,c]

[b,c,a]

[c,a,b]

[c,b,a]

[a,[b,c],['$pm_y',d,

 ['$pm_y',e1,e2]],f]

two independent permutations

[a,[b,c],d,e1,e2,f]

[a,[b,c],d,e2,e1,f]

[a,[b,c],e1,e2,d,f]

[a,[b,c],e2,e1,d,f]

[ba,['$pm_y',BAA,BAB]],

where

 BAA=['$pm_d',baa,['$pm_y',BAAA,BAAB]],

 BAB='BAB',

 BAAA=['$pm_d',baaa,['$pm_y',baaaa,baaab]],

 BAAB=['$pm_d',baab,['$pm_y',baaba,baabb]].

Note the user of $pm_d in the input.

This is the set-transit example, but simplified by condensing all bab... items into one symbol, BAB.

© Graham G. Thomason 2003-2004 185

[ba,baa,baaa,baaaa,baaab,baab,baaba,baabb,BAB]

[ba,baa,baaa,baaaa,baaab,baab,baabb,baaba,BAB]

[ba,baa,baaa,baaab,baaaa,baab,baaba,baabb,BAB]

[ba,baa,baaa,baaab,baaaa,baab,baabb,baaba,BAB]

[ba,baa,baab,baaba,baabb,baaa,baaaa,baaab,BAB]

[ba,baa,baab,baaba,baabb,baaa,baaab,baaaa,BAB]

[ba,baa,baab,baabb,baaba,baaa,baaaa,baaab,BAB]

[ba,baa,baab,baabb,baaba,baaa,baaab,baaaa,BAB]

[ba,BAB,baa,baaa,baaaa,baaab,baab,baaba,baabb]

[ba,BAB,baa,baaa,baaaa,baaab,baab,baabb,baaba]

[ba,BAB,baa,baaa,baaab,baaaa,baab,baaba,baabb]

[ba,BAB,baa,baaa,baaab,baaaa,baab,baabb,baaba]

[ba,BAB,baa,baab,baaba,baabb,baaa,baaaa,baaab]

[ba,BAB,baa,baab,baaba,baabb,baaa,baaab,baaaa]

[ba,BAB,baa,baab,baabb,baaba,baaa,baaaa,baaab]

[ba,BAB,baa,baab,baabb,baaba,baaa,baaab,baaaa]

X=[ba,['$pm_y',BAA,BAB]],

 BAA=['$pm_d',baa,['$pm_y',BAAA,BAAB]],

 BAB=['$pm_d',bab,['$pm_y',BABA,BABB]],

 BAAA=['$pm_d',baaa,['$pm_y',baaaa,baaab]],

 BAAB=['$pm_d',baab,['$pm_y',baaba,baabb]],

 BABA=['$pm_d',baba,['$pm_y',babaa,babab]],

 BABB=['$pm_d',babb,['$pm_y',babba,babbb]].

This is the set-transit example above.

[ba,baa,baaa,baaaa,baaab,baab,baaba,baabb,bab,baba,babaa,babab,babb,babba,babbb]

[ba,baa,baaa,baaaa,baaab,baab,baaba,baabb,bab,baba,babaa,babab,babb,babbb,babba]

[ba,baa,baaa,baaaa,baaab,baab,baaba,baabb,bab,baba,babab,babaa,babb,babba,babbb]

... (128 permutations)
[ba,bab,babb,babbb,babba,baba,babab,babaa,baa,baab,baaba,baabb,baaa,baaab,baaaa]

[ba,bab,babb,babbb,babba,baba,babab,babaa,baa,baab,baabb,baaba,baaa,baaaa,baaab]

[ba,bab,babb,babbb,babba,baba,babab,babaa,baa,baab,baabb,baaba,baaa,baaab,baaaa]

Table 13. Permutation generation

186 © Graham G. Thomason 2003-2004

7.6.6 Review of tasks

This section is a review of the various tasks. The following figure shows what tasks exist.

Figure 158. Breakdown of tasks

7.6.6.1 Process task in world

Here we come to the innermost part of the hierarchy of sets and sequences and worlds, where

we must process according to the specific kind of task involved. In C terms, this is just a

switch statement to route control to the right lower-level routine. In C++ terms this might be a

task

action

internal
housekeeping

expression
(includes assignment)

conditional action

transition

enter state
housekeeping

exit state

housekeeping

meta-event fire enter
state event

fire exit

state event

 event

(fired) event

transition

generic
level

detail
level

implementation
level

fine detail
level

action on a
transition

upon enter
action

upon exit

action

© Graham G. Thomason 2003-2004 187

question of matching a prototype function according to a parameter type. In PROLOG terms,

it is a question of matching a call with a predicate using parameter unification to obtain the

right predicate for the task in question.

Figure 159. Process_task_in_world

We have seen the general nature of these (Figure 140, Figure 141, Figure 148 and Figure

149). In this section, we consider the tasks in more detail, especially the processing of a

transition, where set-nondeterminism is handled.

7.6.6.2 Process event

An outline was given in Figure 134. Transitions for the supplied world only are selected

according to the algorithm given in section 7.1. This gives rise to a set of transition

sequences. Note that this is the case whether we opt for hierarchical prioritisation or

hierarchical fork nondeterminism, except that the latter case generally produces larger sets

and longer sequences. The resulting set of transition sequences can be processed by

process_task_seqs_in_worlds.

Figure 160. Review of process event

We do not pre-clone for any of these transition sequences. This routine will perform all

processing needed departing from a given world (which will be left intact, eventually being

cloned at a lower level). We do not need to think about intermediate processing, such as

process a transition sequence, as all has been taken care of in our hierarchy of task processing

routines.

process_event

In world supplied wi

Generate the set of transition sequences on this event, Texec

Wrap the world as a list (with this one element)

Process set of transition sequences using process_task_seqs_in_worlds

Process_task_in_world

Given an input world and kind of task, switch on kind of task

Case transition: call process_transition

Case fired event: call process_event

Case expression(incl. assignment): call process_expression

Case conditional: call process_conditional_action

Case enter-state housekeeping: call process_enter_state_housekeeping

Case exit-state housekeeping: call process_exit_state_housekeeping

188 © Graham G. Thomason 2003-2004

7.6.6.3 Process transition

The structure of this task was shown in Figure 140. Transitions are processed according to the

‘after-landing’ principles and sequencing as already discussed.

A transition can alter state occupancies, and so clones the supplied world. Through the

multiple calls to this routine as a result of event processing, many new worlds will be created

(and merged). Even if there is no nondeterminism, one new world will be generated, because

this routine does not know how much nondeterminism is involved, if any.

We considered transition processing in more detail, covering especially set nondeterminism.

Set nondeterminism involves entering (or exiting) the members of a set in different orderings.

Unlike fork nondeterminism and race nondeterminism, set-nondeterminism permutations are

generated during transition processing, not transition selection. From the transition, an enter

tree and an exit tree are derived. From these trees, all forms of set nondeterminism are derived

(set transit/action and set meta-event nondeterminism).

7.6.6.4 Process expression

A clone takes place (Figure 148). Expressions are evaluated in a specified scope by a standard

call to the evaluator. An assignment is regarded as an expression including the assignment

operator ‘=’.

7.6.6.5 Process conditional action

This simply consists of evaluating the condition and recursively calling the relevant nested

action (Figure 149).

7.6.6.6 Process enter state housekeeping and Process exit state housekeeping

An outline was given in Figure 141. The routines changes state occupancies and cluster

history settings in the current world. No clone of the world is needed as the transition

processing routine takes responsibility for it. Since all consequences of state changes have

been separated out (on-exit actions etc.), the order in which housekeeping changes are made is

irrelevant. Only one of the many orderings generated by permutation of the enter/exit trees is

used by the transition processing routine when it calls this routine.

© Graham G. Thomason 2003-2004 189

7.6.7 Summary by example of event processing

Figure 161. Example of event processing

recursion
α10actions etc

 α10actions etc.

 α10actions etc.

 α5actions etc.

 α5actions etc.

w3

transition sequences

α
6
,α

10
 α

10
,α

6
 α

6
,α

7
 α

7
,α

6

similarly

similarly

α

recursion

initial

worlds

α5
,α

10

α10
,α

5

transition sequences

α
6
,α

10
 α

10
,α

6

w1

w2

α
5

α
10

α5 actions /
 task

sequences

α
10

α
10

 α10 actions etc.
α

10

α
5

α
5

α

α

w1121

w1122

w2111

w2211

w2222

w3111

w3334

w3335

w3333

w2211

w1111

w1112

w111

w112

w113

w1111 w1111 w1111

w1121 w1121 w1121

w1122 w1122 w1122

w1131 w1131 w1131

w121

w122

w1211

w1212

w1221

w1222

w1222

w1222

w1212 w1212 w1212

w1211

w2211

w3334

w3333

w1111

w1121

w1122

w1131

w1212

w1121

w1122

transition sequences

α
5
,α

10
 α

10
,α

5

w11

w12

w1131

w1132

w1111

We process event α in 3 worlds. The

transition sequences per world to process are:

 w1: α
5
,α

10
 α

10
,α

5

 w2α
6
,α

10
 α

10
,α

6

 w3α
6
,α

10
 α

10
,α

6
 α

6
,α

7
 α

7
,α

6

190 © Graham G. Thomason 2003-2004

8. The STATECRUNCHER command

language

This topic is discussed in detail in [StCrPrimer]. Here, we give the inventory of all

STATECRUNCHER commands. The most important point about the commands is that they

enable a primer (a neighbouring program) to communicate with STATECRUNCHER in various

ways, the combination potentially providing very sophisticated test generation algorithms.

The table below shows abbreviated commands as well as unabbreviated ones. Where

abbreviated ones are not available, the arrow (→) refers the reader to the unabbreviated one.

Syntax of the descriptions: An optional argument to a command is preceded by a question

mark, (?). Normal courier indicates a literal item; italics indicate a non-literal or

explanation. A choice is indicated by a vertical bar (|).

The important commands are those that allow setting of state occupancies and variables and

traces. These make a state-space exploration algorithm possible. These are

 WORLD STATEKIND STATENAME MPATH = OCCUPANCY HISTORY

 WORLD VAR VARKIND VARIABLENAME MPATH = VALUE

 WORLD TRACE = TRACE

These commands are in STATECRUNCHER's own output format.

Abbrev.

Command

Command

 showing typical example and/or typical output

Main processing: high priority black box testing commands

pe ... process event EVENT ?p=PARAMETERS ?t=EXPECTEDTRACE

 pe gamma p=[4,xy] (statechart scope assumed)

 pe [alpha,[sc]] p=1 t=[2,4]

 pe [alpha,[sc]]

Parameters can also be supplied in STATECRUNCHER internal form, e.g.

 p=[[ex_co,int,4],[ex_str,[120,121]]]

Worlds in direct violation of EXPECTEDTRACE will be killed, but overtrace and

undertrace are tolerated.

gt get trace

 7 TRACE =[1,2]

© Graham G. Thomason 2003-2004 191

ct clear trace

 (this also causes a world merge)

Main processing: medium priority commands

gae get all events

(whether transitionable or not; not world-related)

 EVENT [theta2, [z3,z,s,sc]] [pco1,[z,s,sc]]

gate get all transitionable events

 (union from all worlds; no worlds shown)

 TREV [[delta,[sc]],0,[],[]]

 TREV [[gamma,[sc]],3,

 [[r,0,100000],[r,0,100000],[r,0,100000]],[]]

 TREV [[gamma,[sc]],1,[[r,0,100000]],[]]

 TREV [[gamma,[sc]],2,

 [[r,0,100000],[r,0,100000]],[]]

 TREV [[alpha,[sc]],0,[],[]]

gav get all variables

Gets the value-ranges, not the current value per world

 VAR INTEGER bool1 [sc] RANGE=[0, 1]

 VAR INTEGER col1 [sc] ENUM=[0, 7, 8, 4, 8]

 VAR INTEGER p1 [b2, b, s, sc] RANGE=[0, 9]

 VAR STRING str [sc]

gaw get all worlds

Gets the current worlds

 [2,7,8]

gc get config

 2 statechart sc

 2 cluster a [s, sc] =OCC [] **

 2 leafstate a1 [a, s, sc] =OCC [] **

 2 cluster a2 [a, s, sc] =VAC []

 2 VAR INTEGER bool1 [sc] =1

 2 VAR INTEGER col1 [sc] =8

 2 VAR INTEGER p1 [b2, b, s, sc] =unknown

 2 VAR STRING p5 [b2, b, s, sc] =unknown

 2 VAR STRING str [sc] =[98] =b

 2 TRACE =[]

 2 TREV [[zeta,[s,sc]],

 4,[[r,0,9],[e,0,7,8,4,8],[r,0,1],[<string>]],

 [pco1,[z3,z,s,sc]]]

 outworlds=[2,4]

 number of outworlds=2

192 © Graham G. Thomason 2003-2004

gst get symbol table

 SYMB delta [sc] eventdecl []

 XREF leafstate b1:[b, s, sc]

 XREF leafstate z1:[z, s, sc]

kill ... kill WORLD | WORLDS

 kill 2

 kill [2,7,10]

→ WORLD TRACE = TRACE

 input is as the output of get config

 this does not cause a world merge

(we will probably issue this kind of command several times before

requiring a world merge)

→ WORLD STATEKIND STATENAME MPATH = OCCUPANCY HISTORY

 input is as the output of get config

 this does not cause a world merge (we will probably change more)

→ WORLD VAR VARKIND VARIABLENAME MPATH = VALUE

 input is as the output of get config

 this does not cause a world merge (c.f. WORLD TRACE = TRACE)

cnw create new world

 Creates a new world in its default state

 - needed before writing variable/state/trace values to a new world

 34 (the new world number is returned)

mw merge worlds

 (useful when all trace/state/variable changes have been made)

gpt get processing time

(timing data is set on processing an event)

 exec time=00h 00m 00s 210ms

gd get date

(get date and time)

 DATE: 24 Apr 2003 16:01:40/649

Containment of combinatorial explosion: low priority commands

These commands limit the number of permutations used in set transit

nondeterminism and race nondeterminism.

nst no set tran

lst low set tran

mst medium set tran

hst high set tran

nr no race

lr low race

mr medium race

hr high race

© Graham G. Thomason 2003-2004 193

Compilation, loading, start-up, and finish: very low priority

root ... root ROOTDIRECTORY

Sets the root directory to be used with FILENAMEs

mm mode modelnames

Sets compilation etc. to work with model names. The directory structure

must be set up correctly.

mf mode filenames

(Default). Sets compilation etc. to work with file names. Use the root

command to set the directory (can be null, then give a full path here).

cp ... compile FILENAME | MODELNAME

(also loads machine, and enters it (as of Rel 1.05))

ld ... load FILENAME | MODELNAME

(does not enter machine)

run ... run FILENAME | MODELNAME

=Load and enter machine

nm enter machine

Machine enters default state

xm exit machine

Leaves a pristine machine ready to be entered

um unload machine

 Removes data and object code

rm reset machine

 =exit and enter

quit quit

System/diagnostic: very low priority

help help

prolog prolog

 Gives a PROLOG prompt; enter a PROLOG goal

Table 14. STATECRUNCHER commands

Notes:

 By priority, we mean the priority given through the parse-attempt order, which will affect

the response time.

 If anything is to be set in non-existent world, it is created (but a model must have been

loaded)

194 © Graham G. Thomason 2003-2004

A typical sequence of commands

1. mm set model mode

2. run t5110 load model and enter machine

3. pe alpha process event alpha (in statechart scope)

4. gc get configuration

5. pe gamma process event gamma (in statechart scope)

6. gc get configuration

7. rm reset machine

8. pe gamma process event gamma (in statechart scope)

9. quit quit STATECRUNCHER

Error and warning messages are shown in the following table.

Command parsing

PR-E-020 COMMAND SYNTAX ERROR

Preliminary checks

PR-E-040 NO MODEL LOADED (compiler-produced part)

PR-E-041 NO MODEL LOADED (validator-produced part)

PR-E-042 MULTIPLE COMPILED FILES LOADED

PR-E-043 MULTIPLE VALIDATED FILES LOADED

PR-E-044 THERE WAS A COMPILATION ERROR

PR-E-045 THERE WAS A VALIDATION ERROR

PR-E-046 VERSION INCOMPATIBILITY

Command execution

PR-E-060 COMMAND EXECUTION ERROR

PR-E-061 WORLD IS NEITHER EXTANT NOR EXTINCT

Internal errors

PR-E-900 INTERNAL ERROR - NO COMMAND HANDLER

Table 15. Error and warning messages

© Graham G. Thomason 2003-2004 195

9. Using STATECRUNCHER

In this section, we briefly describe what STATECRUNCHER does from an input/output

perspective, and how a user prepares a model. Full details of operation are given in the user

manual, [StCrUser], which is designed also as a training manual.

This section also gives an indication of how STATECRUNCHER was tested.

In order to illustrate STATECRUNCHER in action in a concrete way, models of the well-known

“dining philosophers” problem are developed in this section, without and with the use of a

semaphore. These models are deterministic (though care must be taken to ensure that); we

discuss a nondeterministic model of a television component as developed in Philips Research

in section 10.

9.1 Data flow

The following figure shows the data flow in model compilation and event processing.

Primitive compilation and validation are regarded as one compilation process by the user, as

the cp command invokes the validator automatically, (unless the previous phase gives errors).

196 © Graham G. Thomason 2003-2004

Figure 162. Data flow in preparing and running models

9.2 Running STATECRUNCHER

STATECRUNCHER runs under [WinProlog] and [SWI-Prolog], and is also available as an

MS-DOS executable (using the WinProlog kernel, but the user need not know that the

implementation language is PROLOG). Details of how to install and run STATECRUNCHER

are given in [StCrManual].

As an executable, STATECRUNCHER will read commands from standard input and direct its

output to standard output. The protocol between STATECRUNCHER and the primer program is

the subject of a separate report [StCrPrimer].

Compiler

compiler listing

Validator

myfile.scl.txt

STATECRUNCHER model

source

myfile.scs.txt

object file

myfile.sco.pl

validator listing

myfile.scv.txt

console output

data file

myfile.scd.pl console output

Machine Engine

driving commands

standard input

 per world, transitionable

 events, state occupancies,

 traces etc.

standard output
input and output

will normally be

connected to a

Primer program.

Primitive

compilation

© Graham G. Thomason 2003-2004 197

The development cycle of a STATECRUNCHER model is basically to:

1. Load or run STATECRUNCHER.

2. Prepare a model using a text editor

3. Compile the model with the cp command. This includes validation and loading

and entering the initial configuration of the model.

4. If there are no errors, the model is ready to be driven with pe (process event)

commands. Otherwise, edit and re-compile.

A previously compiled model is loaded and made ready for use with the run command.

The user manual [StCrManual] serves as a detailed set of demonstration models, with model

source code supplied, and compilation and running instructions given, and output explained.

9.3 Testing of STATECRUNCHER

STATECRUNCHER has been tested throughout its course of development with module tests,

where test cases are defined by a PROLOG predicate as follows:
tc(test_name, description, predicate_under_test, pass_criterion).

The test_name is hierarchically defined, e.g. [sc,sy,decl,evns,2], so that any

subtree of all tests can be run, e.g. [sc,sy]. A test harness, described in [StCrGP4], picks

up all test cases specified and runs them, producing a test report. An example of an actual test,

testing the parse of a list of event-expressions in an event declaration such as
event ev1 , $ev2 , ev3;

is:

tc([sc,sy,decl,evns,2],syzc(sy_event_names,A,SP,R),SP=E):-

 A=' ev1 , $ev2 , ev3 ',

 E= [g_ok, [eventnames,l_ok,

 [[ex_evt_expr,[ex_id,ev1]],

 [ex_evt_expr,[[ex_monadic,mback],[ex_id,ev2]]],

 [ex_evt_expr,[ex_id,ev3]]]]].

The syzc predicate is a testing auxiliary to apply a parsing predicate under test (here

sy_event_names) to an ASCII string (the second argument, A, which is ' ev1 ,

$ev2 , ev3 ') and to produce a status-and-parse (the third argument, SP), and a rest-

string (fourth argument, R). The SP=E (E for Expected) term tests that the parse is as

expected.

There are also, as system tests, 23 models to test the compiler, 31 models to test the validator,

80 models for machine engine tests, 9 models for stress testing, and many models of practical

examples. Tests using these models are run using the [StCrGP4] test harness in the same way

as the above parsing example. In all there are well over 10,000 tests, covering general utilities

(such as permutation generation), parsing, expression evaluation, machine engine operations

etc. System testing of STATECRUNCHER is described in detail in [StCrTest], where diagrams

of the main models are given. Users report that STATECRUNCHER is reliable.

198 © Graham G. Thomason 2003-2004

9.4 The dining philosophers

In this subsection, we show how a system taken from the CSP literature can be modelled in

STATECRUNCHER. We take a fairly easy example that nevertheless illustrates the essence of

CSP and which is discussed in [Hoare] and [Schneider] (and many other books): the Dining

Philosophers. A first STATECRUNCHER model is shown, with output from a session driving it

to deadlock. A refined model shows how a semaphore can be used to prevent deadlock.

9.4.1 The dining philosophers in CSP

The description of the exercise is given in [Hoare, p77] :

In ancient times, a wealthy philanthropist endowed a College to accommodate five

eminent philosophers. Each philosopher had a room in which he could engage in his

professional activity of thinking; there was also a common dining room, furnished with a

circular table, surrounded by five chairs, each labelled by the name of the philosopher

who was to sit in it. The names of the philosophers were PHIL0 PHIL1, PHIL2, PHIL3,

PHIL4, and they were disposed in this order anticlockwise round the table. To the left of

each philosopher there was laid a golden fork, and in the centre stood a large bowl of

spaghetti, which was constantly replenished.

A philosopher was expected to spend most of his time thinking; but when he felt hungry,

he went to the dining room, sat down in his own chair, picked up his own fork on his left,

and plunged it into the spaghetti. But such is the tangled nature of spaghetti that a second

fork is required to carry it to his mouth. The philosopher therefore has also to pick up the

fork on his right. When he has finished, he would put down both his forks, get up from his

chair, and continue thinking. Of course, a fork can be used by only one philosopher at a

time. If another philosopher wants it, he just has to wait until the fork is available again.

Figure 163. The dining philosophers

PHIL2

PHIL1

PHIL0

PHIL4

PHIL3

FORK0

FORK1

FORK2

FORK3

FORK4

© Graham G. Thomason 2003-2004 199

Schneider [Schneider, p79] also describes the problem, (but with chopsticks, not forks).

Beveridge [Beveridge, p93] describes the problem, and shows a Win32 solution to the

deadlock problem using mutexes.

The description of the behaviour in CSP is as follows, where the symbol p means addition

modulo 5 and q means subtraction modulo 5.

PHILi=

 (i.SitsDownªi.PickUpFork.iªi.PicksUpFork.(ip1)ªi.PutsDo

wnFork.iª i.PutsDownFork.(ip1)ªi.GetsUpªPHILi)

FORKi=(i.PicksUpFork.iªi.PutsDownFork.iª FORKi

|(iq1).PicksUpFork.iª(iq1).PutsDownFork.iª FORKi)

PHILOS=(PHIL0 + PHIL1 + PHIL2 + PHIL3 + PHIL4)

FORKS= (FORK0 + FORK1 + FORK2 + FORK3 + FORK4)

COLLEGE=(PHILOS || FORKS)

9.4.2 The dining philosophers in STATECRUNCHER

9.4.2.1 The model of the dining philosophers in STATECRUNCHER

 Figure 164 shows how the dining philosophers can be modelled in STATECRUNCHER.

Following the figure, a description of the model is given, then a session running the model is

reproduced.

The source code of the model given later in this section. It corresponds to the figure in almost

every detail.

200 © Graham G. Thomason 2003-2004

Figure 164. The dining philosophers [model t4330]

College

Philosophers

Sitting

Satiated

Sitting

Satiated

Sitting

Satiated

Sitting

Satiated

Sitting

Satiated

P0_Stand

P1_Stand

P2_Stand

P3_Stand

P4_Stand

Lying

Fork0

Held

ByPhil0

L
0
_
P

ic
k
F

o
rk

0

L
4
_
P

ic
k
F

o
rk

0

Held

ByPhil4

L
4

_
P

u
tF

o
rk

0

L
0

_
P

u
tF

o
rk

0

Standing

Phil0

Sitting

Hungry

OneFork

Hungry

Eating

P0_Sit

P0_PickFork0

[in($$Forks.

Fork0.Lying)]

/fire

L0_PickFork0

OneFork

Satiated
P0_PutFork1

/fire

L0_PutFork1

P0_PutFork0

/fire

L0_PutFork0

P0_PickFork1

[in($$Forks.

Fork1.Lying)]

/fire

L0_PickFork1

Standing

Phil1

Sitting

Hungry

OneFork

Hungry

Eating

P1_Sit

P1_PickFork1

[in($$Forks.

Fork1.Lying)]

/fire

L1_PickFork1

OneFork

Satiated
P1_PutFork2

/fire

L1_PutFork2

P1_PutFork1
/fire

L1_PutFork1

P1_PickFork2

[in($$Forks.

Fork2.Lying)]

/fire

L1_PickFork2

Standing

Phil2

Sitting

Hungry

OneFork

Hungry

Eating

P2_Sit

P2_PickFork2

[in($$Forks.

Fork2.Lying)]

/fire

L2_PickFork2

OneFork

Satiated
P2_PutFork3

/fire

L2_PutFork3

P2_PutFork2

/fire

L2_PutFork2

P2_PickFork3

[in($$Forks.

Fork3.Lying)]

/fire

L2_PickFork3

Standing

Phil3

Sitting

Hungry

OneFork

Hungry

Eating

P3_Sit

P3_PickFork3

[in($$Forks.

Fork3.Lying)]

/fire

L3_PickFork3

OneFork

Satiated
P3_PutFork4

/fire

L3_PutFork4

P3_PutFork3

/fire

L3_PutFork3

P3_PickFork4

[in($$Forks.

Fork4.Lying)]

/fire

L3_PickFork4

Standing

Phil4

Sitting

Hungry

OneFork

Hungry

Eating

P4_Sit

P4_PickFork4

[in($$Forks.

Fork4.Lying)]

/fire

L4_PickFork4

OneFork

Satiated
P4_PutFork0

/fire

L4_PutFork0

P4_PutFork4
/fire

L4_PutFork4

P4_PickFork0

[in($$Forks.

Fork0.Lying)]

/fire

L4_PickFork0

Lying

Fork1

Held

ByPhil1

L
1
_
P

ic
k
F

o
rk

1

L
0
_
P

ic
k
F

o
rk

1

Held

ByPhil0

L
0

_
P

u
tF

o
rk

1

L
1

_
P

u
tF

o
rk

1

Lying

Fork2

Held

ByPhil2

L
2
_
P

ic
k
F

o
rk

2

L
1
_
P

ic
k
F

o
rk

2

Held

ByPhil1

L
1

_
P

u
tF

o
rk

2

L
2

_
P

u
tF

o
rk

2

Lying

Fork3

Held

ByPhil3

L
3
_
P

ic
k
F

o
rk

3

L
2
_
P

ic
k
F

o
rk

3

Held

ByPhil2

L
2

_
P

u
tF

o
rk

3

L
3

_
P

u
tF

o
rk

3

Lying

Fork4

Held

ByPhil4

L
4
_
P

ic
k
F

o
rk

4

L
3
_
P

ic
k
F

o
rk

4

Held

ByPhil3

L
3

_
P

u
tF

o
rk

4

L
4

_
P

u
tF

o
rk

4

Forks

© Graham G. Thomason 2003-2004 201

A description of the STATECRUNCHER model, with the relationship to the CSP

specification

It would have been sufficient to represent the forks as in Figure 165, but we more closely

follow the CSP model as implemented in Figure 164. In the Figure 165 model, if a fork is

being held, examination of the philosopher states will reveal who is holding it.

Figure 165. Simpler Fork Model

Now there is a fundamental difference in approach between CSP and STATECRUNCHER,

described in the following paragraphs.

 [Hoare p.65-66]

When two processes are brought together, the usual intention is that they will interact

with each other. These interactions may be regarded as events that require simultaneous

participation of both the processes involved.

CSP has an AND condition on combined processes: they must both be able to respond to the

common event. STATECRUNCHER transitionable events are transitionable if they trigger a

transition in ANY (OR) set members.

The CSP model for composition is not applicable in STATECRUNCHER. The standard model

for communication in STATECRUNCHER is the fired event, and a returned fired event, with

“after landing” semantics, so that in Figure 166, event alpha is sufficient to bring client to

state3 and server to state9.

Fork0
Lying

PickFork0

Held

PutFork0
similarly for the

other forks

202 © Graham G. Thomason 2003-2004

Figure 166. STATECRUNCHER client-server composition (1)

If the intermediate state2 is never observed by the user, and the server is regarded as

completing instantly, the following simplification can be used:

Figure 167. STATECRUNCHER client-server composition (2)

Why we need the STATECRUNCHER composition paradigm

If we allow server and client to respond to the same event, we get a race problem as follows:

(we take the Phil0 situation, but it applies to all the philosophers).

state1 state2 state3

state8 state9

gamma alpha/fire beta

beta/fire gamma

set

client

server

state1 state3

state8 state9

alpha/fire beta

beta

set

client

server

© Graham G. Thomason 2003-2004 203

Figure 168. Race problem

We see that we need a condition on P0_PickFork0, [in($$Forks.Fork0.Lying)], because

without it, Phil0 can pick up a fork that is in use by Phil4.

We also put a condition on P0_PickFork0, [in($$Philosophers.Phil0.SittingHungry)], because

it causes the event to show as transitionable only when it really is. When finding

transitionable events, STATECRUNCHER evaluates the condition on the transition.

We do not want a race between two transitions on

P0_PickFork0[in($$Philosophers.Phil0.SittingHungry)]

and

P0_PickFork0[in($$Forks.Fork0.Lying)]

This is because the transitions invalidate each other. But the current semantics will not allow

both transitions, because the condition is re-evaluated at execution time.

Without a condition on the second transition, two race orderings will be run, and one will not

execute the first transition. Two worlds will be produced, one of which is unwanted.

The solution adopted is the fired event system between client (philosopher) and server

(fork), as shown in Figure 164. That is why the fork transitions are called L0_PickFork0 etc.,

where L stands for local, as opposed to the external one initiated by the philosopher.

9.4.2.2 Session with the dining philosophers [model t4330]

We allow all the philosophers to sit down, then we have them each pick a fork. The events to

do this are shown in bold font.

?- cruncher.

SC:|: mm

SC:|: run t4330

...

Lying

Fork0

Held

ByPhil0

Sitting

Hungry

P0_PickFork0

[in($$Forks.

Fork0.Lying)]

 OneFork

Hungry

P0_PickFork0

[in($$Philosophers.

Phil1.

SittingHungry)]

Phil0

204 © Graham G. Thomason 2003-2004

SC:|: gc

2 statechart sc

2 set College [sc] = OCC [] **

2 set Philosophers [College,sc] = OCC [] **

2 cluster Phil0 [Philosophers,College,sc] = OCC [] **

2 leafstate Standing [Phil0,Philosophers,College,sc] = OCC [] **

2 leafstate SittingHungry [Phil0,Philosophers,College,sc] = VAC []

2 leafstate OneForkHungry [Phil0,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil0,Philosophers,College,sc] = VAC []

2 leafstate OneForkSatiated [Phil0,Philosophers,College,sc] = VAC []

2 leafstate SittingSatiated [Phil0,Philosophers,College,sc] = VAC []

2 cluster Phil1 [Philosophers,College,sc] = OCC [] **

2 leafstate Standing [Phil1,Philosophers,College,sc] = OCC [] **

2 leafstate SittingHungry [Phil1,Philosophers,College,sc] = VAC []

2 leafstate OneForkHungry [Phil1,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil1,Philosophers,College,sc] = VAC []

2 leafstate OneForkSatiated [Phil1,Philosophers,College,sc] = VAC []

2 leafstate SittingSatiated [Phil1,Philosophers,College,sc] = VAC []

2 cluster Phil2 [Philosophers,College,sc] = OCC [] **

2 leafstate Standing [Phil2,Philosophers,College,sc] = OCC [] **

2 leafstate SittingHungry [Phil2,Philosophers,College,sc] = VAC []

2 leafstate OneForkHungry [Phil2,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil2,Philosophers,College,sc] = VAC []

2 leafstate OneForkSatiated [Phil2,Philosophers,College,sc] = VAC []

2 leafstate SittingSatiated [Phil2,Philosophers,College,sc] = VAC []

2 cluster Phil3 [Philosophers,College,sc] = OCC [] **

2 leafstate Standing [Phil3,Philosophers,College,sc] = OCC [] **

2 leafstate SittingHungry [Phil3,Philosophers,College,sc] = VAC []

2 leafstate OneForkHungry [Phil3,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil3,Philosophers,College,sc] = VAC []

2 leafstate OneForkSatiated [Phil3,Philosophers,College,sc] = VAC []

2 leafstate SittingSatiated [Phil3,Philosophers,College,sc] = VAC []

2 cluster Phil4 [Philosophers,College,sc] = OCC [] **

2 leafstate Standing [Phil4,Philosophers,College,sc] = OCC [] **

2 leafstate SittingHungry [Phil4,Philosophers,College,sc] = VAC []

2 leafstate OneForkHungry [Phil4,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil4,Philosophers,College,sc] = VAC []

2 leafstate OneForkSatiated [Phil4,Philosophers,College,sc] = VAC []

2 leafstate SittingSatiated [Phil4,Philosophers,College,sc] = VAC []

2 set Forks [College,sc] = OCC [] **

2 cluster Fork0 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork0,Forks,College,sc] = OCC [] **

2 leafstate HeldByPhil0 [Fork0,Forks,College,sc] = VAC []

2 leafstate HeldByPhil4 [Fork0,Forks,College,sc] = VAC []

2 cluster Fork1 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork1,Forks,College,sc] = OCC [] **

2 leafstate HeldByPhil1 [Fork1,Forks,College,sc] = VAC []

2 leafstate HeldByPhil0 [Fork1,Forks,College,sc] = VAC []

2 cluster Fork2 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork2,Forks,College,sc] = OCC [] **

2 leafstate HeldByPhil2 [Fork2,Forks,College,sc] = VAC []

2 leafstate HeldByPhil1 [Fork2,Forks,College,sc] = VAC []

2 cluster Fork3 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork3,Forks,College,sc] = OCC [] **

2 leafstate HeldByPhil3 [Fork3,Forks,College,sc] = VAC []

2 leafstate HeldByPhil2 [Fork3,Forks,College,sc] = VAC []

2 cluster Fork4 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork4,Forks,College,sc] = OCC [] **

2 leafstate HeldByPhil4 [Fork4,Forks,College,sc] = VAC []

2 leafstate HeldByPhil3 [Fork4,Forks,College,sc] = VAC []

2 TRACE =[]

2 TREV [[P0_Sit,[sc]],0,[],[external,[sc]]]

2 TREV [[P1_Sit,[sc]],0,[],[external,[sc]]]

2 TREV [[P2_Sit,[sc]],0,[],[external,[sc]]]

2 TREV [[P3_Sit,[sc]],0,[],[external,[sc]]]

2 TREV [[P4_Sit,[sc]],0,[],[external,[sc]]]

2 TREV [[L0_PickFork0,[sc]],0,[],[internal,[sc]]]

© Graham G. Thomason 2003-2004 205

2 TREV [[L4_PickFork0,[sc]],0,[],[internal,[sc]]]

2 TREV [[L1_PickFork1,[sc]],0,[],[internal,[sc]]]

2 TREV [[L0_PickFork1,[sc]],0,[],[internal,[sc]]]

2 TREV [[L2_PickFork2,[sc]],0,[],[internal,[sc]]]

2 TREV [[L1_PickFork2,[sc]],0,[],[internal,[sc]]]

2 TREV [[L3_PickFork3,[sc]],0,[],[internal,[sc]]]

2 TREV [[L2_PickFork3,[sc]],0,[],[internal,[sc]]]

2 TREV [[L4_PickFork4,[sc]],0,[],[internal,[sc]]]

2 TREV [[L3_PickFork4,[sc]],0,[],[internal,[sc]]]

outworlds=[2]

number of outworlds=1

SC:|: pe P0_Sit

SC:|: pe P1_Sit

SC:|: pe P2_Sit

SC:|: pe P3_Sit

SC:|: pe P4_Sit

SC:|: gc (occupied leaf states and external transitionable events only)
7 leafstate SittingHungry [Phil0,Philosophers,College,sc] = OCC [] **

7 leafstate SittingHungry [Phil1,Philosophers,College,sc] = OCC [] **

7 leafstate SittingHungry [Phil2,Philosophers,College,sc] = OCC [] **

7 leafstate SittingHungry [Phil3,Philosophers,College,sc] = OCC [] **

7 leafstate SittingHungry [Phil4,Philosophers,College,sc] = OCC [] **

7 leafstate Lying [Fork0,Forks,College,sc] = OCC [] **

7 leafstate Lying [Fork1,Forks,College,sc] = OCC [] **

7 leafstate Lying [Fork2,Forks,College,sc] = OCC [] **

7 leafstate Lying [Fork3,Forks,College,sc] = OCC [] **

7 leafstate Lying [Fork4,Forks,College,sc] = OCC [] **

7 TRACE =[]

7 TREV [[P0_PickFork0,[sc]],0,[],[external,[sc]]]

7 TREV [[P1_PickFork1,[sc]],0,[],[external,[sc]]]

7 TREV [[P2_PickFork2,[sc]],0,[],[external,[sc]]]

7 TREV [[P3_PickFork3,[sc]],0,[],[external,[sc]]]

7 TREV [[P4_PickFork4,[sc]],0,[],[external,[sc]]]

outworlds=[7]

number of outworlds=1

SC:|: pe P0_PickFork0

SC:|: gc (occupied leaf states and external transitionable events only)
9 leafstate OneForkHungry [Phil0,Philosophers,College,sc] = OCC [] **

9 leafstate SittingHungry [Phil1,Philosophers,College,sc] = OCC [] **

9 leafstate SittingHungry [Phil2,Philosophers,College,sc] = OCC [] **

9 leafstate SittingHungry [Phil3,Philosophers,College,sc] = OCC [] **

9 leafstate SittingHungry [Phil4,Philosophers,College,sc] = OCC [] **

9 leafstate HeldByPhil0 [Fork0,Forks,College,sc] = OCC [] **

9 leafstate Lying [Fork1,Forks,College,sc] = OCC [] **

9 leafstate Lying [Fork2,Forks,College,sc] = OCC [] **

9 leafstate Lying [Fork3,Forks,College,sc] = OCC [] **

9 leafstate Lying [Fork4,Forks,College,sc] = OCC [] **

9 TRACE =[]

9 TREV [[P0_PickFork1,[sc]],0,[],[external,[sc]]]

9 TREV [[P1_PickFork1,[sc]],0,[],[external,[sc]]]

9 TREV [[P2_PickFork2,[sc]],0,[],[external,[sc]]]

9 TREV [[P3_PickFork3,[sc]],0,[],[external,[sc]]]

9 TREV [[P4_PickFork4,[sc]],0,[],[external,[sc]]]

outworlds=[9]

number of outworlds=1

SC:|: pe P1_PickFork1

SC:|: pe P2_PickFork2

SC:|: pe P3_PickFork3

SC:|: pe P4_PickFork4

SC:|: gc (unabridged)

206 © Graham G. Thomason 2003-2004

17 statechart sc

17 set College [sc] = OCC [] **

17 set Philosophers [College,sc] = OCC [] **

17 cluster Phil0 [Philosophers,College,sc] = OCC [] **

17 leafstate Standing [Phil0,Philosophers,College,sc] = VAC []

17 leafstate SittingHungry [Phil0,Philosophers,College,sc] = VAC []

17 leafstate OneForkHungry [Phil0,Philosophers,College,sc] = OCC [] **

17 leafstate Eating [Phil0,Philosophers,College,sc] = VAC []

17 leafstate OneForkSatiated [Phil0,Philosophers,College,sc] = VAC []

17 leafstate SittingSatiated [Phil0,Philosophers,College,sc] = VAC []

17 cluster Phil1 [Philosophers,College,sc] = OCC [] **

17 leafstate Standing [Phil1,Philosophers,College,sc] = VAC []

17 leafstate SittingHungry [Phil1,Philosophers,College,sc] = VAC []

17 leafstate OneForkHungry [Phil1,Philosophers,College,sc] = OCC [] **

17 leafstate Eating [Phil1,Philosophers,College,sc] = VAC []

17 leafstate OneForkSatiated [Phil1,Philosophers,College,sc] = VAC []

17 leafstate SittingSatiated [Phil1,Philosophers,College,sc] = VAC []

17 cluster Phil2 [Philosophers,College,sc] = OCC [] **

17 leafstate Standing [Phil2,Philosophers,College,sc] = VAC []

17 leafstate SittingHungry [Phil2,Philosophers,College,sc] = VAC []

17 leafstate OneForkHungry [Phil2,Philosophers,College,sc] = OCC [] **

17 leafstate Eating [Phil2,Philosophers,College,sc] = VAC []

17 leafstate OneForkSatiated [Phil2,Philosophers,College,sc] = VAC []

17 leafstate SittingSatiated [Phil2,Philosophers,College,sc] = VAC []

17 cluster Phil3 [Philosophers,College,sc] = OCC [] **

17 leafstate Standing [Phil3,Philosophers,College,sc] = VAC []

17 leafstate SittingHungry [Phil3,Philosophers,College,sc] = VAC []

17 leafstate OneForkHungry [Phil3,Philosophers,College,sc] = OCC [] **

17 leafstate Eating [Phil3,Philosophers,College,sc] = VAC []

17 leafstate OneForkSatiated [Phil3,Philosophers,College,sc] = VAC []

17 leafstate SittingSatiated [Phil3,Philosophers,College,sc] = VAC []

17 cluster Phil4 [Philosophers,College,sc] = OCC [] **

17 leafstate Standing [Phil4,Philosophers,College,sc] = VAC []

17 leafstate SittingHungry [Phil4,Philosophers,College,sc] = VAC []

17 leafstate OneForkHungry [Phil4,Philosophers,College,sc] = OCC [] **

17 leafstate Eating [Phil4,Philosophers,College,sc] = VAC []

17 leafstate OneForkSatiated [Phil4,Philosophers,College,sc] = VAC []

17 leafstate SittingSatiated [Phil4,Philosophers,College,sc] = VAC []

17 set Forks [College,sc] = OCC [] **

17 cluster Fork0 [Forks,College,sc] = OCC [] **

17 leafstate Lying [Fork0,Forks,College,sc] = VAC []

17 leafstate HeldByPhil0 [Fork0,Forks,College,sc] = OCC [] **

17 leafstate HeldByPhil4 [Fork0,Forks,College,sc] = VAC []

17 cluster Fork1 [Forks,College,sc] = OCC [] **

17 leafstate Lying [Fork1,Forks,College,sc] = VAC []

17 leafstate HeldByPhil1 [Fork1,Forks,College,sc] = OCC [] **

17 leafstate HeldByPhil0 [Fork1,Forks,College,sc] = VAC []

17 cluster Fork2 [Forks,College,sc] = OCC [] **

17 leafstate Lying [Fork2,Forks,College,sc] = VAC []

17 leafstate HeldByPhil2 [Fork2,Forks,College,sc] = OCC [] **

17 leafstate HeldByPhil1 [Fork2,Forks,College,sc] = VAC []

17 cluster Fork3 [Forks,College,sc] = OCC [] **

17 leafstate Lying [Fork3,Forks,College,sc] = VAC []

17 leafstate HeldByPhil3 [Fork3,Forks,College,sc] = OCC [] **

17 leafstate HeldByPhil2 [Fork3,Forks,College,sc] = VAC []

17 cluster Fork4 [Forks,College,sc] = OCC [] **

17 leafstate Lying [Fork4,Forks,College,sc] = VAC []

17 leafstate HeldByPhil4 [Fork4,Forks,College,sc] = OCC [] **

17 leafstate HeldByPhil3 [Fork4,Forks,College,sc] = VAC []

17 TRACE =[]

17 TREV [[L0_PutFork0,[sc]],0,[],[internal,[sc]]]

17 TREV [[L1_PutFork1,[sc]],0,[],[internal,[sc]]]

17 TREV [[L2_PutFork2,[sc]],0,[],[internal,[sc]]]

17 TREV [[L3_PutFork3,[sc]],0,[],[internal,[sc]]]

17 TREV [[L4_PutFork4,[sc]],0,[],[internal,[sc]]]

outworlds=[17]

© Graham G. Thomason 2003-2004 207

number of outworlds=1

SC:|:

There are no transitionable events at the external PCO: deadlock!

9.4.3 Introduction of a semaphore on picking up forks

9.4.3.1 The model with semaphores

Hoare discusses the following solutions to the deadlock:

 Agree that one philosopher should always pick up the wrong fork first.

 Buy more forks.

 Employ a footman to restrict the number of seated philosophers to a maximum of 4.

Schneider adds

 Allowing a philosopher to release a fork if he holds only one.

Neither considers the use of a semaphore, which is the obvious software-technical choice.

Beveridge shows how to use Win32 mutexes (mutual exclusions, which are essentially

semaphores with a maximum count of one), to solve the problem. The mutexes enable the

philosophers to wait for two forks atomically.

In order to reduce unnecessary elements of the model, we make the following simplifications:

 We eliminate the Standing state, and we call the sitting-with-no-forks-held-or-requested

the Thinking state. The philosophers now do their thinking at the table.

 We restrict fork states to Lying and Held. The forks respond to events PickFork0 etc., in

which no account is taken of who is interacting with the fork.

 We add STATECRUNCHER traces, which are not the same as CSP traces – they are a record

of specific selected outputs, generated by the trace(...) function. They are used in black-

box testing, representing observable outputs. We record traces on entering and exiting the

Eating state: trace(P4Eat) and trace(P4Stp).

We also shorten the names of some items for convenience. We also distinguish between

various categories of event:

External events

 A philosopher has a Pang of hunger

 A philosopher has eaten enough and becomes Full

Events for communication with the semaphore

 Request, Acquire and Release a pair of forks

Internal events

 Fork status administration

208 © Graham G. Thomason 2003-2004

In the model, the different events have different PCOs (Points of Control and Observation).

The model should be driven by external events only.

The pairwise fork operations work broadly as follows. The Reset state is for when there is no

outstanding request. Whenever in a fork-pair cluster a Request for a pair of forks is made, it is

either satisfied, broadcasting the Acquisition, with no change of state here, or the cluster goes

into the Requested State. Whenever, elsewhere, one of the participating forks is Released, a

broadcast event causes a new Try in this cluster to be made to satisfy the request. By the same

token, when in the present cluster the forks are Released, two Try events are broadcast so that

other clusters can respond to them, each involving one of the forks just released.

The self-transitions on Try01, Try12 etc. are unnecessary, are not present in the implemented

model. However, such transitions could be used to trace what has happened, and could be

useful in debugging a model.

© Graham G. Thomason 2003-2004 209

Figure 169. Model with semaphores [model t4335]

College

Philosophers

Phil0

Eating

Pang0

/fire

Req01

Phil1 Phil2

Fork0

Lying

Held

 Put1

Pick1

Lying

Held

 Put0

Pick0

Lying

Held

 Put2

Pick2

Fork1

Fork2

Pair01

Reset

Req01[in($Fork0.Lying) && in($Fork1.Lying)]

/fire Pick0; fire Pick1; fire Acq01

Forks

Waiting

Full0

/fire

Rel01

Acq01

Eating

Waiting

Acq12

Eating

Waiting

Acq23

Re

quested

Req01[!in($Fork0.Lying) || !in($Fork1.Lying)]

Rel01/fire Put0; fire Put1; fire Try40; fire Try12

Try01[in($Fork0.Lying) && in($Fork1.Lying)]

/fire Pick0; fire Pick1; fire Acq01

Try01
[!in($Fork0.Lying)

 || !in($Fork1.Lying)]

Pair12

Reset

Req12[in($Fork1.Lying) && in($Fork2.Lying)]

/fire Pick1; fire Pick2; fire Acq12

Re

quested

Req12[!in($Fork1.Lying) || !in($Fork2.Lying)]

Rel12/fire Put1; fire Put2; fire Try01; fire Try23

Try12[in($Fork1.Lying) && in($Fork2.Lying)]

/fire Pick1; fire Pick2; fire Acq12

Try12

[!in($Fork1.Lying)

 || !in($Fork2.Lying)]

Pair23

Reset

Req23[in($Fork2.Lying) && in($Fork3.Lying)]

/fire Pick2; fire Pick3; fire Acq23

Re

quested

Req23[!in($Fork2.Lying) || !in($Fork3.Lying)]

Rel23/fire Put2; fire Put3; fire Try12; fire Try34

Try23[in($Fork2.Lying) && in($Fork3.Lying)]

/fire Pick2; fire Pick3; fire Acq23

Try23

[!in($Fork2.Lying)

 || !in($Fork3.Lying)]

Think-

ing

Think-

ing

Think-

ing

Phil3

Eating

Waiting

Acq34

Think-
ing

Phil4

Eating

Waiting

Acq40

Think-
ing

Lying

Held

 Put3

Pick3

Fork3

Lying

Held

 Put4

Pick4

Fork4

Pair34

Reset

Req34[in($Fork3.Lying) && in($Fork4.Lying)]

/fire Pick3; fire Pick4; fire Acq34

Re

quested

Req34[!in($Fork3.Lying) || !in($Fork4.Lying)]

Rel34/fire Put3; fire Put4; fire Try23; fire Try40

Try34[in($Fork3.Lying) && in($Fork4.Lying)]

/fire Pick3; fire Pick4; fire Acq34

Try34

[!in($Fork3.Lying)

 || !in($Fork4.Lying)]

Pair40

Reset

Req40[in($Fork4.Lying) && in($Fork0.Lying)]

/fire Pick4; fire Pick0; fire Acq40

Re

quested

Req40[!in($Fork4.Lying) || !in($Fork0.Lying)]

Rel40/fire Put4; fire Put0; fire Try34; fire Try01

Try40[in($Fork4.Lying) && in($Fork0.Lying)]

/fire Pick4; fire Pick0; fire Acq40

Try40

[!in($Fork4.Lying)

 || !in($Fork1.Lying)]

trace(P0Eat)

trace(P0Stp)

trace(P1Eat)

trace(P1Stp)

trace(P2Eat)

trace(P2Stp)

trace(P3Eat)

trace(P3Stp)

trace(P4Eat)

trace(P4Stp)

This transition is
redundant, but it

shows a failed

TryNN

This transition is

redundant, but it

shows a failed Try12

This transition is

redundant, but it

shows a failed Try23

This transition is

redundant, but it

shows a failed Try34

This transition is

redundant, but it

shows a failed Try40

Pang1

/fire

Req12

Full1

/fire

Re121

Pang2

/fire

Req23

Full2

/fire

Rel23

Pang3

/fire

Req34

Full3

/fire

Rel34

Pang4

/fire

Req40

Full4

/fire

Rel40

210 © Graham G. Thomason 2003-2004

9.4.3.2 A session with the model with semaphores [model t4335]

SC:|: gc

2 statechart sc

2 set College [sc] = OCC [] **

2 set Philosophers [College,sc] = OCC [] **

2 cluster Phil0 [Philosophers,College,sc] = OCC [] **

2 leafstate Thinking [Phil0,Philosophers,College,sc] = OCC [] **

2 leafstate Waiting [Phil0,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil0,Philosophers,College,sc] = VAC []

2 cluster Phil1 [Philosophers,College,sc] = OCC [] **

2 leafstate Thinking [Phil1,Philosophers,College,sc] = OCC [] **

2 leafstate Waiting [Phil1,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil1,Philosophers,College,sc] = VAC []

2 cluster Phil2 [Philosophers,College,sc] = OCC [] **

2 leafstate Thinking [Phil2,Philosophers,College,sc] = OCC [] **

2 leafstate Waiting [Phil2,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil2,Philosophers,College,sc] = VAC []

2 cluster Phil3 [Philosophers,College,sc] = OCC [] **

2 leafstate Thinking [Phil3,Philosophers,College,sc] = OCC [] **

2 leafstate Waiting [Phil3,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil3,Philosophers,College,sc] = VAC []

2 cluster Phil4 [Philosophers,College,sc] = OCC [] **

2 leafstate Thinking [Phil4,Philosophers,College,sc] = OCC [] **

2 leafstate Waiting [Phil4,Philosophers,College,sc] = VAC []

2 leafstate Eating [Phil4,Philosophers,College,sc] = VAC []

2 set Forks [College,sc] = OCC [] **

2 cluster Fork0 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork0,Forks,College,sc] = OCC [] **

2 leafstate Held [Fork0,Forks,College,sc] = VAC []

2 cluster Fork1 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork1,Forks,College,sc] = OCC [] **

2 leafstate Held [Fork1,Forks,College,sc] = VAC []

2 cluster Fork2 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork2,Forks,College,sc] = OCC [] **

2 leafstate Held [Fork2,Forks,College,sc] = VAC []

2 cluster Fork3 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork3,Forks,College,sc] = OCC [] **

2 leafstate Held [Fork3,Forks,College,sc] = VAC []

2 cluster Fork4 [Forks,College,sc] = OCC [] **

2 leafstate Lying [Fork4,Forks,College,sc] = OCC [] **

2 leafstate Held [Fork4,Forks,College,sc] = VAC []

2 cluster Pair01 [Forks,College,sc] = OCC [] **

2 leafstate Reset [Pair01,Forks,College,sc] = OCC [] **

2 leafstate Requested [Pair01,Forks,College,sc] = VAC []

2 cluster Pair12 [Forks,College,sc] = OCC [] **

2 leafstate Reset [Pair12,Forks,College,sc] = OCC [] **

2 leafstate Requested [Pair12,Forks,College,sc] = VAC []

2 cluster Pair23 [Forks,College,sc] = OCC [] **

2 leafstate Reset [Pair23,Forks,College,sc] = OCC [] **

2 leafstate Requested [Pair23,Forks,College,sc] = VAC []

2 cluster Pair34 [Forks,College,sc] = OCC [] **

2 leafstate Reset [Pair34,Forks,College,sc] = OCC [] **

2 leafstate Requested [Pair34,Forks,College,sc] = VAC []

2 cluster Pair40 [Forks,College,sc] = OCC [] **

2 leafstate Reset [Pair40,Forks,College,sc] = OCC [] **

2 leafstate Requested [Pair40,Forks,College,sc] = VAC []

2 TRACE =[]

2 TREV [[Pang0,[sc]],0,[],[external,[sc]]]

2 TREV [[Pang1,[sc]],0,[],[external,[sc]]]

2 TREV [[Pang2,[sc]],0,[],[external,[sc]]]

2 TREV [[Pang3,[sc]],0,[],[external,[sc]]]

2 TREV [[Pang4,[sc]],0,[],[external,[sc]]]

2 TREV [[Pick0,[sc]],0,[],[internal,[sc]]]

© Graham G. Thomason 2003-2004 211

2 TREV [[Pick1,[sc]],0,[],[internal,[sc]]]

2 TREV [[Pick2,[sc]],0,[],[internal,[sc]]]

2 TREV [[Pick3,[sc]],0,[],[internal,[sc]]]

2 TREV [[Pick4,[sc]],0,[],[internal,[sc]]]

2 TREV [[Req01,[sc]],0,[],[composition,[sc]]]

2 TREV [[Rel01,[sc]],0,[],[composition,[sc]]]

2 TREV [[Req12,[sc]],0,[],[composition,[sc]]]

2 TREV [[Rel12,[sc]],0,[],[composition,[sc]]]

2 TREV [[Req23,[sc]],0,[],[composition,[sc]]]

2 TREV [[Rel23,[sc]],0,[],[composition,[sc]]]

2 TREV [[Req34,[sc]],0,[],[composition,[sc]]]

2 TREV [[Rel34,[sc]],0,[],[composition,[sc]]]

2 TREV [[Req40,[sc]],0,[],[composition,[sc]]]

2 TREV [[Rel40,[sc]],0,[],[composition,[sc]]]

outworlds=[2]

number of outworlds=1

SC:|: pe Pang0

SC:|: pe Pang1

SC:|: pe Pang2

SC:|: pe Pang3

SC:|: pe Pang4

SC:|: gt

20 TRACE =[P2Eat,P0Eat]

SC:|: pe Full0

SC:|: gt

30 TRACE =[P4Eat,P0Stp,P2Eat,P0Eat]

SC:|: pe Full4

SC:|: gt

35 TRACE =[P4Stp,P4Eat,P0Stp,P2Eat,P0Eat]

SC:|: pe Full2

SC:|: gt

50 TRACE =[P3Eat,P1Eat,P2Stp,P4Stp,P4Eat,P0Stp,P2Eat,P0Eat]

SC:|: gc

50 statechart sc

50 set College [sc] = OCC [] **

50 set Philosophers [College,sc] = OCC [] **

50 cluster Phil0 [Philosophers,College,sc] = OCC [] **

50 leafstate Thinking [Phil0,Philosophers,College,sc] = OCC [] **

50 leafstate Waiting [Phil0,Philosophers,College,sc] = VAC []

50 leafstate Eating [Phil0,Philosophers,College,sc] = VAC []

50 cluster Phil1 [Philosophers,College,sc] = OCC [] **

50 leafstate Thinking [Phil1,Philosophers,College,sc] = VAC []

50 leafstate Waiting [Phil1,Philosophers,College,sc] = VAC []

50 leafstate Eating [Phil1,Philosophers,College,sc] = OCC [] **

50 cluster Phil2 [Philosophers,College,sc] = OCC [] **

50 leafstate Thinking [Phil2,Philosophers,College,sc] = OCC [] **

50 leafstate Waiting [Phil2,Philosophers,College,sc] = VAC []

50 leafstate Eating [Phil2,Philosophers,College,sc] = VAC []

50 cluster Phil3 [Philosophers,College,sc] = OCC [] **

50 leafstate Thinking [Phil3,Philosophers,College,sc] = VAC []

50 leafstate Waiting [Phil3,Philosophers,College,sc] = VAC []

50 leafstate Eating [Phil3,Philosophers,College,sc] = OCC [] **

50 cluster Phil4 [Philosophers,College,sc] = OCC [] **

50 leafstate Thinking [Phil4,Philosophers,College,sc] = OCC [] **

50 leafstate Waiting [Phil4,Philosophers,College,sc] = VAC []

50 leafstate Eating [Phil4,Philosophers,College,sc] = VAC []

50 set Forks [College,sc] = OCC [] **

50 cluster Fork0 [Forks,College,sc] = OCC [] **

50 leafstate Lying [Fork0,Forks,College,sc] = OCC [] **

50 leafstate Held [Fork0,Forks,College,sc] = VAC []

50 cluster Fork1 [Forks,College,sc] = OCC [] **

50 leafstate Lying [Fork1,Forks,College,sc] = VAC []

50 leafstate Held [Fork1,Forks,College,sc] = OCC [] **

50 cluster Fork2 [Forks,College,sc] = OCC [] **

50 leafstate Lying [Fork2,Forks,College,sc] = VAC []

212 © Graham G. Thomason 2003-2004

50 leafstate Held [Fork2,Forks,College,sc] = OCC [] **

50 cluster Fork3 [Forks,College,sc] = OCC [] **

50 leafstate Lying [Fork3,Forks,College,sc] = VAC []

50 leafstate Held [Fork3,Forks,College,sc] = OCC [] **

50 cluster Fork4 [Forks,College,sc] = OCC [] **

50 leafstate Lying [Fork4,Forks,College,sc] = VAC []

50 leafstate Held [Fork4,Forks,College,sc] = OCC [] **

50 cluster Pair01 [Forks,College,sc] = OCC [] **

50 leafstate Reset [Pair01,Forks,College,sc] = OCC [] **

50 leafstate Requested [Pair01,Forks,College,sc] = VAC []

50 cluster Pair12 [Forks,College,sc] = OCC [] **

50 leafstate Reset [Pair12,Forks,College,sc] = OCC [] **

50 leafstate Requested [Pair12,Forks,College,sc] = VAC []

50 cluster Pair23 [Forks,College,sc] = OCC [] **

50 leafstate Reset [Pair23,Forks,College,sc] = OCC [] **

50 leafstate Requested [Pair23,Forks,College,sc] = VAC []

50 cluster Pair34 [Forks,College,sc] = OCC [] **

50 leafstate Reset [Pair34,Forks,College,sc] = OCC [] **

50 leafstate Requested [Pair34,Forks,College,sc] = VAC []

50 cluster Pair40 [Forks,College,sc] = OCC [] **

50 leafstate Reset [Pair40,Forks,College,sc] = OCC [] **

50 leafstate Requested [Pair40,Forks,College,sc] = VAC []

50 TRACE =[P3Eat,P1Eat,P2Stp,P4Stp,P4Eat,P0Stp,P2Eat,P0Eat]

50 TREV [[Pang0,[sc]],0,[],[external,[sc]]]

50 TREV [[Full1,[sc]],0,[],[external,[sc]]]

50 TREV [[Pang2,[sc]],0,[],[external,[sc]]]

50 TREV [[Full3,[sc]],0,[],[external,[sc]]]

50 TREV [[Pang4,[sc]],0,[],[external,[sc]]]

50 TREV [[Pick0,[sc]],0,[],[internal,[sc]]]

50 TREV [[Put1,[sc]],0,[],[internal,[sc]]]

50 TREV [[Put2,[sc]],0,[],[internal,[sc]]]

50 TREV [[Put3,[sc]],0,[],[internal,[sc]]]

50 TREV [[Put4,[sc]],0,[],[internal,[sc]]]

50 TREV [[Rel01,[sc]],0,[],[composition,[sc]]]

50 TREV [[Req01,[sc]],0,[],[composition,[sc]]]

50 TREV [[Rel12,[sc]],0,[],[composition,[sc]]]

50 TREV [[Req12,[sc]],0,[],[composition,[sc]]]

50 TREV [[Rel23,[sc]],0,[],[composition,[sc]]]

50 TREV [[Req23,[sc]],0,[],[composition,[sc]]]

50 TREV [[Rel34,[sc]],0,[],[composition,[sc]]]

50 TREV [[Req34,[sc]],0,[],[composition,[sc]]]

50 TREV [[Rel40,[sc]],0,[],[composition,[sc]]]

50 TREV [[Req40,[sc]],0,[],[composition,[sc]]]

outworlds=[50]

number of outworlds=1

SC:|:

© Graham G. Thomason 2003-2004 213

9.4.3.3 Diagram of the events

 Shading shows the fork in use

 Bold font shows the change(s) due to the last event

Event PHIL0 PHIL1 PHIL2 PHIL3 PHIL4

initial state Thinking Thinking Thinking Thinking Thinking

Pang0 Eating Thinking Thinking Thinking Thinking

Pang1 Eating Waiting Thinking Thinking Thinking

Pang2 Eating Waiting Eating Thinking Thinking

Pang3 Eating Waiting Eating Waiting Thinking

Pang4 Eating Waiting Eating Waiting Waiting

Full0 Thinking Waiting Eating Waiting Eating

Full4 Thinking Waiting Eating Waiting Thinking

Full2 Thinking Eating Thinking Eating Thinking

Table 16. Diagram of the events

9.4.4 Conclusion on the dining philosophers

This section has shown how a typical client-server application is modelled in

STATECRUNCHER, providing a direct comparison with a well-known example in the literature.

Both STATECRUNCHER and CSP are amenable to the problem, but the emphasis is different:

STATECRUNCHER is a state machine engine providing the white box or black box oracle to

tests and does not support calculus manipulations; CSP is a calculus which is used to prove

properties of composed systems.

9.4.5 Source listings of models

9.4.5.1 Source listing of the dining philosophers without semaphores [model t4330]

//---

// Module: Philosophers.scs.txt

// Author: Graham Thomason, Philips Digital Systems Laboratories, Redhill

// Date: 18 July, 2003

// Purpose: StateCruncher model: The Dining philosophers [Hoare, p.75]

//

// Copyright (C) 2003 Philips Electronics N.V.

//-------1---------2---------3---------4---------5---------6---------7---------8-----

statechart sc(College)

PCO external;

PCO internal;

event P0_Sit, P0_Stand @external;

event P1_Sit, P1_Stand @external;

event P2_Sit, P2_Stand @external;

event P3_Sit, P3_Stand @external;

event P4_Sit, P4_Stand @external;

event P0_PickFork0, P0_PickFork1, P0_PutFork0, P0_PutFork1 @external;

event P1_PickFork1, P1_PickFork2, P1_PutFork1, P1_PutFork2 @external;

214 © Graham G. Thomason 2003-2004

event P2_PickFork2, P2_PickFork3, P2_PutFork2, P2_PutFork3 @external;

event P3_PickFork3, P3_PickFork4, P3_PutFork3, P3_PutFork4 @external;

event P4_PickFork4, P4_PickFork0, P4_PutFork4, P4_PutFork0 @external;

event L0_PickFork0, L1_PickFork1, L2_PickFork2, L3_PickFork3, L4_PickFork4 @internal;

event L0_PutFork0, L1_PutFork1, L2_PutFork2, L3_PutFork3, L4_PutFork4 @internal;

event L0_PickFork1, L1_PickFork2, L2_PickFork3, L3_PickFork4, L4_PickFork0 @internal;

event L0_PutFork1, L1_PutFork2, L2_PutFork3, L3_PutFork4, L4_PutFork0 @internal;

set College(Philosophers,Forks)

 set Philosophers(Phil0,Phil1,Phil2,Phil3,Phil4)

 cluster Phil0(\

 Standing,SittingHungry,OneForkHungry,Eating,OneForkSatiated,SittingSatiated)

 state Standing {P0_Sit->SittingHungry;}

 state SittingHungry {P0_PickFork0[in($$Forks.Fork0.Lying)]->OneForkHungry \

 {fire L0_PickFork0;};}

 state OneForkHungry {P0_PickFork1[in($$Forks.Fork1.Lying)]->Eating \

 {fire L0_PickFork1;};}

 state Eating {P0_PutFork0->OneForkSatiated \

 {fire L0_PutFork0;};}

 state OneForkSatiated {P0_PutFork1->SittingSatiated \

 {fire L0_PutFork1;};}

 state SittingSatiated {P0_Stand->Standing;}

 cluster Phil1(\

 Standing,SittingHungry,OneForkHungry,Eating,OneForkSatiated,SittingSatiated)

 state Standing {P1_Sit->SittingHungry;}

 state SittingHungry {P1_PickFork1[in($$Forks.Fork1.Lying)]->OneForkHungry \

 {fire L1_PickFork1;};}

 state OneForkHungry {P1_PickFork2[in($$Forks.Fork2.Lying)]->Eating \

 {fire L1_PickFork2;};}

 state Eating {P1_PutFork1->OneForkSatiated \

 {fire L1_PutFork1;};}

 state OneForkSatiated {P1_PutFork2->SittingSatiated \

 {fire L1_PutFork2;};}

 state SittingSatiated {P1_Stand->Standing;}

 cluster Phil2(\

 Standing,SittingHungry,OneForkHungry,Eating,OneForkSatiated,SittingSatiated)

 state Standing {P2_Sit->SittingHungry;}

 state SittingHungry {P2_PickFork2[in($$Forks.Fork2.Lying)]->OneForkHungry \

 {fire L2_PickFork2;};}

 state OneForkHungry {P2_PickFork3[in($$Forks.Fork3.Lying)]->Eating \

 {fire L2_PickFork3;};}

 state Eating {P2_PutFork2->OneForkSatiated \

 {fire L2_PutFork2;};}

 state OneForkSatiated {P2_PutFork3->SittingSatiated \

 {fire L2_PutFork3;};}

 state SittingSatiated {P2_Stand->Standing;}

 cluster Phil3(\

 Standing,SittingHungry,OneForkHungry,Eating,OneForkSatiated,SittingSatiated)

 state Standing {P3_Sit->SittingHungry;}

 state SittingHungry {P3_PickFork3[in($$Forks.Fork3.Lying)]->OneForkHungry \

 {fire L3_PickFork3;};}

 state OneForkHungry {P3_PickFork4[in($$Forks.Fork4.Lying)]->Eating \

 {fire L3_PickFork4;};}

 state Eating {P3_PutFork3->OneForkSatiated \

 {fire L3_PutFork3;};}

 state OneForkSatiated {P3_PutFork4->SittingSatiated \

 {fire L3_PutFork4;};}

 state SittingSatiated {P3_Stand->Standing;}

 cluster Phil4(\

 Standing,SittingHungry,OneForkHungry,Eating,OneForkSatiated,SittingSatiated)

 state Standing {P4_Sit->SittingHungry;}

 state SittingHungry {P4_PickFork4[in($$Forks.Fork4.Lying)]->OneForkHungry \

 {fire L4_PickFork4;};}

 state OneForkHungry {P4_PickFork0[in($$Forks.Fork0.Lying)]->Eating \

 {fire L4_PickFork0;};}

 state Eating {P4_PutFork4->OneForkSatiated \

© Graham G. Thomason 2003-2004 215

 {fire L4_PutFork4;};}

 state OneForkSatiated {P4_PutFork0->SittingSatiated \

 {fire L4_PutFork0;};}

 state SittingSatiated {P4_Stand->Standing;}

 set Forks(Fork0,Fork1,Fork2,Fork3,Fork4)

 cluster Fork0(Lying,HeldByPhil0,HeldByPhil4)

 state Lying {L0_PickFork0->HeldByPhil0;\

 L4_PickFork0->HeldByPhil4;}

 state HeldByPhil0 {L0_PutFork0 ->Lying;}

 state HeldByPhil4 {L4_PutFork0 ->Lying;}

 cluster Fork1(Lying,HeldByPhil1,HeldByPhil0)

 state Lying {L1_PickFork1->HeldByPhil1;\

 L0_PickFork1->HeldByPhil0;}

 state HeldByPhil1 {L1_PutFork1 ->Lying;}

 state HeldByPhil0 {L0_PutFork1 ->Lying;}

 cluster Fork2(Lying,HeldByPhil2,HeldByPhil1)

 state Lying {L2_PickFork2->HeldByPhil2;\

 L1_PickFork2->HeldByPhil1;}

 state HeldByPhil2 {L2_PutFork2 ->Lying;}

 state HeldByPhil1 {L1_PutFork2 ->Lying;}

 cluster Fork3(Lying,HeldByPhil3,HeldByPhil2)

 state Lying {L3_PickFork3->HeldByPhil3;\

 L2_PickFork3->HeldByPhil2;}

 state HeldByPhil3 {L3_PutFork3 ->Lying;}

 state HeldByPhil2 {L2_PutFork3 ->Lying;}

 cluster Fork4(Lying,HeldByPhil4,HeldByPhil3)

 state Lying {L4_PickFork4->HeldByPhil4;\

 L3_PickFork4->HeldByPhil3;}

 state HeldByPhil4 {L4_PutFork4 ->Lying;}

 state HeldByPhil3 {L3_PutFork4 ->Lying;}

//------------------------[end of module]--

9.4.5.2 Source listing of the dining philosophers with semaphores [model t4335]

//---

// Module: phil_semaph.scs.txt

// Author: Graham Thomason, Philips Digital Systems Laboratories, Redhill

// Date: 19 July, 2003

// Purpose: StateCruncher model: The Dining philosophers with semaphores

//

// Copyright (C) 2003 Philips Electronics N.V.

//-------1---------2---------3---------4---------5---------6---------7---------8-----

statechart sc(College)

PCO external; // For philosopher actions

PCO composition; // For communication from semaphote to philosopher

PCO internal; // Internal events

event Pang0, Pang1, Pang2, Pang3, Pang4 @external;

event Full0, Full1, Full2, Full3, Full4 @external;

event Req01, Req12, Req23, Req34, Req40 @composition;

event Rel01, Rel12, Rel23, Rel34, Rel40 @composition;

event Acq01, Acq12, Acq23, Acq34, Acq40 @composition;

event Try01, Try12, Try23, Try34, Try40 @internal;

event Pick0, Pick1, Pick2, Pick3, Pick4 @internal;

event Put0, Put1, Put2, Put3, Put4 @internal;

216 © Graham G. Thomason 2003-2004

set College(Philosophers,Forks)

 set Philosophers(Phil0,Phil1,Phil2,Phil3,Phil4)

 cluster Phil0(Thinking,Waiting,Eating)

 state Thinking {Pang0->Waiting {fire Req01;};}

 state Waiting {Acq01->Eating;}

 state Eating {upon enter {trace("P0Eat");} \

 upon exit {trace("P0Stp");} \

 Full0->Thinking {fire Rel01;};}

 cluster Phil1(Thinking,Waiting,Eating)

 state Thinking {Pang1->Waiting {fire Req12;};}

 state Waiting {Acq12->Eating;}

 state Eating {upon enter {trace("P1Eat");} \

 upon exit {trace("P1Stp");} \

 Full1->Thinking {fire Rel12;};}

 cluster Phil2(Thinking,Waiting,Eating)

 state Thinking {Pang2->Waiting {fire Req23;};}

 state Waiting {Acq23->Eating;}

 state Eating {upon enter {trace("P2Eat");} \

 upon exit {trace("P2Stp");} \

 Full2->Thinking {fire Rel23;};}

 cluster Phil3(Thinking,Waiting,Eating)

 state Thinking {Pang3->Waiting {fire Req34;};}

 state Waiting {Acq34->Eating;}

 state Eating {upon enter {trace("P3Eat");} \

 upon exit {trace("P3Stp");} \

 Full3->Thinking {fire Rel34;};}

 cluster Phil4(Thinking,Waiting,Eating)

 state Thinking {Pang4->Waiting {fire Req40;};}

 state Waiting {Acq40->Eating;}

 state Eating {upon enter {trace("P4Eat");} \

 upon exit {trace("P4Stp");} \

 Full4->Thinking {fire Rel40;};}

 set Forks(Fork0,Fork1,Fork2,Fork3,Fork4, Pair01,Pair12,Pair23,Pair34,Pair40)

 cluster Fork0(Lying,Held)

 state Lying {Pick0->Held;}

 state Held {Put0->Lying;}

 cluster Fork1(Lying,Held)

 state Lying {Pick1->Held;}

 state Held {Put1->Lying;}

 cluster Fork2(Lying,Held)

 state Lying {Pick2->Held;}

 state Held {Put2->Lying;}

 cluster Fork3(Lying,Held)

 state Lying {Pick3->Held;}

 state Held {Put3->Lying;}

 cluster Fork4(Lying,Held)

 state Lying {Pick4->Held;}

 state Held {Put4->Lying;}

 /*--[Fork Pair Control]--*/

 cluster Pair01(Reset,Requested)

 state Reset {Req01[in($Fork0.Lying) && in($Fork1.Lying)] \

 {fire Pick0; fire Pick1; fire Acq01;}; \

 Rel01 \

 {fire Put0; fire Put1; fire Try40; fire Try12;}; \

 Req01[!in($Fork0.Lying) || !in($Fork1.Lying)] \

 ->Requested; }

 state Requested {Try01[in($Fork0.Lying) && in($Fork1.Lying)] \

© Graham G. Thomason 2003-2004 217

 -> Reset \

 {fire Pick0; fire Pick1; fire Acq01;}; }

 cluster Pair12(Reset,Requested)

 state Reset {Req12[in($Fork1.Lying) && in($Fork2.Lying)] \

 {fire Pick1; fire Pick2; fire Acq12;}; \

 Rel12 \

 {fire Put1; fire Put2; fire Try01; fire Try23;}; \

 Req12[!in($Fork1.Lying) || !in($Fork2.Lying)] \

 ->Requested; }

 state Requested {Try12[in($Fork1.Lying) && in($Fork2.Lying)] \

 -> Reset \

 {fire Pick1; fire Pick2; fire Acq12;}; }

 cluster Pair23(Reset,Requested)

 state Reset {Req23[in($Fork2.Lying) && in($Fork3.Lying)] \

 {fire Pick2; fire Pick3; fire Acq23;}; \

 Rel23 \

 {fire Put2; fire Put3; fire Try12; fire Try34;}; \

 Req23[!in($Fork2.Lying) || !in($Fork3.Lying)] \

 ->Requested; }

 state Requested {Try23[in($Fork2.Lying) && in($Fork3.Lying)] \

 -> Reset \

 {fire Pick2; fire Pick3; fire Acq23;}; }

 cluster Pair34(Reset,Requested)

 state Reset {Req34[in($Fork3.Lying) && in($Fork4.Lying)] \

 {fire Pick3; fire Pick4; fire Acq34;}; \

 Rel34 \

 {fire Put3; fire Put4; fire Try23; fire Try40;}; \

 Req34[!in($Fork3.Lying) || !in($Fork4.Lying)] \

 ->Requested; }

 state Requested {Try34[in($Fork3.Lying) && in($Fork4.Lying)] \

 -> Reset \

 {fire Pick3; fire Pick4; fire Acq34;}; }

 cluster Pair40(Reset,Requested)

 state Reset {Req40[in($Fork4.Lying) && in($Fork0.Lying)] \

 {fire Pick4; fire Pick0; fire Acq40;}; \

 Rel40 \

 {fire Put4; fire Put0; fire Try34; fire Try01;}; \

 Req40[!in($Fork4.Lying) || !in($Fork0.Lying)] \

 ->Requested; }

 state Requested {Try40[in($Fork4.Lying) && in($Fork0.Lying)] \

 -> Reset \

 {fire Pick4; fire Pick0; fire Acq40;}; }

//------------------------[end of module]--

218 © Graham G. Thomason 2003-2004

10. Experience with

STATECRUNCHER and conclusions

The project set out with two experimental goals: (1) to investigate whether an approach to

automatic generation of state-based tests of nondeterministic systems using a nondeterministic

oracle would offer an improved testing technique, and (2) to see whether PROLOG is a

feasible implementation language for such a tool, both from an ease-of-coding viewpoint and

from a run-time performance perspective. This section reports on how the testing approach is

being pursued within Philips. We illustrate how STATECRUNCHER has been successfully

transferred to an end-user within Philips Electronics, with a real example of an embedded

software component being tested in a tool chain using STATECRUNCHER as the test oracle.

We also review the implementation approach taken. Lastly, we draw a final conclusion.

10.1 Experience at Philips

Software testing as a Research activity was formally transferred from PRL (Philips Research

Laboratories - Redhill) to PRI-B (Philips Research India - Bangalore) at the start of 2002. The

development of STATECRUNCHER at Redhill, and support to PRI-B continued in 2002 and part

of 2003, carried out in the PDSL-R organisation (Philips Digital Systems Laboratories -

Redhill).

Philips Research India - Bangalore (PRI-B) has successfully worked with STATECRUNCHER,

having integrated it into the TorX tool chain, testing [Koala] components for television

systems.

The following figure is by Nitin Koppalkar at PRI-B, who did the integration.

Figure 170. STATECRUNCHER integrated in the TorX tool chain (Nitin Koppalkar)

STATE-

CRUNCHER

Host VnV

Target VnV

Simulator/

Real Target

TorX

Extract the state

information and

outputs “events”

and “traces”

Generates

abstract tests

and verifies the

results

System

Under Test

Converts

abstract

tests into

real tests

© Graham G. Thomason 2003-2004 219

Two components that have been modelled and tested are TV Program Installation and the

Last Status Manager.

TV Program Installation (modelled by Tim Trew)

A STATECRUNCHER model has been produced for a component that installs a program in a

TV. The sequence of operations is to:

1. Find the carrier

2. Analyse the modulation to find out the TV system (PAL / NTSC / SECAM)

3. Analyse the VBI (vertical blanking interval) data to deduce the station name.

The issues are:

 To use a generic model of the program installation component in any testing

configuration or composed-system configuration.

 To obtain all nondeterministic outcomes in the STATECRUNCHER model due to a failure to

proceed at any stage.

 To obtain all nondeterministic outcomes in the STATECRUNCHER model due to

interleavings of external and internal events.

The Philips report [Trew 03] covers this model, and discusses challenging generic issues in

component modelling, such as how to generate interleavings of external and internal events in

STATECRUNCHER.

The following model is a simplification of what has been produced. A more extensive model

contains details of the tuner.

220 © Graham G. Thomason 2003-2004

Figure 171. Program Installation, simplified, (Tim Trew) [model t4410]

Notification handler: responds to fired pginsN_ events (not shown in diagram) and

converts them to traces

programinstallation

composition

controllable_function_handler

idle searching

tuned TvSystemDetected

pgins_stopmanualinstallation

pgins_startmanualinstallation

tick/ fire pgins_onstationnotfound; fire tock;

tick/

fire pgins_onstationfound;

fire tock;

tick/ fire pgins_onstationfound; fire tock;

tick/

fire

pgins_onstationNamefound;

fire tock;

tick/ fire tock;

pgins_stopmanualinstallation

pgins_stopmanualinstallation

prov_fun

clock

PCO_pgins_startmanualinstallation/ fire pgins_startmanualinstallation

PCO_pgins_stopmanualinstallation/ fire pgins_stopmanualinstallation

starting clockactive

clockidle

PCO_pgins_startmanualinstallation PCO_pgins_stopmanualinstallation

fire StartClock fire tick

tock

StartClock

StartClock

Fork nondeterminism

to continue or
terminate at every

possible step.

No counter needed as

tocks are not generated

indefinitely

 Race nondeterminism to

generate interleavings of
external events (PCO_...)

and internal events (tick)

Fork nondeterminism to

generate a stop step and

a continue step

tock

© Graham G. Thomason 2003-2004 221

Points to note:

 The clock generates tick events, to which the programinstallation states

respond, forking on alternatives where they exist.

 The programinstallation area fires a tock after any response to a tick, in order

to keep the clock going.

 This clock does not need to limit the number of ticks fired, as the

programinstallation is not capable of infinite cycling.

 Race nondeterminism is used to generate interleavings of external events (PCO_ ...) and

internal events (tick). This covers situations where an external event is given, but is pre-

empted by an internal event.

 Fork nondeterminism is used to continue or terminate the clock at every step.

Performance is acceptable: on a 300MHz machine, it takes about 2 seconds to process

PCO_pgins_startmanualinstallation

giving 9 worlds.

Output after event PCO_pgins_startmanualinstallation (9 worlds generated).

Wld program

instaln.

Clock Trace (read in reverse order) Remarks on program

installation

17 idle idle [tock, tick/pgins_onstationnotfound, tick in searching,

firing tick, PCO_pgins_startmanualinstallation clock,

pginsN_onmanualinstallationstarted,

pgins_startmanualinstallation in idle,

PCO_pgins_startmanualinstallation executed]

Searching did not find a

station.

20 idle active [firing tick, tock, tick/pgins_onstationnotfound, tick in

searching, firing tick,

PCO_pgins_startmanualinstallation clock,

pginsN_onmanualinstallationstarted,

pgins_startmanualinstallation in idle,

PCO_pgins_startmanualinstallation executed]

Searching did not find a

station. There was an

extra tick, with no

response.

24 tuned idle [tock, tick/pginsN_onstationfound, tick in searching,

firing tick, PCO_pgins_startmanualinstallation clock,

pginsN_onmanualinstallationstarted,

pgins_startmanualinstallation in idle,

PCO_pgins_startmanualinstallation executed]

Searched and found a

station. Did not proceed

to detect the TV system.

32 Tv

System

Detected

idle [tock, tick/pginsN_onTvSystemDetected, tick in tuned,

firing tick, tock, tick/pginsN_onstationfound, tick in

searching, firing tick,

PCO_pgins_startmanualinstallation clock,

pginsN_onmanualinstallationstarted,

pgins_startmanualinstallation in idle,

PCO_pgins_startmanualinstallation executed]

Searched, found a

station and detected the

TV system. Did not

proceed to find station

name.

222 © Graham G. Thomason 2003-2004

40 idle idle [tock, tick/pginsN_onStationNameFound, tick in

TvSystemDetected, firing tick, tock,

tick/pginsN_onTvSystemDetected, tick in tuned, firing

tick, tock, tick/pginsN_onstationfound, tick in

searching, firing tick,

PCO_pgins_startmanualinstallation clock,

pginsN_onmanualinstallationstarted,

pgins_startmanualinstallation in idle,

PCO_pgins_startmanualinstallation executed]

A complete cycle

through searching,

finding a station,

detecting the TV system

and finding the station

name.

43 idle active [firing tick, tock, tick/pginsN_onStationNameFound,

tick in TvSystemDetected, firing tick, tock,

tick/pginsN_onTvSystemDetected, tick in tuned, firing

tick, tock, tick/pginsN_onstationfound, tick in

searching, firing tick,

PCO_pgins_startmanualinstallation clock,

pginsN_onmanualinstallationstarted,

pgins_startmanualinstallation in idle,

PCO_pgins_startmanualinstallation executed]

A complete cycle with

an extra tick, to which

there was no response.

44 searching idle [PCO_pgins_startmanualinstallation clock,

pginsN_onmanualinstallationstarted,

pgins_startmanualinstallation in idle,

PCO_pgins_startmanualinstallation executed]

Searching, with no

further progress.

55 searching idle [pginsN_onmanualinstallationstarted,

pgins_startmanualinstallation in idle,

PCO_pgins_startmanualinstallation executed,

PCO_pgins_startmanualinstallation clock]

Searching, with no

further progress. Differs

from world 44 because

of the race (clock wins).

61 searching active [pginsN_onmanualinstallationstarted,

pgins_startmanualinstallation in idle,

PCO_pgins_startmanualinstallation executed, firing

tick, PCO_pgins_startmanualinstallation clock]

Searching, with clock

winning a race and

doing nothing.

Table 17. Program Installation results

After the traces have been cleared, there are 6 residual worlds. Then event

PCO_pgins_stopmanualinstallation can be given, generating 24 worlds (in about

15 seconds on a 300 MHz machine). Space does not permit us to tabulate the results, but we

remark that on stopping the installation, a race is run on two transitions on

PCO_stopmanualinstallation, generating interleavings of events

pgins_stopmanualinstallation and tick. The tick first situation could represent

a user stopping the installation, but just before the command is seen, the installation

completes.

Model listing

// Author: Tim Trew

// Test of transition algorithm for clock ticking - can we interleave

// all "wait" events with external events?

// User enters

// SC: pe [PCO_pgins_startmanualinstallation, [composition, sc]]

© Graham G. Thomason 2003-2004 223

// SC: ct

// SC: pe [PCO_pgins_stopmanualinstallation, [composition, sc]]

statechart sc(composition)

set composition (programinstallation, \

 controllable_function_handler, \

 notification_handler)

 cluster programinstallation (idle, searching, tuned, TvSystemDetected)

 /* Program Installation Provided functions */

 event composition%%pgins_startmanualinstallation;

 event composition%%pgins_stopmanualinstallation;

 /* Program Installation notifications */

 event composition%%pginsN_onmanualinstallationstarted;

 event composition%%pginsN_onmanualinstallationcompleted;

 event composition%%pginsN_onmanualinstallationstopped;

 event composition%%pginsN_onsearchinprogress;

 event composition%%pginsN_onstationfound;

 event composition%%pginsN_onstationnotfound;

 event composition%%pginsN_onTvSystemDetected;

 event composition%%pginsN_onStationNameFound;

 state idle { \

 pgins_startmanualinstallation -> searching \

 {trace("pgins_startmanualinstallation in idle"); \

 fire pginsN_onmanualinstallationstarted ; }; \

 pgins_stopmanualinstallation \

 {trace("pgins_stopmanualinstallation in idle - ignored"); }; }

 state searching { \

 pgins_startmanualinstallation \

 {trace("pgins_startmanualinstallation in searching - ignored"); }; \

 pgins_stopmanualinstallation -> idle \

 {trace("pgins_stopmanualinstallation in searching"); \

 fire pginsN_onmanualinstallationstopped ; } ; \

 tick -> tuned {trace("tick/pginsN_onstationfound"); \

 fire pginsN_onstationfound; fire tock; } ; \

 tick -> idle {trace("tick/pgins_onstationnotfound"); \

 fire pginsN_onstationnotfound; fire tock; }; }

 state tuned { \

 pgins_startmanualinstallation \

 {trace("pgins_startmanualinstallation in tuned - ignored"); }; \

 pgins_stopmanualinstallation -> idle \

 {trace("pgins_stopmanualinstallation in tuned"); \

 fire pginsN_onmanualinstallationstopped ; } ; \

 tick -> TvSystemDetected{trace("tick/pginsN_onTvSystemDetected"); \

 fire pginsN_onTvSystemDetected; \

 fire tock; }; }

 state TvSystemDetected { \

 pgins_startmanualinstallation \

 {trace("pgins_startmanualinstallation in TvSystemDetected - ignored"); };\

 pgins_stopmanualinstallation -> idle \

 {trace("pgins_stopmanualinstallation in TvSystemDetected"); \

 fire pginsN_onmanualinstallationstopped; }; \

 tick -> idle{trace("tick/pginsN_onStationNameFound"); \

 fire pginsN_onStationNameFound; fire tock; }; }

// provides functions

224 © Graham G. Thomason 2003-2004

 set controllable_function_handler (prov_fun, clock)

 event composition%%PCO_pgins_startmanualinstallation;

 event composition%%PCO_pgins_stopmanualinstallation;

 event composition%%tock;

 event composition%%tick, StartClock;

 state prov_fun { \

 PCO_pgins_startmanualinstallation \

 {trace("PCO_pgins_startmanualinstallation executed"); \

 fire pgins_startmanualinstallation ; }; \

 PCO_pgins_stopmanualinstallation \

 {trace("PCO_pgins_stopmanualinstallation executed"); \

 fire pgins_stopmanualinstallation ; }; }

 cluster clock (clockidle, starting, clockactive) { \

 PCO_pgins_startmanualinstallation -> clock -> clock.starting \

 {trace("PCO_pgins_startmanualinstallation clock"); }; \

 PCO_pgins_stopmanualinstallation -> clock -> clock.starting \

 {trace("PCO_pgins_stopmanualinstallation clock");}; }

 state clockidle;

 state starting { \

 upon enter { fire StartClock; } \

 StartClock -> clockidle; \

 StartClock -> clockactive; }

 state clockactive { \

 upon enter { \

 trace("firing tick"); \

 if (in (::composition.programinstallation.searching)) \

 {trace("tick in searching"); } \

 if (in (::composition.programinstallation.tuned)) \

 {trace("tick in tuned"); } \

 if (in (::composition.programinstallation.TvSystemDetected)) \

 {trace("tick in TvSystemDetected"); } \

 fire tick; } \

 /* Fork non-determinism to terminate at every possible step. */ \

 tock -> clock -> clockactive {trace("tock");}; \

 tock -> clockidle {trace("tock");}; }

 cluster notification_handler (notif_handler)

 /* Turned fired notifications in to traces */

 event composition%%pginsN_onchannelfound;

 state notif_handler { \

 pginsN_onchannelfound -> notif_handler \

 {trace ("pginsN_onchannelfound"); }; \

 pginsN_onmanualinstallationstarted -> notif_handler \

 {trace ("pginsN_onmanualinstallationstarted"); }; \

 pginsN_onmanualinstallationcompleted -> notif_handler \

 {trace ("pginsN_onmanualinstallationcompleted"); }; \

 pginsN_onmanualinstallationstopped -> notif_handler \

 {trace ("pginsN_onmanualinstallationstopped"); }; \

 pginsN_onsearchinprogress -> notif_handler \

 {trace ("pginsN_onsearchinprogress") ; } ; }

© Graham G. Thomason 2003-2004 225

The more extensive model (including the tuner) has been integrated into the TorX tool chain

by Nitin Koppalkar at PRI-B. The following diagram, by Nitin Koppalkar, shows the tool

chain in action:

Figure 172. STATECRUNCHER and TorX in action (Nitin Koppalkar)

Statecruncher

outputting events and

traces

TorX generating the test

cases, executing them on

the target and verifying the

result. In this case one test
(actl3_Set!15!25) passes

and another

(pgins_StartManualInstall

ation) fails

TorX (VnV is not shown)
interacting with the

simulator to execute the

tests and getting back the

results for the verification

226 © Graham G. Thomason 2003-2004

Last Status Manager: Currently (November 2003), PRI-B is working on testing this module,

which manages status information, writing it at intervals to non-volatile memory (NVM). At

any time, the cache can contain messages that have been written to NVM and messages that

still have to be written to NVM, under the constraint that if a message has been written to

NVM, all older messages must have also been written to NVM. Later messages may or may

not be in NVM, hence nondeterminism. It was considered useful to have an array facility to

handle the messages in chronological order. It was to meet the needs of this system that arrays

were implemented in STATECRUNCHER (in Release 1.04).

Outcomes of the trials of STATECRUNCHER

We have shown that STATECRUNCHER has been successfully deployed in a live project. The

experience of this trial clearly demonstrated STATECRUNCHER's ability to handle all the forms

of nondeterminism that were inherently present in the system under test. The successful

outcome of these trials has led to a number of reports and continued work using

STATECRUNCHER. The following reports have been written or are nearing completion:

On integrating STATECRUNCHER into the TorX tool chain [Koppalkar 02, 03]:

 Nitin Koppalkar and Animesh Bhowmick

Integration of Generic Explorer with the TorX Tool Chain

Philips Nat. Lab. Technical Note 2002/387, October, 2002

 Nitin Koppalkar

Interfacing STATECRUNCHER with TorX for demonstrating the state-based

 testing technique taking MG-R components for a case study

 Philips Nat. Lab. Technical Note (under preparation, December 2003).

On modelling software components in STATECRUNCHER [Trew 03]:

 Tim Trew

State-based modelling of software components for integration testing

A practical guide to the creation of STATECRUNCHER models

Philips Nat. Lab. Technical Note (under preparation, December 2003).

We indicate some future directions at the end of this section.

10.2 PROLOG as the implementation language

There is of course a subjective element in stating whether PROLOG is a feasible

implementation language for any given purpose. Different people show affinity to different

programming languages, and few can claim competence in a really wide range of them. The

present author's view is that to build the same STATECRUNCHER system in C would require a

significant multiple of the effort taken, although such an undertaking by a team, given the

present implementation as a precise specification, would not be pointless, as it would lead to

© Graham G. Thomason 2003-2004 227

improved performance and greater maintainability in an organisation, because one could then

tap into a wider pool of programmers than is the case with a PROLOG implementation. To

use an object oriented language could help in many ways, but the hard parts of the transition

algorithm are not clearly amenable to an object-oriented approach.

Strengths of PROLOG as a programming language

In the author's estimation, the power of PROLOG (for readers not entirely unfamiliar with

PROLOG), lies in the following features:

 Compact notation. Although this is arguably a very superficial aspect, it does make for

readable programs. They can be overseen with more ease because there is less syntactic

overhead (compare the abundant use of brackets in LISP). Examples:

 Variables have no declaration and their scope is just the one clause they are used in.

Symbols beginning with capitals or underscore are variables, and are distinct from

those beginning with lower case letters which are atoms, i.e. constants. The and

operator is a comma, and the or operator is a semicolon. The result approaches the

compactness of the notation for predicates and specifications in discrete mathematics.

 The notation [H|T] denotes the head and tail of a list. The head is one element of a

list and the tail is conventionally zero or more elements of the list. The term [H|T]

will construct a list from a head and a tail, or split a list into head and tail, or it can be

used to check whether an item is a list with at least one element and some tail, (which

may be the empty list).

 Typelessness. The fact that PROLOG is untyped makes many routines very general,

where in C many versions of a function might be needed, one for each type of argument,

though this is less of a problem in C++, where a template construction can be used.

 The interpretative nature. Programs, whether large or very small (e.g. just one clause)

can be experimented with at the command prompt. PROLOG programs have no header

files and compile so fast there is no need for a developer to build them, as in non-

interpretative languages. The whole of STATECRUNCHER compiles in little more than a

second on a modern computer.

 Unification. This allows a partially grounded structure to be matched against another one,

e.g. [a,[B,C]] against [D,[e|T]]. A variable matched against a grounded item is

instantiated to that item and becomes grounded. The above match succeeds with

B = e

C = _G163

D = a

T = [_G163]

This sort of match is useful e.g. in extracting parts of compiled statements, such as the

condition of a transition, where the parse contains structures partly labelled by fixed

atoms, with the remaining parse body representing the real parse content to be extracted.

228 © Graham G. Thomason 2003-2004

The result of the unification may still contain non-ground terms, as variable T is in the

above example, though it is constrained to be a list of one element.

 Backtracking. This is a search mechanism that will look for a structural match, and

satisfaction of further constraints. An example of use might be to find a parsed statement

satisfying a certain constraint, such as finding a declaration of a variable of a certain

name, or finding a potential transition, then requiring that it satisfy various conditions. An

extension to backtracking is to ‘find all’ items satisfying some constraint. Backtracking is

also a good mechanism for generating many solutions to some requirement, such as

permutations.

 Reversibility. PROLOG clauses can be written to work in two directions - indeed they

will do automatically in many cases, perhaps without the program author realising it. The

same simple PROLOG clauses defining how to append two lists L1 and L2 making L3,

can also break up a given list L3 into sublists L1 and L2 which when appended, make the

given list. It will do this in all possible ways, e.g. [a,b,c] can be split this way into:

 L1 = [], L2 = [a,b,c]

 L1 = [a], L2 = [b,c]

 L1 = [a,b], L2 = [c]

 L1 = [a,b,c], L2 = []

In fact the append clause can work with three instantiated parameters to verify that L1 and

L2 append into L3, and even with only L1 instantiated or only L2 instantiated or even

more unusually with all three parameters uninstantiated.

 The Definite Clause Grammar (DCG). This is very convenient way of expressing

Backus-Naur grammar rules and recording a parse for them. It is based on processing list

structures by specifying what part of a list is used up in the parse, and what part is

returned as unused, available for the next term in a grammar rule. It is described very

lucidly in [Clocksin]. The implementation of STATECRUNCHER's expression parser shows

that use of DCGs is feasible on a large scale (about 20 operator precedences), provided

care is taken to maintain efficiency.

PROLOG's run-time performance

There are two parts to PROLOG's execution performance: compilation and the run-time

engine. Although PROLOG's Definite Clause Grammar is well-known for its parsing

capability, it is probably for performance reasons that it is not more widely used for full

domain-specific-language systems. However, the compilation speed of a STATECRUNCHER

model is very acceptable, good even, on a modern (3GHz) machine, where typical illustrative

models (as in [StCrManual]), compile in a second or so. Compilation, especially of

expressions is certainly felt to be an area where, with more analysis and profiling, the

performance could be improved further.

© Graham G. Thomason 2003-2004 229

The stress tests in [StCrTest] show that performance is generally good, but with

nondeterminism, there are, and always will be, cases of combinatorial explosion. In

deterministic situations, STATECRUNCHER is fast, by human standards, in all models

investigated, including automatically generated large ones.

There are differences between different PROLOG implementations, but the author has been

very satisfied with the two chosen for the investigation: [SWI Prolog], which is in the public

domain, and [WinProlog], a commercial system. There are not great differences in execution

speed, although it can be remarked that the difference between running the WinProlog system

as an MS-DOS executable and running in the development environment gives a factor of 2 or

3 difference in performance.

10.3 Future directions

Future directions can be seen in tooling and in testing.

10.3.1 The tooling side

Possible enhancements to STATECRUNCHER

Philips Research has expressed interest in extending STATECRUNCHER with machine

implantation, whereby state machine templates can be dynamically implanted into a

statechart, as described in [StCrFunMod]. This makes whole statecharts recursive, and would

solve the problem of how to model (indirectly) synchronous and asynchronous recursive

function calls.

A less drastic enhancement to STATECRUNCHER is to implement UML pseudo-states, though

these can be simulated with the existing features. Ideally, STATECRUNCHER would keep pace

with all developments in UML, as this is becoming the industry standard.

Other possible enhancements are: to support forward chaining of data and lambda transitions

(i.e. transitions that take place when some boolean expression becomes true) and to combine

cause effect graphing with statecharts.

STATECRUNCHER's performance

STATECRUNCHER has been subjected to some stress tests, decribed in detail in [StCrTest].

Some models of regular structure but arbitrary size can be generated by PROLOG programs.

Examples are: broad clusters, deep clusters, broad sets, deep sets, intensive nondeterminism,

and long chains of fired events. Response times for processing an event as given below are for

STATECRUNCHER running under [SWI-Prolog] on a 300 MHz machine. More modern

machines can give a factor 10 improvement.

230 © Graham G. Thomason 2003-2004

STATECRUNCHER almost always performs well with deterministic models (i.e. no forks in the

model, and with race and set transit nondeterminism disabled). Examples:

 Test model t7110, with 25 clusters of 25 leaf-states (625 leaf-states in total), executes a

leafstate-to-leafstate transition in 1 second and a cluster-to-cluster one in 2.5 seconds.

 Test model t7120, containing a set of 5 sets each with 5 member clusters of 2 leaf-states,

executes an event causing transitioning in all 25 clusters in 1.8 seconds.

 Test model t7180 executes a chain of 25 fired events across 25 members of a set in 1.7

seconds.

In nondeterministic situations, models with a few tens of worlds generally perform

adequately. The Program Installation example (Figure 171) performs well. With larger

numbers of worlds (say 100), performance can become a bottleneck, though models have

been run leading to world numbers in the thousands after very few events. Set

nondeterminism with nested sets appears to degrade performance considerably.

Approaches to increasing STATECRUNCHER's performance

What options are there for performance improvements? We consider some:

 Re-write the program in ‘C’. ‘C’ is a compile-to-executable (non-interpretative) language

which facilitates very precise control over all algorithms, including memory allocation. A

disadvantage of this approach is that it would probably be a very time-consuming

exercise, though the existence of the PROLOG implementation would provide an

unambiguous specification, and would give much guidance on implementation strategy.

 Write critical inner loops in ‘C’. One would profile the execution of the PROLOG

version to find the critical inner loops. Profiling utilities and an interface mechanism to

external code exist for most PROLOG systems. This approach could be very effective,

but it is PROLOG-implementation specific. It could be that what is critical to one

PROLOG engine is not critical to another. Also, the external interface mechanisms are

liable to be specific to the PROLOG system used.

 Write one's own subset of PROLOG in ‘C’. By implementing some PROLOG operations

as ‘C’ routines, especially list operations, one might be able to produce a system that

generally makes use of the existing PROLOG structure, whilst benefiting from the

efficiency and controllability of ‘C’.

 Investigate other PROLOG engines. There are many suppliers of PROLOG systems.

STATECRUNCHER already runs under two PROLOG systems, [SWI-Prolog] and

[WinProlog]. This means that a framework for further porting is already in place, with

many system-dependent predicates already implemented in a compatibility library. The

test suite, (mentioned in section 9.3) would help drive the porting process: once all tests

run, the serious porting work is likely to be complete.

© Graham G. Thomason 2003-2004 231

 Tweak PROLOG garbage collection. A weakness of PROLOG as a programming

language could be that the user does not have adequate control over memory

management. The garbage collection algorithm used may not be known. However, most

PROLOG systems offer the possibility to make extra garbage collection calls. A few

experiments have been done with this, but so far no significant improvements have been

observed.

 Tailor the coding style to a particular PROLOG engine. Some PROLOG suppliers offer

guidance on how to write efficient code, though what is good for one system may be bad

for another. A case in point is whether to be liberal or sparing with the use of the

PROLOG cut. One might think that putting in a redundant cut at the end of a

deterministic predicate helps a PROLOG engine, enabling it to recover many stack

frames, but it may impede it. This may be because it interferes with tail recursion

optimisation, where a recursive call at the end of a predicate is executed at the caller's

level, rather than by creating a new calling level. A few experiments with removing cuts

in the process set of task sequences in worlds routine shows that memory requirements

become very different (e.g. stack space is traded for heap space), but that there is no

drastic performance or capacity change. Another aspect to tailoring code is to make use of

supplied library functions rather than one's own generic implementations.

 Algorithmic experimentation. The transition algorithm was described with various

algorithmic alternatives, such as the algorithm A / algorithm B options in the main

process set of task sequences in worlds routine. It could be that a better choice can be

found.

 Write a front-end cache to STATECRUNCHER that pre-explores the state space when the

IUT is not executing under real-time constraints, so that when the IUT is executing under

real-time constraints, a rapid-response test oracle can be given.

 Make use of parallel processing (e.g. a processor per world). This would be easier at a

macroscopic level (allocating each extant world visible at user-event processing time to a

processor) than at a microscopic level (allocating each extant world visible at internal-

event processing time to a processor). As the number of worlds may be larger than the

number of processors, some form of dynamic allocation of tasks would be required.

The above list gives many options, but it must be remembered that performance optimisation

is in competition with pressure for new features (e.g. as mentioned in this subsection).

Moreover, STATECRUNCHER is in competition for resources with the other elements of the

tool chain. Should more effort be spent on test generation? Priorities are often determined by

the customer.

Perspectives for on-the-fly testing and test generation

There is scope for research into advanced primers (test generators), performing intelligent

transition tours and disambiguating IUT states under nondeterminism. STATECRUNCHER at

232 © Graham G. Thomason 2003-2004

least enables flattening of nondeterministic UML statecharts, and may be useful for other

transformations, e.g. finding an observable NFSM (Nondeterministic Finite State Machine)

that is equivalent to an unobservable one (observable means that outputs on transitions reveal

the new state). STATECRUNCHER could have a role to play as an experimental vehicle for

advanced on-the-fly testing (Lee's adaptive testing) algorithms, which can be more efficient

than off-line generated batch tests (Lee's preset testing). For example, the homing problem

(see [Lee], p.1095) consists of determining the final state of a machine by giving it a sequence

of events and observing the outputs. With on-the-fly testing the homing sequence can be

shorter than in the batch case. However, homing (which drives the machine into a known state

following on from a test) is weaker than distinguishing or verifying or identifying the state

after the test, but on-the-fly testing helps here too [Lee, p.1097, p.1105], [Hierons 98].

STATECRUNCHER's command language offers efficient hooks needed by the test generation or

other programs.

10.3.2 The testing side

Practical problems being tackled

STATECRUNCHER has been the test oracle tool on which state-based testing at Philips has been

focussed for well over a year. The strength of STATECRUNCHER is seen as being in its UML-

friendly and intuitive syntax, and its ability to handle nondeterminism, which was the

motivation for its development. Other strengths are its support for scoping operators and its

after-landing transition semantics, both of which facilitate component composition.

PRI-B has shown itself able to use STATECRUNCHER in an advanced testing environment.

STATECRUNCHER has been integrated into an end-to-end tool chain, based on TorX, using

EXPECT scripts to adapt STATECRUNCHER's interface to that required by TorX. Various

components have been selected for modelling and testing.

It has been found that creating some dynamic models from a conventional specification is a

particularly skilled task. Part of the difficulty is that this needs to be done in a way that

enables component model composition to follow the mechanism of component composition.

The challenges have been successfully met, and as they have revealed additional needs in

STATECRUNCHER, (a socket interface, pruning of worlds on invalid traces, arrays) these have

been supplied. The testing activities have also exposed some new problems, in particular the

issue of how to handle large numbers of notifications (asynchronous messages) without

creating a STATECRUNCHER world for each potential number of notifications.

It is intended to complete this phase of trialling with STATECRUNCHER in 2004. There are

plans to make a comparison with another product, Conformiq, of Finnish manufacture. The

results of the comparison should be available in the course of 2004.

© Graham G. Thomason 2003-2004 233

10.4 Final conclusion

We have presented a state machine system that handles nondeterminism for the purpose of

providing a test oracle in a tool chain. It has successfully been transferred to Philips Research

India - Bangalore for use on live projects, where it has been deployed for testing of embedded

software components with inherent nondeterminism. The successful outcome of these trials to

date has led to ongoing use of STATECRUNCHER in testing research within the Philips

Electronics organization. We believe that one of the main contributions of this thesis has been

to take a research concept from inception through to deployment in an industrial setting.

234 © Graham G. Thomason 2003-2004

11. Glossary and abbreviations etc.

11.1 Greek letters

For compactness, and as in [CHSM], we will often use Greek letters for event names; in the

STATECRUNCHER source, these would be spelled out in Roman letters. The English names of

the letters are as follows:

 α alpha β beta γ gamma δ delta

 ε epsilon ζ zeta η eta θ theta

 ι iota κ kappa λ lambda μ mu

 ν nu ξ xi ο omicron π pi

 ρ rho σ sigma τ tau υ upsilon

 φ phi χ chi ψ psi ω omega

Table 18. Greek letters

11.2 Glossary and abbreviations

Action: A STATECRUNCHER term for processing that is associated with a transition

(or the entering/exiting of a state). An action can be e.g.

- a ‘C’-like assignment to a variable

- the firing of an event

- the generation of output (a trace).

Black-box testing: Testing where system outputs can be observed, but not system internals.

In the case of state-based testing, the state (more precisely, configuration)

of the system will not be directly observable, and must be deduced from

traces (outputs generated when events are processed).

Broadcast-event: An event that is generated within a statechart which can be responded to

by the model (transitions can be triggered by it). The STATECRUNCHER

keyword to generate a broadcast event is fire event.

© Graham G. Thomason 2003-2004 235

Broadcast-event nondeterminism: Also known as fired-event nondeterminism, this is

the form of nondeterminism that arises when an action associated with a

transition fires an event, which in turn gives rise (directly or indirectly) to

one of the other forms of nondeterminism (e.g. fork, race, set-transit).

CCS: The Calculus of Communicating Systems. A process calculus defined by

Robin Milner.

CHSM: Concurrent Hierarchical finite State Machine. A language implemented by

Paul J Lucas [CHSM].

Cluster: A hierarchical state and component of a statechart with the understanding

that if the cluster is occupied, exactly one of its members must be

occupied. It is the XOR-state of Harel.

Configuration: The dynamic state of a statechart in a broad sense, comprising: occupancy

(occupied/vacant) of the states in the statechart, variable values, cluster

history, and trace values.

CSP: Communicating Sequential Processes. A process calculus defined by

C.A.R. Hoare.

DCG: Definite Clause Grammar. This is the standard PROLOG grammar

notation, which enables grammar rules to be written in Backus-Naur form.

Event: A signal (that has no time duration) which may be responded to in a

statechart model by the triggering of transitions.

Fire: The act of generating an event in an action associated with a transition:

“the action fires the event”. [Compare “triggering a transition”, which may

take place when the fired event is processed].

Fired-event nondeterminism: Also known as broadcast-event nondeterminism, this is the

form of nondeterminism that arises when an action associated with a

transition fires an event, which in turn gives rise (directly or indirectly) to

one of the other forms of nondeterminism (e.g. fork, race, set-transit).

Fork nondeterminism: The form of nondeterminism that arises when an event triggers

mutually exclusive transitions in the statechart, and which produce a

different outcome.

236 © Graham G. Thomason 2003-2004

FSM: Finite state machine. We normally mean a flattened state machine of the

Mealy type that produces observable outputs on transitions.

GP4: Generic Prolog Parsing and Prototyping Package. An underlying layer of

PROLOG programs to provide parsing support (especially tokenization

and expression parsing).

GUI: Graphical User Interface.

Harness: A test harness is a tool that contains or accesses a test script so as to obtain

tests and their oracle, and communicates with an implementation under

test to run the tests. It compares actual with expected output, and logs the

results as pass or fail.

IUT: Implementation Under Test.

Leafstate: A state and a component of a statechart at the lowest hierarchical level.

LHS: Left Hand Side.

Machine engine: A program that holds a representation of a statechart and a configuration

of that statechart, and which can process an event and in so doing calculate

and assume the new configuration.

Meta-event: An event that is internally generated when a state is exited or entered, and

which can be used to trigger transitions in other parts of the statechart.

NFSM: Nondeterministic Finite State Machine.

Nondeterminism: Dynamic behaviour of a system whereby there is more than one outcome

of processing an event. Distinguishing aspects of an outcome are: state

occupancy, cluster history, variable values, and traces. For a formal

definition of a nondeterministic finite state machine, see section 7.1.

ONFSM: Observable Nondeterministic Finite State Machine. For ONFSMs, a

unique target state on a transition can be deduced from the output

generated by the transition.

© Graham G. Thomason 2003-2004 237

Oracle: The pre-determined output of the system on a successful test, for

comparison purposes with the actual output.

PCO: Point of Control and Observation. These are used for systems such as

networked and client-server systems where inputs and outputs must be

partitioned according to which separate testing point can provide and

observe them.

Primer: The TorX terminology for the part of the tool chain that decides what

events (or transitions) are to be given to the explorer and indirectly to the

implementation under test to be processed.

Race nondeterminism: The form of nondeterminism that arises when an event triggers

transitions in parallel parts of the statechart, and when the order in which

these events are processed will affect the outcome.

RHS: Right Hand Side.

Set: A state and a component of a statechart with the understanding that if the

set is occupied, all its members must be occupied. This represents the

parallelism of a model. It is the AND-state of Harel.

Set-action nondeterminism: The form of nondeterminism that arises when actions (such as

variable assignments) in different members of a set are executed, when the

order in which this happens affects the outcome.

Set nondeterminism: A generic term for set-transit nondeterminism, set-action

nondeterminism and set meta-event nondeterminism.

Set-meta-event nondeterminism: The form of nondeterminism that arises when elements of

a set are exited or entered, (generating enter and exit meta-events), when

the order in which this happens affects the outcome.

Set-transit nondeterminism: The form of nondeterminism that arises when a set is exited

or entered, when the order in which the members are exited or entered

affects the outcome.

SRT: State Relation Table. A table relating input states to output states via

events.

238 © Graham G. Thomason 2003-2004

State: This word is used in two senses according to the context

 a statechart consists of a hierarchy of states, which may be sets,

clusters, or leaf-states

 a state is the occupancy (occupied/vacant) of a state in the above

sense.

Statechart: A concurrent, hierarchical representation of a dynamic behaviour model

consisting of states, events, transitions, and optionally variables and

statements for processing them.

STATECRUNCHER: A provisional name for a program that compiles statecharts, process

events, and provide state or trace information.

SUT: System Under Test.

Trace: The output generated on processing an event (or transition), corresponding

to the expected observable output of the Implementation Under Test.

Transition: The relation between the state of a system before and after that system has

processed any event that triggers that transition.

Trigger: The act of responding to an event by processing an associated transition:

“the event triggers the transition”. [Compare “firing an event”, which may

take place as an action on the transition].

UML: Universal Modelling Language, as set out by the Object Modelling Group.

UML is the industry standard for various modelling views on a system.

The dynamic modelling view uses statecharts.

White-box testing: Testing where system internals can be observed. In the case of state-based

testing, the state (more precisely, configuration) of the system can be

observed directly.

© Graham G. Thomason 2003-2004 239

12. References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

240 © Graham G. Thomason 2003-2004

References

Note: For a separate annotated bibliography, where references have been structured into

categories, see [StCrBiblRef], listed above. The references below are those specifically

referred to in this thesis.

[BCS-SIGIST] Standard for Software Component Testing

 British Computer Society - Special Interest Group in Software Testing

[Beizer] B. Beizer

 Software Testing Techniques

 International Thomson Computer Press, 1990, ISBN 1850328803

[Bérard] B. Bérard

 Systems and Software Verification

 Springer-Verlag, 2001. ISBN 3-540-41523-8

[Beveridge] Jim Beveridge and Robert Wiener

 Multithreading Applications in Win32. The Complete Guide to Threads

 Addison-Wesley, 1996, ISBN 0-201-44234-5 (pb)

[Callahan] John R. Callahan

 http://www.cs.wvu.edu/~callahan/interests.html

 http://www.ivv.nasa.gov

[CdR] Côte de Resyste (delivers the TorX tool)

 http://fmt.cs.utwente.nl/CdR

[CdR-iP] René de Vries, Jan Tretmans, Axel Belinfante, Jan Feenstra, Lex Heerink,

 Loe Feijs, Sjouke Mauw, Nicolae Goga, Arjan de Heer

 Côte de Resyste in Progress

 see the [CdR] site

[Chow] Tsun S. Chow

 Testing Software Design Modeled by Finite-State Machines

 IEEE Transactions on Software Engineering, Vol SE-4, No 3, May, 1978

© Graham G. Thomason 2003-2004 241

[CHSM] Paul J. Lucas

 An Object-Oriented System for Implementing Concurrent, Hierarchical,

 Finite State Machines.

 MSc. Thesis, University of Illinois at Urbana-Champaign, 1993

[Clocksin] W.F. Clocksin & C.S. Mellish

 Programming in Prolog, 2nd Edition

 Springer Verlag, 1984.

[CWB] The Edinburgh Concurrency Workbench

 http://www.dcs.ed.ac.uk/home/cwb/

[Dahbura] Anton T. Dahbura, Krishnan K. Sabnani, and M. Ümit Uyar

 Formal Methods for Generating Protocol Conformance Test Sequences

 Proceedings if the IEEE, Vol. 78, No. 8, August, 1990

[CMMI] CMMI-SE/SW, Version 0.2b, Sept 1999

 Capability Maturity Model - Integrated Systems/Software Engineering

 CMMI website: http://www.sei.cmu.edu/cmmi/cmmi.html

[Conformiq] http://www.conformiq.com

[Darnell] P.A. Darnell and P.E. Margolis

 C: A Software Engineering Approach

 Springer Verlag, 1988. ISBN 0-387-97389-3 and 3-540-97389-3

[DejaGnu] R. Savoye

 The DejaGnu Testing Framework

 The Free Software Foundation, 1993

[Du Bousquet] Lydie Du Bousquet, Solofo Ramangalahy, Séverine Simon, César Viho

 Formal Test Automation: The Conference Protocol with TGV/TorX

 Available on the web at the [TorX] site.

[ECHSM] M.J. Hollenberg

 Extended Hierarchical Concurrent State Machines, Syntax and Semantics

 Philips Nat. Lab. Draft Report, 1999

242 © Graham G. Thomason 2003-2004

[Farchi] E. Farchi, A. Hartman, S.S. Pinter

 Using a model-based test generator to test for standard conformance

 IBM Systems Journal, Vol. 41, No 1, 2002.

[Friedman] Galit Friedman, Alan Hartman, Kenneth Nagin, Tomer Shiran

 Projected State Machine Coverage

 IBM Haifa Research Laboratory

 Presentation ISSTA 2002

[Harel] D. Harel et al.

 On the Formal Semantics of Statecharts

 Logic in Computer Science, 2nd Annual Conference, 1987, pp.54-64

[Hennie] F.C. Hennie

 Fault Detecting for Sequential Circuits

Proceedings of the 5th Annual Symposium on Switching Theory and

Logical Design, 1964, pp. 95-110.

[Hierons 98] Rob M. Hierons

 Adaptive testing of a deterministic implementation against a

 nondeterministic finite state machine

 The Computer Journal, 41, 5 (1998), pp. 349-355

[Hierons 03] Rob M. Hierons

Generating candidates when testing a deterministic implementation against

a non-deterministic finite state machine

 The Computer Journal, 46, 3, pp. 307-318

[Hoare] C.A.R. Hoare

 Communicating Sequential Processes

 Prentice-Hall, 1985, ISBN 0-13-153271-5, 0-13-153289-8 PBK

[Hollenberg] M.J. Hollenberg

 Test Templates for PHACT

 Philips Nat. Lab. Technical Note 152/99

© Graham G. Thomason 2003-2004 243

[Hong] Hyoung Seok Hong, Jeong Hyun Kim, Sung Deok Cha and Yong Rae Kwon

 Static Semantics and Priority Schemes for Statecharts

 Proceedings of COMPSAC '95, IEEE Computer Society Press.

[IEEE 610.12.1990] IEEE Standards, Software Engineering

 Volume I, Customer and Terminology Standards, 1999 Edition

[ISO 9646-1] International Organization for Standardization

 ISO/IEC 9646-1 (1994)

Information technology -- Open Systems Interconnection -- Conformance

testing methodology and framework -- Part 1: General concepts

[Jagadeesan] Lalita Jategaonkar Jagadeesan et al.

 Specification-Based Testing of Reactive Software:

 Tools and Experiments. Experience report,

 Proceedings of the International Conference on Software Engineering,

 May 1997

[Koala] R. van Ommering, F. van der Linden, J. Kramer, J. Magee

 The Koala Component model for Consumer Electronics Software

 IEEE Computer, March 2000, pp. 78-85.

[Koppalkar 02] Nitin Koppalkar and Animesh Bhowmick

 Integration of Generic Explorer with the TorX Tool Chain

 Philips Nat. Lab. Technical Note 2002/387

[Koppalkar 03] Nitin Koppalkar

Interfacing STATECRUNCHER with TorX for demonstrating the state-based

testing technique taking MG-R components for a case study

 Philips Nat. Lab. Draft Report, December 2003

[Koymans] Ron Koymans

An Overview of Automatic Test Generation Techniques for

Communication Protocols

 Philips Nat. Lab. Report RWR-508-re-93558, November, 1994

244 © Graham G. Thomason 2003-2004

[Kwan] Kwan Mei-Ko

 Graphic Programming Using Odd or Even Points

 Chinese Mathematics 1962, Vol. 1, pp. 273-277

[Lee] David Lee and Mihalis Yannakakis

 Principles and Methods of Testing Finite State Machines

 Proceedings of the IEEE, Vol. 84, No 8, August, 1996

[Myers] G.J. Myers

 The Art of Software Testing

 John Wiley & Sons, 1979. ISBN 0-471-04328-1

[Petrenko] Alexandre Petrenko, Nina Yevtushenko, Alexandre Lebedev,

 Anindya Das

 Nondeterministic State Machines in Protocol Conformance Testing

 Protocol Test Systems VI (C-19), pp. 363-378, 1994

[PHACT] L. Heerink and M. Hollenberg

 Conformance Testing Using PHACT

 Philips Nat. Lab. Technical Note NL-TN 2000/011

[Phadke] Madhav S. Phadke

 Planning efficient software tests

 http://www.stsc.hill.af.mil/crosstalk/1997/10/planning.asp

[Sabnani] Krishnan Sabnani and Anton T. Dahbura

 A Protocol Test Generation Procedure

 Computer Networks and ISDN Systems 15 (1988), pp. 285-297

[Schneider] Steve Schneider

 Concurrent and Real-time Systems, The CSP Approach

 John Wiley & Sons Ltd, 2000, ISBN 0-471-62373-3

[Sloane] N.J.A. Sloane

A library of orthogonal arrays

 http://www.research.att.com/~njas/doc/OA.html

© Graham G. Thomason 2003-2004 245

[SPIN] http://netlib-bell-labs.com/netlib/spin/whatisspin.html

[StCr...] For STATECRUNCHER appendices/references, please see the start of this

section.

[SWI Prolog] http://www.swi-prolog.org

[Trew 98] Tim Trew

 State-based Testing with WinRunner: the State-Relation Package

 Philips PRL Internal Note SEA/704/98/05, June 1998

[Trew 01] Tim Trew

 Software Component Composition - Still "Plug and Pray?"

 Proceedings of the 6th Philips Software Conference, February, 2001

[Trew 03] Tim Trew and Seshaiah Uppala

 State-based modelling of software components for integration testing

 A practical guide to the creation of STATECRUNCHER models

 Philips Nat. Lab. Technical Note (under preparation).

[UML] The Object Management Group website is: http://www.omg.org

 UML specifications are available from this website.

[VnV] Eleen Hollenberg and Erik Mallens

 CvnvTestframe User Manual

 MG-R Software Documentation, v2.0, October 2001.

[von der Beeck] Michael von der Beeck

 A Comparison of Statechart Variants

 Aachen University of Technology, Aachen, Germany

[Warren] David H.D. Warren

 Logic Programming and Compiler Writing

 Software Practice and Experience, Vol. 10, 97-125 (1980).

[WinProlog] WinProlog, Logic Programming Associates Ltd

 http://www.lpa.co.uk

246 © Graham G. Thomason 2003-2004

[WinRun] WinRunner v4.0/v5.01, Mercury Interactive

 http://www.merc-int.com/products/winrunguide.html

[Yule] D.C. Yule

 Automatic State-Based Testing

Philips PRL Technical Note TN 3611, 1997 / DVD Document V19 C4

S415.

[Zhang] Fan Zhang and To-yat Cheung

Optimal Transfer Trees and Distinguishing Trees for testing Observable

nondeterministic Finite-State Machines

IEEE Transactions on Software Engineering, Vol. 29, No. 1, Jan. 2003

